Characterization of a vacuolar importer of secologanin in Catharanthus roseus.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
03 Aug 2024
03 Aug 2024
Historique:
received:
01
09
2023
accepted:
23
07
2024
medline:
4
8
2024
pubmed:
4
8
2024
entrez:
3
8
2024
Statut:
epublish
Résumé
Monoterpenoid indole alkaloid (MIA) biosynthesis in Catharanthus roseus is a paragon of the spatiotemporal complexity achievable by plant specialized metabolism. Spanning a range of tissues, four cell types, and five cellular organelles, MIA metabolism is intricately regulated and organized. This high degree of metabolic differentiation requires inter-cellular and organellar transport, which remains understudied. Here, we have characterized a vacuolar importer of secologanin belonging to the multidrug and toxic compound extrusion (MATE) family, named CrMATE1. Phylogenetic analyses of MATEs suggested a role in alkaloid transport for CrMATE1, and in planta silencing in two varieties of C. roseus resulted in a shift in the secoiridoid and MIA profiles. Subcellular localization of CrMATE1 confirmed tonoplast localization. Biochemical characterization was conducted using the Xenopus laevis oocyte expression system to determine substrate range, directionality, and rate. We can confirm that CrMATE1 is a vacuolar importer of secologanin, translocating 1 mM of substrate within 25 min. The transporter displayed strict directionality and specificity for secologanin and did not accept other secoiridoid substrates. The unique substrate-specific activity of CrMATE1 showcases the utility of transporters as gatekeepers of pathway flux, mediating the balance between a defense arsenal and cellular homeostasis.
Identifiants
pubmed: 39097635
doi: 10.1038/s42003-024-06624-5
pii: 10.1038/s42003-024-06624-5
doi:
Substances chimiques
Plant Proteins
0
Secologanin Tryptamine Alkaloids
0
secologanin
19351-63-4
Iridoid Glucosides
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
939Subventions
Organisme : Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)
ID : RGPIN-2021-02817
Informations de copyright
© 2024. The Author(s).
Références
Li, C. et al. Single-cell multi-omics in the medicinal plant Catharanthus roseus. Nat. Chem. Biol. 19, 1031–1041 (2023).
pubmed: 37188960
pmcid: 10374443
doi: 10.1038/s41589-023-01327-0
St-Pierre, B., Vazquez-Flota, F. A. & De Luca, V. Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11, 887–900 (1999).
pubmed: 10330473
pmcid: 144229
doi: 10.1105/tpc.11.5.887
Hagel, J. M., Yeung, E. C. & Facchini, P. J. Got milk? The secret life of laticifers. Trends Plant Sci. 13, 631–639 (2008).
pubmed: 18977166
doi: 10.1016/j.tplants.2008.09.005
Guirimand, G. et al. Strictosidine activation in Apocynaceae: towards a “nuclear time bomb”? BMC Plant Biol. 10, 182 (2010).
pubmed: 20723215
pmcid: 3095312
doi: 10.1186/1471-2229-10-182
Morant, A. V. et al. beta-Glucosidases as detonators of plant chemical defense. Phytochemistry 69, 1795–1813 (2008).
pubmed: 18472115
doi: 10.1016/j.phytochem.2008.03.006
Vogel, M., Lawson, M., Sippl, W., Conrad, U. & Roos, W. Structure and mechanism of sanguinarine reductase, an enzyme of alkaloid detoxification. J. Biol. Chem. 285, 18397–18406 (2010).
pubmed: 20378534
pmcid: 2881765
doi: 10.1074/jbc.M109.088989
Courdavault, V. et al. A look inside an alkaloid multisite plant: the Catharanthus logistics. Curr. Opin. Plant Biol. 19, 43–50 (2014).
pubmed: 24727073
doi: 10.1016/j.pbi.2014.03.010
Kulagina, N., Méteignier, L.-V., Papon, N., O’Connor, S. E. & Courdavault, V. More than a Catharanthus plant: a multicellular and pluri-organelle alkaloid-producing factory. Curr. Opin. Plant Biol. 67, 102200 (2022).
pubmed: 35339956
doi: 10.1016/j.pbi.2022.102200
Sun, S. et al. Single-cell RNA sequencing provides a high-resolution roadmap for understanding the multicellular compartmentation of specialized metabolism. Nat. Plants 9, 179–190 (2022).
pubmed: 36522449
doi: 10.1038/s41477-022-01291-y
Larsen, B. et al. Identification of iridoid glucoside transporters in Catharanthus roseus. Plant Cell Phys. 58, 1507–1518 (2017).
doi: 10.1093/pcp/pcx097
Kidd, T., Easson, M. L. A. E., Qu, Y. & Luca, V. D. Inter-organ transport of secologanin allows assembly of monoterpenoid indole alkaloids in a Catharanthus roseus mutant. Phytochemistry 159, 119–126 (2019).
pubmed: 30611871
doi: 10.1016/j.phytochem.2018.12.017
Guirimand, G. et al. The subcellular organization of strictosidine biosynthesis in Catharanthus roseus epidermis highlights several trans-tonoplast translocations of intermediate metabolites. FEBS J. 278, 749–763 (2011).
pubmed: 21205206
doi: 10.1111/j.1742-4658.2010.07994.x
Stevens, L. H., Blom, T. J. M. & Verpoorte, R. Subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspension cultured cells of Catharanthus roseus and Tabernaemontana divaricata. Plant Cell Rep. 12, 573–576 (1993).
pubmed: 24201788
doi: 10.1007/BF00233063
Payne, R. M. E. et al. An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole. Nat. Plants 3, 16208 (2017).
pubmed: 28085153
pmcid: 5238941
doi: 10.1038/nplants.2016.208
Yu, F. & De Luca, V. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. Proc. Natl Acad. Sci. USA 110, 15830–15835 (2013).
pubmed: 24019465
pmcid: 3785729
doi: 10.1073/pnas.1307504110
Demessie, Z. et al. The ATP binding cassette transporter, VmTPT2/VmABCG1, is involved in export of the monoterpenoid indole alkaloid, vincamine in Vinca minor leaves. Phytochemistry. 140, 118–124 (2017).
Guedes, J. G. et al. The leaf idioblastome of the medicinal plant Catharanthus roseus is associated with stress resistance and alkaloid metabolism. J. Exp. Bot. 75, 274–299 (2024).
pubmed: 37804484
doi: 10.1093/jxb/erad374
Yamamoto, K. et al. Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with imaging MS and single-cell MS. Proc. Natl Acad. Sci. USA 113, 3891–3896 (2016).
pubmed: 27001858
pmcid: 4833245
doi: 10.1073/pnas.1521959113
Kellner, F. et al. Genome-guided investigation of plant natural product biosynthesis. Plant J. 82, 680–692 (2015).
pubmed: 25759247
doi: 10.1111/tpj.12827
Murata, J., Roepke, J., Gordon, H. & De Luca, V. The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell 20, 524–542 (2008).
pubmed: 18326827
pmcid: 2329939
doi: 10.1105/tpc.107.056630
Gani, U., Vishwakarma, R. A. & Misra, P. Membrane transporters: the key drivers of transport of secondary metabolites in plants. Plant Cell Rep. 40, 1–18 (2021).
pubmed: 32959124
doi: 10.1007/s00299-020-02599-9
Shoji, T. et al. Multidrug and toxic compound extrusion-type transporters implicated in vacuolar sequestration of nicotine in tobacco roots. Plant Physiol. 149, 708–718 (2009).
pubmed: 19098091
pmcid: 2633862
doi: 10.1104/pp.108.132811
Tanaka, Y., Iwaki, S., Sasaki, A. & Tsukazaki, T. Crystal structures of a nicotine MATE transporter provide insight into its mechanism of substrate transport. FEBS Lett. 595, 1902–1913 (2021).
pubmed: 34050946
doi: 10.1002/1873-3468.14136
Nelson, B. K., Cai, X. & Nebenführ, A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126–1136 (2007).
pubmed: 17666025
doi: 10.1111/j.1365-313X.2007.03212.x
Carqueijeiro, I. et al. Isolation of cells specialized in anticancer alkaloid metabolism by fluorescence-activated cell sorting. Plant Physiol. 171, 2371–2378 (2016).
pubmed: 27356972
pmcid: 4972299
doi: 10.1104/pp.16.01028
Morita, M. et al. Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum. Proc. Natl Acad. Sci. USA 106, 2447–2452 (2009).
pubmed: 19168636
pmcid: 2650162
doi: 10.1073/pnas.0812512106
Shitan, N. et al. Involvement of the leaf-specific multidrug and toxic compound extrusion (MATE) transporter Nt-JAT2 in vacuolar sequestration of nicotine in Nicotiana tabacum H. W. Van Veen, ed. PLoS ONE 9, e108789 (2014).
Carqueijeiro, I. et al. Two tabersonine 6,7-epoxidases initiate lochnericine-derived alkaloid biosynthesis in Catharanthus roseus. Plant Physiol. 177, 1473–1486 (2018).
Williams, D., Qu, Y., Simionescu, R. & De Luca, V. The assembly of (+)-vincadifformine- and (−)-tabersonine-derived monoterpenoid indole alkaloids in Catharanthus roseus involves separate branch pathways. Plant J. 99, 626–636 (2019).
pubmed: 31009114
doi: 10.1111/tpj.14346
O’ Connor, S. E. & Maresh, J. J. Chemistry and biology of monoterpeneindole alkaloid biosynthesis. Nat. Prod. Rep. 23, 532 (2006).
pubmed: 16874388
doi: 10.1039/b512615k
Nimmy, M. S. et al. A systematic phylogenomic classification of the multidrug and toxic compound extrusion transporter gene family in plants. Front. Plant Sci. 13, 774885 (2022).
pubmed: 35371145
pmcid: 8970042
doi: 10.3389/fpls.2022.774885
Watkins, J. L. & Facchini, P. J. Compartmentalization at the interface of primary and alkaloid metabolism. Curr. Opin. Plant Biol. 66, 102186 (2022).
pubmed: 35219143
doi: 10.1016/j.pbi.2022.102186
Dudley, Q. M. et al. Reconstitution of monoterpene indole alkaloid biosynthesis in genome engineered Nicotiana benthamiana. Commun. Biol. 5, 949 (2022).
pubmed: 36088516
pmcid: 9464250
doi: 10.1038/s42003-022-03904-w
Gao, J. et al. Biosynthesis of catharanthine in engineered Pichia pastoris. Nat. Synth. 2, 231–242 (2023).
doi: 10.1038/s44160-022-00205-2
Shahsavarani, M. et al. Improved protein glycosylation enabled heterologous biosynthesis of monoterpenoid indole alkaloids and their unnatural derivatives in yeast. Metab. Eng. Commun. 16, e00215 (2023).
pubmed: 36569379
doi: 10.1016/j.mec.2022.e00215
Zhang, J. et al. A microbial supply chain for production of the anticancer drug vinblastine. Nature 609, 341–347 (2022).
pubmed: 36045295
pmcid: 9452304
doi: 10.1038/s41586-022-05157-3
Dastmalchi, M. Elusive partners: a review of the auxiliary proteins guiding metabolic flux in flavonoid biosynthesis. Plant J. 108, 314–329 (2021).
pubmed: 34318549
doi: 10.1111/tpj.15446
Dastmalchi, M. et al. Purine permease-type benzylisoquinoline alkaloid transporters in opium poppy. Plant Physiol. 181, 916–933 (2019).
pubmed: 31467164
pmcid: 6836811
doi: 10.1104/pp.19.00565
Dastmalchi, M. et al. Neopinone isomerase is involved in codeine and morphine biosynthesis in opium poppy. Nat. Chem. Biol. 15, 384–390 (2019).
pubmed: 30886433
doi: 10.1038/s41589-019-0247-0
Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).
pubmed: 33892491
pmcid: 8233496
doi: 10.1093/molbev/msab120
Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. gkae268 (2024).
Eng, J. G. M. et al. A Catharanthus roseus Fe(II)/α-ketoglutarate-dependent dioxygenase catalyzes a redox-neutral reaction responsible for vindolinine biosynthesis. Nat. Commun. 13, 3335 (2022).
pubmed: 35680936
pmcid: 9184523
doi: 10.1038/s41467-022-31100-1
Chakrabarty, R. et al. pSITE vectors for stable integration or transient expression of autofluorescent protein fusions in plants: probing Nicotiana benthamiana virus interactions. Mol. Plant Microbe Interact. 20, 740–750 (2007).
pubmed: 17601162
doi: 10.1094/MPMI-20-7-0740
Sparkes, I. A., Runions, J., Kearns, A. & Hawes, C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 1, 2019–2025 (2006).
pubmed: 17487191
doi: 10.1038/nprot.2006.286
Duguet, T. B. et al. Recent duplication and functional divergence in parasitic nematode levamisole-sensitive acetylcholine receptors. PLoS Negl. Trop. Dis. 10, e0004826 (2016).
pubmed: 27415016
pmcid: 4945070
doi: 10.1371/journal.pntd.0004826
Noonan, J. D. & Beech, R. N. Two residues determine nicotinic acetylcholine receptor requirement for RIC-3. Prot. Sci. 32, e4718 (2023).
doi: 10.1002/pro.4718