Characterization of a vacuolar importer of secologanin in Catharanthus roseus.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
03 Aug 2024
Historique:
received: 01 09 2023
accepted: 23 07 2024
medline: 4 8 2024
pubmed: 4 8 2024
entrez: 3 8 2024
Statut: epublish

Résumé

Monoterpenoid indole alkaloid (MIA) biosynthesis in Catharanthus roseus is a paragon of the spatiotemporal complexity achievable by plant specialized metabolism. Spanning a range of tissues, four cell types, and five cellular organelles, MIA metabolism is intricately regulated and organized. This high degree of metabolic differentiation requires inter-cellular and organellar transport, which remains understudied. Here, we have characterized a vacuolar importer of secologanin belonging to the multidrug and toxic compound extrusion (MATE) family, named CrMATE1. Phylogenetic analyses of MATEs suggested a role in alkaloid transport for CrMATE1, and in planta silencing in two varieties of C. roseus resulted in a shift in the secoiridoid and MIA profiles. Subcellular localization of CrMATE1 confirmed tonoplast localization. Biochemical characterization was conducted using the Xenopus laevis oocyte expression system to determine substrate range, directionality, and rate. We can confirm that CrMATE1 is a vacuolar importer of secologanin, translocating 1 mM of substrate within 25 min. The transporter displayed strict directionality and specificity for secologanin and did not accept other secoiridoid substrates. The unique substrate-specific activity of CrMATE1 showcases the utility of transporters as gatekeepers of pathway flux, mediating the balance between a defense arsenal and cellular homeostasis.

Identifiants

pubmed: 39097635
doi: 10.1038/s42003-024-06624-5
pii: 10.1038/s42003-024-06624-5
doi:

Substances chimiques

Plant Proteins 0
Secologanin Tryptamine Alkaloids 0
secologanin 19351-63-4
Iridoid Glucosides 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

939

Subventions

Organisme : Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)
ID : RGPIN-2021-02817

Informations de copyright

© 2024. The Author(s).

