Comprehensive immune cell spectral library for large-scale human primary T, B, and NK cell proteomics.


Journal

Scientific data
ISSN: 2052-4463
Titre abrégé: Sci Data
Pays: England
ID NLM: 101640192

Informations de publication

Date de publication:
10 Aug 2024
Historique:
received: 27 03 2024
accepted: 31 07 2024
medline: 11 8 2024
pubmed: 11 8 2024
entrez: 10 8 2024
Statut: epublish

Résumé

Although proteomics is extensively used in immune research, there is currently no publicly accessible spectral assay library for the comprehensive proteome of immune cells. This study generated spectral assay libraries for five human immune cell lines and four primary immune cells: CD4 T, CD8 T, natural killer (NK) cells, and B cells. This was achieved by utilizing data-dependent acquisition (DDA) and employing fractionated samples from over 100 µg of proteins, which was applied to acquire the highest-quality MS/MS spectral data. In addition, Data-indedendent acquisition (DIA) was used to obtain sufficient data points for analyzing proteins from 10,000 primary CD4 T, CD8 T, NK, and B cells. The immune cell spectral assay library generated included 10,544 protein groups and 127,106 peptides. The proteomic profiles of 10,000 primary human immune cells obtained from 15 healthy volunteers analyzed using DIA revealed the highest heterogeneity of B cells among other immune cell types and the similarity between CD4 T and CD8 T cells. All data and spectral library are deposited in ProteomeXchange (PXD047742).

Identifiants

pubmed: 39127789
doi: 10.1038/s41597-024-03721-2
pii: 10.1038/s41597-024-03721-2
doi:

Substances chimiques

Proteome 0

Types de publication

Journal Article Dataset

Langues

eng

Sous-ensembles de citation

IM

Pagination

871

Subventions

Organisme : Ministry of Food and Drug Safety (MFDS)
ID : 23212MFDS2023

Informations de copyright

© 2024. The Author(s).

Références

Parkin, J. & Cohen, B. An overview of the immune system. Lancet 357, 1777–1789, https://doi.org/10.1016/s0140-6736(00)04904-7 (2001).
doi: 10.1016/s0140-6736(00)04904-7 pubmed: 11403834
Sattler, S. The Role of the Immune System Beyond the Fight Against Infection. Adv Exp Med Biol 1003, 3–14, https://doi.org/10.1007/978-3-319-57613-8_1 (2017).
doi: 10.1007/978-3-319-57613-8_1 pubmed: 28667551
Nyman, T. A., Lorey, M. B., Cypryk, W. & Matikainen, S. Mass spectrometry-based proteomic exploration of the human immune system: focus on the inflammasome, global protein secretion, and T cells. Expert Review of Proteomics 14, 395–407, https://doi.org/10.1080/14789450.2017.1319768 (2017).
doi: 10.1080/14789450.2017.1319768 pubmed: 28406322
Rathore, D., Marino, M. J. & Nita-Lazar, A. Omics and systems view of innate immune pathways. PROTEOMICS 23, 2200407, https://doi.org/10.1002/pmic.202200407 (2023).
doi: 10.1002/pmic.202200407
Berge, T. et al. Quantitative proteomic analyses of CD4+ and CD8+ T cells reveal differentially expressed proteins in multiple sclerosis patients and healthy controls. Clinical Proteomics 16, 19, https://doi.org/10.1186/s12014-019-9241-5 (2019).
doi: 10.1186/s12014-019-9241-5 pubmed: 31080378 pmcid: 6505067
Benedict, K. F. & Lauffenburger, D. A. Insights into proteomic immune cell signaling and communication via data-driven modeling. Curr Top Microbiol Immunol 363, 201–233, https://doi.org/10.1007/82_2012_249 (2013).
doi: 10.1007/82_2012_249 pubmed: 22878785
Sun, L., Su, Y., Jiao, A., Wang, X. & Zhang, B. T cells in health and disease. Signal Transduction and Targeted Therapy 8, 235, https://doi.org/10.1038/s41392-023-01471-y (2023).
doi: 10.1038/s41392-023-01471-y pubmed: 37332039 pmcid: 10277291
Kansler, E. R. & Li, M. O. Innate lymphocytes—lineage, localization and timing of differentiation. Cellular & Molecular Immunology 16, 627–633, https://doi.org/10.1038/s41423-019-0211-7 (2019).
doi: 10.1038/s41423-019-0211-7
Jameson, S. C. Maintaining the norm: T-cell homeostasis. Nature Reviews Immunology 2, 547–556, https://doi.org/10.1038/nri853 (2002).
doi: 10.1038/nri853 pubmed: 12154374
Weerakoon, H. et al. A primary human T-cell spectral library to facilitate large scale quantitative T-cell proteomics. Scientific Data 7, 412, https://doi.org/10.1038/s41597-020-00744-3 (2020).
doi: 10.1038/s41597-020-00744-3 pubmed: 33230158 pmcid: 7683684
Li, H. et al. A novel spectral library workflow to enhance protein identifications. Journal of Proteomics 81, 173–184, https://doi.org/10.1016/j.jprot.2013.01.026 (2013).
doi: 10.1016/j.jprot.2013.01.026 pubmed: 23391412 pmcid: 3737079
Deutsch, E. W. et al. Expanding the Use of Spectral Libraries in Proteomics. Journal of Proteome Research 17, 4051–4060, https://doi.org/10.1021/acs.jproteome.8b00485 (2018).
doi: 10.1021/acs.jproteome.8b00485 pubmed: 30270626 pmcid: 6443480
Rosenberger, G. et al. A repository of assays to quantify 10,000 human proteins by SWATH-MS. Scientific Data 1, 140031, https://doi.org/10.1038/sdata.2014.31 (2014).
doi: 10.1038/sdata.2014.31 pubmed: 25977788 pmcid: 4322573
Brodin, P. & Davis, M. M. Human immune system variation. Nature Reviews Immunology 17, 21–29, https://doi.org/10.1038/nri.2016.125 (2017).
doi: 10.1038/nri.2016.125 pubmed: 27916977
Zhou, Y., Cheng, L., Liu, L. & Li, X. NK cells are never alone: crosstalk and communication in tumour microenvironments. Molecular Cancer 22, 34, https://doi.org/10.1186/s12943-023-01737-7 (2023).
doi: 10.1186/s12943-023-01737-7 pubmed: 36797782 pmcid: 9933398
Kumar, A., Swain, C. A. & Shevde, L. A. Informing the new developments and future of cancer immunotherapy. Cancer and Metastasis Reviews 40, 549–562, https://doi.org/10.1007/s10555-021-09967-1 (2021).
doi: 10.1007/s10555-021-09967-1 pubmed: 34003425
Midha, M. K. et al. DIALib-QC an assessment tool for spectral libraries in data-independent acquisition proteomics. Nature Communications 11, 5251, https://doi.org/10.1038/s41467-020-18901-y (2020).
doi: 10.1038/s41467-020-18901-y pubmed: 33067471 pmcid: 7567827
Deutsch, E. W. et al. The ProteomeXchange consortium at 10 years: 2023 update. Nucleic Acids Research 51, D1539–D1548, https://doi.org/10.1093/nar/gkac1040 (2022).
doi: 10.1093/nar/gkac1040 pmcid: 9825490
Hyeon-Jeong Lee, H. M. Human immune cell proteomic library. MassIVE, MSV000093644. https://doi.org/10.25345/C5D50G78R (2024).
Vogel, C. & Marcotte, E. M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Reviews Genetics 13, 227–232, https://doi.org/10.1038/nrg3185 (2012).
doi: 10.1038/nrg3185 pubmed: 22411467 pmcid: 3654667
Wang, X., Liu, Q. & Zhang, B. Leveraging the complementary nature of RNA-Seq and shotgun proteomics data. PROTEOMICS 14, 2676–2687, https://doi.org/10.1002/pmic.201400184 (2014).
doi: 10.1002/pmic.201400184 pubmed: 25266668 pmcid: 4270470
Vogel, C. et al. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol 6, 400, https://doi.org/10.1038/msb.2010.59 (2010).
doi: 10.1038/msb.2010.59 pubmed: 20739923 pmcid: 2947365
Wiśniewski, J. R. & Gaugaz, F. Z. Fast and Sensitive Total Protein and Peptide Assays for Proteomic Analysis. Analytical Chemistry 87, 4110–4116, https://doi.org/10.1021/ac504689z (2015).
doi: 10.1021/ac504689z pubmed: 25837572
Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nature Methods 6, 359–362, https://doi.org/10.1038/nmeth.1322 (2009).
doi: 10.1038/nmeth.1322 pubmed: 19377485
Kim, H. et al. An efficient method for high-pH peptide fractionation based on C18 StageTips for in-depth proteome profiling. Analytical Methods 11, 4693–4698, https://doi.org/10.1039/C9AY01269A (2019).
doi: 10.1039/C9AY01269A
Müller, T. et al. Automated sample preparation with SP 3 for low‐input clinical proteomics. Molecular systems biology 16, e9111, https://doi.org/10.15252/msb.20199111 (2020).
doi: 10.15252/msb.20199111 pubmed: 32129943 pmcid: 6966100
Hughes, C. S. et al. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nature protocols 14, 68–85, https://doi.org/10.1038/s41596-018-0082-x (2019).
doi: 10.1038/s41596-018-0082-x pubmed: 30464214
Yu, F. et al. Analysis of DIA proteomics data using MSFragger-DIA and FragPipe computational platform. Nature Communications 14, 4154, https://doi.org/10.1038/s41467-023-39869-5 (2023).
doi: 10.1038/s41467-023-39869-5 pubmed: 37438352 pmcid: 10338508
Rosenberger, G. et al. The Pan-Human Library: A repository of assays to quantify 10 000 proteins by SWATH-MS/SWATH-MS validation data. PRIDE, PXD000954. https://identifiers.org/pride.project:PXD000954 (2014).
Weerakoon, H. et al. A primary human T-cell spectral library to facilitate large scale quantitative T-cell proteomics. PRIDE, PXD019542. https://identifiers.org/pride.project:PXD019542 (2020).
Lau, K. W. et al. Observations on the detection of b- and y-type ions in the collisionally activated decomposition spectra of protonated peptides. Rapid Communications in Mass Spectrometry 23, 1508–1514, https://doi.org/10.1002/rcm.4032 (2009).
doi: 10.1002/rcm.4032 pubmed: 19370712
Ahn, H.-S. et al. Generating Detailed Spectral Libraries for Canine Proteomes Obtained from Serum and Urine. Scientific Data 10, 241, https://doi.org/10.1038/s41597-023-02139-6 (2023).
doi: 10.1038/s41597-023-02139-6 pubmed: 37105983 pmcid: 10140049
Chen, C.-J., Lee, D.-Y., Yu, J., Lin, Y.-N. & Lin, T.-M. Recent advances in LC-MS-based metabolomics for clinical biomarker discovery. Mass Spectrometry Reviews 42, 2349–2378, https://doi.org/10.1002/mas.21785 (2023).
doi: 10.1002/mas.21785 pubmed: 35645144
Guo, J., Yu, H., Xing, S. & Huan, T. Addressing big data challenges in mass spectrometry-based metabolomics. Chemical Communications 58, 9979–9990, https://doi.org/10.1039/D2CC03598G (2022).
doi: 10.1039/D2CC03598G pubmed: 35997016
Guo, X.-H. et al. Identification of velvet antler and its mixed varieties by UPLC-QTOF-MS combined with principal component analysis. Journal of Pharmaceutical and Biomedical Analysis 165, 18–23, https://doi.org/10.1016/j.jpba.2018.10.009 (2019).
doi: 10.1016/j.jpba.2018.10.009 pubmed: 30500596
Yang, P. et al. Dietary effects of fish meal substitution with Clostridium autoethanogenum on flesh quality and metabolomics of largemouth bass (Micropterus salmoides). Aquaculture Reports 23, 101012, https://doi.org/10.1016/j.aqrep.2022.101012 (2022).
doi: 10.1016/j.aqrep.2022.101012

Auteurs

Hyeon-Jeong Lee (HJ)

Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea.
Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, Korea.

Yoondam Seo (Y)

Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea.

Yoon Park (Y)

Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea.

Eugene C Yi (EC)

Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, Korea.

Dohyun Han (D)

Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, 03080, Korea.

Hophil Min (H)

Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea. mhophil@kist.re.kr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH