Comprehensive immune cell spectral library for large-scale human primary T, B, and NK cell proteomics.
Journal
Scientific data
ISSN: 2052-4463
Titre abrégé: Sci Data
Pays: England
ID NLM: 101640192
Informations de publication
Date de publication:
10 Aug 2024
10 Aug 2024
Historique:
received:
27
03
2024
accepted:
31
07
2024
medline:
11
8
2024
pubmed:
11
8
2024
entrez:
10
8
2024
Statut:
epublish
Résumé
Although proteomics is extensively used in immune research, there is currently no publicly accessible spectral assay library for the comprehensive proteome of immune cells. This study generated spectral assay libraries for five human immune cell lines and four primary immune cells: CD4 T, CD8 T, natural killer (NK) cells, and B cells. This was achieved by utilizing data-dependent acquisition (DDA) and employing fractionated samples from over 100 µg of proteins, which was applied to acquire the highest-quality MS/MS spectral data. In addition, Data-indedendent acquisition (DIA) was used to obtain sufficient data points for analyzing proteins from 10,000 primary CD4 T, CD8 T, NK, and B cells. The immune cell spectral assay library generated included 10,544 protein groups and 127,106 peptides. The proteomic profiles of 10,000 primary human immune cells obtained from 15 healthy volunteers analyzed using DIA revealed the highest heterogeneity of B cells among other immune cell types and the similarity between CD4 T and CD8 T cells. All data and spectral library are deposited in ProteomeXchange (PXD047742).
Identifiants
pubmed: 39127789
doi: 10.1038/s41597-024-03721-2
pii: 10.1038/s41597-024-03721-2
doi:
Substances chimiques
Proteome
0
Types de publication
Journal Article
Dataset
Langues
eng
Sous-ensembles de citation
IM
Pagination
871Subventions
Organisme : Ministry of Food and Drug Safety (MFDS)
ID : 23212MFDS2023
Informations de copyright
© 2024. The Author(s).
Références
Parkin, J. & Cohen, B. An overview of the immune system. Lancet 357, 1777–1789, https://doi.org/10.1016/s0140-6736(00)04904-7 (2001).
doi: 10.1016/s0140-6736(00)04904-7
pubmed: 11403834
Sattler, S. The Role of the Immune System Beyond the Fight Against Infection. Adv Exp Med Biol 1003, 3–14, https://doi.org/10.1007/978-3-319-57613-8_1 (2017).
doi: 10.1007/978-3-319-57613-8_1
pubmed: 28667551
Nyman, T. A., Lorey, M. B., Cypryk, W. & Matikainen, S. Mass spectrometry-based proteomic exploration of the human immune system: focus on the inflammasome, global protein secretion, and T cells. Expert Review of Proteomics 14, 395–407, https://doi.org/10.1080/14789450.2017.1319768 (2017).
doi: 10.1080/14789450.2017.1319768
pubmed: 28406322
Rathore, D., Marino, M. J. & Nita-Lazar, A. Omics and systems view of innate immune pathways. PROTEOMICS 23, 2200407, https://doi.org/10.1002/pmic.202200407 (2023).
doi: 10.1002/pmic.202200407
Berge, T. et al. Quantitative proteomic analyses of CD4+ and CD8+ T cells reveal differentially expressed proteins in multiple sclerosis patients and healthy controls. Clinical Proteomics 16, 19, https://doi.org/10.1186/s12014-019-9241-5 (2019).
doi: 10.1186/s12014-019-9241-5
pubmed: 31080378
pmcid: 6505067
Benedict, K. F. & Lauffenburger, D. A. Insights into proteomic immune cell signaling and communication via data-driven modeling. Curr Top Microbiol Immunol 363, 201–233, https://doi.org/10.1007/82_2012_249 (2013).
doi: 10.1007/82_2012_249
pubmed: 22878785
Sun, L., Su, Y., Jiao, A., Wang, X. & Zhang, B. T cells in health and disease. Signal Transduction and Targeted Therapy 8, 235, https://doi.org/10.1038/s41392-023-01471-y (2023).
doi: 10.1038/s41392-023-01471-y
pubmed: 37332039
pmcid: 10277291
Kansler, E. R. & Li, M. O. Innate lymphocytes—lineage, localization and timing of differentiation. Cellular & Molecular Immunology 16, 627–633, https://doi.org/10.1038/s41423-019-0211-7 (2019).
doi: 10.1038/s41423-019-0211-7
Jameson, S. C. Maintaining the norm: T-cell homeostasis. Nature Reviews Immunology 2, 547–556, https://doi.org/10.1038/nri853 (2002).
doi: 10.1038/nri853
pubmed: 12154374
Weerakoon, H. et al. A primary human T-cell spectral library to facilitate large scale quantitative T-cell proteomics. Scientific Data 7, 412, https://doi.org/10.1038/s41597-020-00744-3 (2020).
doi: 10.1038/s41597-020-00744-3
pubmed: 33230158
pmcid: 7683684
Li, H. et al. A novel spectral library workflow to enhance protein identifications. Journal of Proteomics 81, 173–184, https://doi.org/10.1016/j.jprot.2013.01.026 (2013).
doi: 10.1016/j.jprot.2013.01.026
pubmed: 23391412
pmcid: 3737079
Deutsch, E. W. et al. Expanding the Use of Spectral Libraries in Proteomics. Journal of Proteome Research 17, 4051–4060, https://doi.org/10.1021/acs.jproteome.8b00485 (2018).
doi: 10.1021/acs.jproteome.8b00485
pubmed: 30270626
pmcid: 6443480
Rosenberger, G. et al. A repository of assays to quantify 10,000 human proteins by SWATH-MS. Scientific Data 1, 140031, https://doi.org/10.1038/sdata.2014.31 (2014).
doi: 10.1038/sdata.2014.31
pubmed: 25977788
pmcid: 4322573
Brodin, P. & Davis, M. M. Human immune system variation. Nature Reviews Immunology 17, 21–29, https://doi.org/10.1038/nri.2016.125 (2017).
doi: 10.1038/nri.2016.125
pubmed: 27916977
Zhou, Y., Cheng, L., Liu, L. & Li, X. NK cells are never alone: crosstalk and communication in tumour microenvironments. Molecular Cancer 22, 34, https://doi.org/10.1186/s12943-023-01737-7 (2023).
doi: 10.1186/s12943-023-01737-7
pubmed: 36797782
pmcid: 9933398
Kumar, A., Swain, C. A. & Shevde, L. A. Informing the new developments and future of cancer immunotherapy. Cancer and Metastasis Reviews 40, 549–562, https://doi.org/10.1007/s10555-021-09967-1 (2021).
doi: 10.1007/s10555-021-09967-1
pubmed: 34003425
Midha, M. K. et al. DIALib-QC an assessment tool for spectral libraries in data-independent acquisition proteomics. Nature Communications 11, 5251, https://doi.org/10.1038/s41467-020-18901-y (2020).
doi: 10.1038/s41467-020-18901-y
pubmed: 33067471
pmcid: 7567827
Deutsch, E. W. et al. The ProteomeXchange consortium at 10 years: 2023 update. Nucleic Acids Research 51, D1539–D1548, https://doi.org/10.1093/nar/gkac1040 (2022).
doi: 10.1093/nar/gkac1040
pmcid: 9825490
Hyeon-Jeong Lee, H. M. Human immune cell proteomic library. MassIVE, MSV000093644. https://doi.org/10.25345/C5D50G78R (2024).
Vogel, C. & Marcotte, E. M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Reviews Genetics 13, 227–232, https://doi.org/10.1038/nrg3185 (2012).
doi: 10.1038/nrg3185
pubmed: 22411467
pmcid: 3654667
Wang, X., Liu, Q. & Zhang, B. Leveraging the complementary nature of RNA-Seq and shotgun proteomics data. PROTEOMICS 14, 2676–2687, https://doi.org/10.1002/pmic.201400184 (2014).
doi: 10.1002/pmic.201400184
pubmed: 25266668
pmcid: 4270470
Vogel, C. et al. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol 6, 400, https://doi.org/10.1038/msb.2010.59 (2010).
doi: 10.1038/msb.2010.59
pubmed: 20739923
pmcid: 2947365
Wiśniewski, J. R. & Gaugaz, F. Z. Fast and Sensitive Total Protein and Peptide Assays for Proteomic Analysis. Analytical Chemistry 87, 4110–4116, https://doi.org/10.1021/ac504689z (2015).
doi: 10.1021/ac504689z
pubmed: 25837572
Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nature Methods 6, 359–362, https://doi.org/10.1038/nmeth.1322 (2009).
doi: 10.1038/nmeth.1322
pubmed: 19377485
Kim, H. et al. An efficient method for high-pH peptide fractionation based on C18 StageTips for in-depth proteome profiling. Analytical Methods 11, 4693–4698, https://doi.org/10.1039/C9AY01269A (2019).
doi: 10.1039/C9AY01269A
Müller, T. et al. Automated sample preparation with SP 3 for low‐input clinical proteomics. Molecular systems biology 16, e9111, https://doi.org/10.15252/msb.20199111 (2020).
doi: 10.15252/msb.20199111
pubmed: 32129943
pmcid: 6966100
Hughes, C. S. et al. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nature protocols 14, 68–85, https://doi.org/10.1038/s41596-018-0082-x (2019).
doi: 10.1038/s41596-018-0082-x
pubmed: 30464214
Yu, F. et al. Analysis of DIA proteomics data using MSFragger-DIA and FragPipe computational platform. Nature Communications 14, 4154, https://doi.org/10.1038/s41467-023-39869-5 (2023).
doi: 10.1038/s41467-023-39869-5
pubmed: 37438352
pmcid: 10338508
Rosenberger, G. et al. The Pan-Human Library: A repository of assays to quantify 10 000 proteins by SWATH-MS/SWATH-MS validation data. PRIDE, PXD000954. https://identifiers.org/pride.project:PXD000954 (2014).
Weerakoon, H. et al. A primary human T-cell spectral library to facilitate large scale quantitative T-cell proteomics. PRIDE, PXD019542. https://identifiers.org/pride.project:PXD019542 (2020).
Lau, K. W. et al. Observations on the detection of b- and y-type ions in the collisionally activated decomposition spectra of protonated peptides. Rapid Communications in Mass Spectrometry 23, 1508–1514, https://doi.org/10.1002/rcm.4032 (2009).
doi: 10.1002/rcm.4032
pubmed: 19370712
Ahn, H.-S. et al. Generating Detailed Spectral Libraries for Canine Proteomes Obtained from Serum and Urine. Scientific Data 10, 241, https://doi.org/10.1038/s41597-023-02139-6 (2023).
doi: 10.1038/s41597-023-02139-6
pubmed: 37105983
pmcid: 10140049
Chen, C.-J., Lee, D.-Y., Yu, J., Lin, Y.-N. & Lin, T.-M. Recent advances in LC-MS-based metabolomics for clinical biomarker discovery. Mass Spectrometry Reviews 42, 2349–2378, https://doi.org/10.1002/mas.21785 (2023).
doi: 10.1002/mas.21785
pubmed: 35645144
Guo, J., Yu, H., Xing, S. & Huan, T. Addressing big data challenges in mass spectrometry-based metabolomics. Chemical Communications 58, 9979–9990, https://doi.org/10.1039/D2CC03598G (2022).
doi: 10.1039/D2CC03598G
pubmed: 35997016
Guo, X.-H. et al. Identification of velvet antler and its mixed varieties by UPLC-QTOF-MS combined with principal component analysis. Journal of Pharmaceutical and Biomedical Analysis 165, 18–23, https://doi.org/10.1016/j.jpba.2018.10.009 (2019).
doi: 10.1016/j.jpba.2018.10.009
pubmed: 30500596
Yang, P. et al. Dietary effects of fish meal substitution with Clostridium autoethanogenum on flesh quality and metabolomics of largemouth bass (Micropterus salmoides). Aquaculture Reports 23, 101012, https://doi.org/10.1016/j.aqrep.2022.101012 (2022).
doi: 10.1016/j.aqrep.2022.101012