Références

Li, C. et al. Single-cell multi-omics in the medicinal plant Catharanthus roseus. Nat. Chem. Biol. 19, 1031–1041 (2023).
pubmed: 37188960 pmcid: 10374443 doi: 10.1038/s41589-023-01327-0
St-Pierre, B., Vazquez-Flota, F. A. & De Luca, V. Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11, 887–900 (1999).
pubmed: 10330473 pmcid: 144229 doi: 10.1105/tpc.11.5.887
Hagel, J. M., Yeung, E. C. & Facchini, P. J. Got milk? The secret life of laticifers. Trends Plant Sci. 13, 631–639 (2008).
pubmed: 18977166 doi: 10.1016/j.tplants.2008.09.005
Guirimand, G. et al. Strictosidine activation in Apocynaceae: towards a “nuclear time bomb”? BMC Plant Biol. 10, 182 (2010).
pubmed: 20723215 pmcid: 3095312 doi: 10.1186/1471-2229-10-182
Morant, A. V. et al. beta-Glucosidases as detonators of plant chemical defense. Phytochemistry 69, 1795–1813 (2008).
pubmed: 18472115 doi: 10.1016/j.phytochem.2008.03.006
Vogel, M., Lawson, M., Sippl, W., Conrad, U. & Roos, W. Structure and mechanism of sanguinarine reductase, an enzyme of alkaloid detoxification. J. Biol. Chem. 285, 18397–18406 (2010).
pubmed: 20378534 pmcid: 2881765 doi: 10.1074/jbc.M109.088989
Courdavault, V. et al. A look inside an alkaloid multisite plant: the Catharanthus logistics. Curr. Opin. Plant Biol. 19, 43–50 (2014).
pubmed: 24727073 doi: 10.1016/j.pbi.2014.03.010
Kulagina, N., Méteignier, L.-V., Papon, N., O’Connor, S. E. & Courdavault, V. More than a Catharanthus plant: a multicellular and pluri-organelle alkaloid-producing factory. Curr. Opin. Plant Biol. 67, 102200 (2022).
pubmed: 35339956 doi: 10.1016/j.pbi.2022.102200
Sun, S. et al. Single-cell RNA sequencing provides a high-resolution roadmap for understanding the multicellular compartmentation of specialized metabolism. Nat. Plants 9, 179–190 (2022).
pubmed: 36522449 doi: 10.1038/s41477-022-01291-y
Larsen, B. et al. Identification of iridoid glucoside transporters in Catharanthus roseus. Plant Cell Phys. 58, 1507–1518 (2017).
doi: 10.1093/pcp/pcx097
Kidd, T., Easson, M. L. A. E., Qu, Y. & Luca, V. D. Inter-organ transport of secologanin allows assembly of monoterpenoid indole alkaloids in a Catharanthus roseus mutant. Phytochemistry 159, 119–126 (2019).
pubmed: 30611871 doi: 10.1016/j.phytochem.2018.12.017
Guirimand, G. et al. The subcellular organization of strictosidine biosynthesis in Catharanthus roseus epidermis highlights several trans-tonoplast translocations of intermediate metabolites. FEBS J. 278, 749–763 (2011).
pubmed: 21205206 doi: 10.1111/j.1742-4658.2010.07994.x
Stevens, L. H., Blom, T. J. M. & Verpoorte, R. Subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspension cultured cells of Catharanthus roseus and Tabernaemontana divaricata. Plant Cell Rep. 12, 573–576 (1993).
pubmed: 24201788 doi: 10.1007/BF00233063
Payne, R. M. E. et al. An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole. Nat. Plants 3, 16208 (2017).
pubmed: 28085153 pmcid: 5238941 doi: 10.1038/nplants.2016.208
Yu, F. & De Luca, V. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. Proc. Natl Acad. Sci. USA 110, 15830–15835 (2013).
pubmed: 24019465 pmcid: 3785729 doi: 10.1073/pnas.1307504110
Demessie, Z. et al. The ATP binding cassette transporter, VmTPT2/VmABCG1, is involved in export of the monoterpenoid indole alkaloid, vincamine in Vinca minor leaves. Phytochemistry. 140, 118–124 (2017).
Guedes, J. G. et al. The leaf idioblastome of the medicinal plant Catharanthus roseus is associated with stress resistance and alkaloid metabolism. J. Exp. Bot. 75, 274–299 (2024).
pubmed: 37804484 doi: 10.1093/jxb/erad374
Yamamoto, K. et al. Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with imaging MS and single-cell MS. Proc. Natl Acad. Sci. USA 113, 3891–3896 (2016).
pubmed: 27001858 pmcid: 4833245 doi: 10.1073/pnas.1521959113
Kellner, F. et al. Genome-guided investigation of plant natural product biosynthesis. Plant J. 82, 680–692 (2015).
pubmed: 25759247 doi: 10.1111/tpj.12827
Murata, J., Roepke, J., Gordon, H. & De Luca, V. The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell 20, 524–542 (2008).
pubmed: 18326827 pmcid: 2329939 doi: 10.1105/tpc.107.056630
Gani, U., Vishwakarma, R. A. & Misra, P. Membrane transporters: the key drivers of transport of secondary metabolites in plants. Plant Cell Rep. 40, 1–18 (2021).
pubmed: 32959124 doi: 10.1007/s00299-020-02599-9
Shoji, T. et al. Multidrug and toxic compound extrusion-type transporters implicated in vacuolar sequestration of nicotine in tobacco roots. Plant Physiol. 149, 708–718 (2009).
pubmed: 19098091 pmcid: 2633862 doi: 10.1104/pp.108.132811
Tanaka, Y., Iwaki, S., Sasaki, A. & Tsukazaki, T. Crystal structures of a nicotine MATE transporter provide insight into its mechanism of substrate transport. FEBS Lett. 595, 1902–1913 (2021).
pubmed: 34050946 doi: 10.1002/1873-3468.14136
Nelson, B. K., Cai, X. & Nebenführ, A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126–1136 (2007).
pubmed: 17666025 doi: 10.1111/j.1365-313X.2007.03212.x
Carqueijeiro, I. et al. Isolation of cells specialized in anticancer alkaloid metabolism by fluorescence-activated cell sorting. Plant Physiol. 171, 2371–2378 (2016).
pubmed: 27356972 pmcid: 4972299 doi: 10.1104/pp.16.01028
Morita, M. et al. Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum. Proc. Natl Acad. Sci. USA 106, 2447–2452 (2009).
pubmed: 19168636 pmcid: 2650162 doi: 10.1073/pnas.0812512106
Shitan, N. et al. Involvement of the leaf-specific multidrug and toxic compound extrusion (MATE) transporter Nt-JAT2 in vacuolar sequestration of nicotine in Nicotiana tabacum H. W. Van Veen, ed. PLoS ONE 9, e108789 (2014).
Carqueijeiro, I. et al. Two tabersonine 6,7-epoxidases initiate lochnericine-derived alkaloid biosynthesis in Catharanthus roseus. Plant Physiol. 177, 1473–1486 (2018).
Williams, D., Qu, Y., Simionescu, R. & De Luca, V. The assembly of (+)-vincadifformine- and (−)-tabersonine-derived monoterpenoid indole alkaloids in Catharanthus roseus involves separate branch pathways. Plant J. 99, 626–636 (2019).
pubmed: 31009114 doi: 10.1111/tpj.14346
O’ Connor, S. E. & Maresh, J. J. Chemistry and biology of monoterpeneindole alkaloid biosynthesis. Nat. Prod. Rep. 23, 532 (2006).
pubmed: 16874388 doi: 10.1039/b512615k
Nimmy, M. S. et al. A systematic phylogenomic classification of the multidrug and toxic compound extrusion transporter gene family in plants. Front. Plant Sci. 13, 774885 (2022).
pubmed: 35371145 pmcid: 8970042 doi: 10.3389/fpls.2022.774885
Watkins, J. L. & Facchini, P. J. Compartmentalization at the interface of primary and alkaloid metabolism. Curr. Opin. Plant Biol. 66, 102186 (2022).
pubmed: 35219143 doi: 10.1016/j.pbi.2022.102186
Dudley, Q. M. et al. Reconstitution of monoterpene indole alkaloid biosynthesis in genome engineered Nicotiana benthamiana. Commun. Biol. 5, 949 (2022).
pubmed: 36088516 pmcid: 9464250 doi: 10.1038/s42003-022-03904-w
Gao, J. et al. Biosynthesis of catharanthine in engineered Pichia pastoris. Nat. Synth. 2, 231–242 (2023).
doi: 10.1038/s44160-022-00205-2
Shahsavarani, M. et al. Improved protein glycosylation enabled heterologous biosynthesis of monoterpenoid indole alkaloids and their unnatural derivatives in yeast. Metab. Eng. Commun. 16, e00215 (2023).
pubmed: 36569379 doi: 10.1016/j.mec.2022.e00215
Zhang, J. et al. A microbial supply chain for production of the anticancer drug vinblastine. Nature 609, 341–347 (2022).
pubmed: 36045295 pmcid: 9452304 doi: 10.1038/s41586-022-05157-3
Dastmalchi, M. Elusive partners: a review of the auxiliary proteins guiding metabolic flux in flavonoid biosynthesis. Plant J. 108, 314–329 (2021).
pubmed: 34318549 doi: 10.1111/tpj.15446
Dastmalchi, M. et al. Purine permease-type benzylisoquinoline alkaloid transporters in opium poppy. Plant Physiol. 181, 916–933 (2019).
pubmed: 31467164 pmcid: 6836811 doi: 10.1104/pp.19.00565
Dastmalchi, M. et al. Neopinone isomerase is involved in codeine and morphine biosynthesis in opium poppy. Nat. Chem. Biol. 15, 384–390 (2019).
pubmed: 30886433 doi: 10.1038/s41589-019-0247-0
Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).
pubmed: 33892491 pmcid: 8233496 doi: 10.1093/molbev/msab120
Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. gkae268 (2024).
Eng, J. G. M. et al. A Catharanthus roseus Fe(II)/α-ketoglutarate-dependent dioxygenase catalyzes a redox-neutral reaction responsible for vindolinine biosynthesis. Nat. Commun. 13, 3335 (2022).
pubmed: 35680936 pmcid: 9184523 doi: 10.1038/s41467-022-31100-1
Chakrabarty, R. et al. pSITE vectors for stable integration or transient expression of autofluorescent protein fusions in plants: probing Nicotiana benthamiana virus interactions. Mol. Plant Microbe Interact. 20, 740–750 (2007).
pubmed: 17601162 doi: 10.1094/MPMI-20-7-0740
Sparkes, I. A., Runions, J., Kearns, A. & Hawes, C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 1, 2019–2025 (2006).
pubmed: 17487191 doi: 10.1038/nprot.2006.286
Duguet, T. B. et al. Recent duplication and functional divergence in parasitic nematode levamisole-sensitive acetylcholine receptors. PLoS Negl. Trop. Dis. 10, e0004826 (2016).
pubmed: 27415016 pmcid: 4945070 doi: 10.1371/journal.pntd.0004826
Noonan, J. D. & Beech, R. N. Two residues determine nicotinic acetylcholine receptor requirement for RIC-3. Prot. Sci. 32, e4718 (2023).
doi: 10.1002/pro.4718

Auteurs

Fanfan Li (F)

Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.

Mohammadamin Shahsavarani (M)

Chemistry, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.

Cody-Jordan Handy-Hart (CJ)

Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.

Audrey Côté (A)

Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.

Xavier Brasseur-Trottier (X)

Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.

Victoria Montgomery (V)

Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.

Robin N Beech (RN)

Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.

Lan Liu (L)

Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.

Stéphane Bayen (S)

Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.

Yang Qu (Y)

Chemistry, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.

Vincenzo De Luca (V)

Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.

Mehran Dastmalchi (M)

Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada. mehran.dastmalchi@mcgill.ca.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH