Water fluxes pattern growth and identity in shoot meristems.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
13 Aug 2024
13 Aug 2024
Historique:
received:
27
10
2023
accepted:
28
07
2024
medline:
14
8
2024
pubmed:
14
8
2024
entrez:
13
8
2024
Statut:
epublish
Résumé
In multicellular organisms, tissue outgrowth creates a new water sink, modifying local hydraulic patterns. Although water fluxes are often considered passive by-products of development, their contribution to morphogenesis remains largely unexplored. Here, we mapped cell volumetric growth across the shoot apex in Arabidopsis thaliana. We found that, as organs grow, a subpopulation of cells at the organ-meristem boundary shrinks. Growth simulations using a model that integrates hydraulics and mechanics revealed water fluxes and predicted a water deficit for boundary cells. In planta, a water-soluble dye preferentially allocated to fast-growing tissues and failed to enter the boundary domain. Cell shrinkage next to fast-growing domains was also robust to different growth conditions and different topographies. Finally, a molecular signature of water deficit at the boundary confirmed our conclusion. Taken together, we propose that the differential sink strength of emerging organs prescribes the hydraulic patterns that define boundary domains at the shoot apex.
Identifiants
pubmed: 39138210
doi: 10.1038/s41467-024-51099-x
pii: 10.1038/s41467-024-51099-x
doi:
Substances chimiques
Water
059QF0KO0R
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6944Subventions
Organisme : EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
ID : ERC-2021-AdG-101019515
Informations de copyright
© 2024. The Author(s).
Références
Lecuit, T., Lenne, P.-F. & Munro, E. Force generation, transmission, and integration during cell and tissue morphogenesis. Annu. Rev. Cell Dev. Biol. 27, 157–184 (2011).
pubmed: 21740231
doi: 10.1146/annurev-cellbio-100109-104027
Hayward, M.-K., Muncie, J. M. & Weaver, V. M. Tissue mechanics in stem cell fate, development, and cancer. Dev. Cell 56, 1833–1847 (2021).
pubmed: 34107299
pmcid: 9056158
doi: 10.1016/j.devcel.2021.05.011
Godard, B. G. & Heisenberg, C.-P. Cell division and tissue mechanics. Curr. Opin. Cell Biol. 60, 114–120 (2019).
pubmed: 31288206
doi: 10.1016/j.ceb.2019.05.007
Mammoto, T., Mammoto, A. & Ingber, D. E. Mechanobiology and developmental control. Annu. Rev. Cell Dev. Biol. 29, 27–61 (2013).
pubmed: 24099083
doi: 10.1146/annurev-cellbio-101512-122340
Hamant, O. & Saunders, T. E. Shaping organs: Shared structural principles across kingdoms. Annu. Rev. Cell Dev. Biol. 36, 385–410 (2020).
pubmed: 32628862
doi: 10.1146/annurev-cellbio-012820-103850
Echevin, E. et al. Growth and biomechanics of shoot organs. J. Exp. Bot. 70, 3573–3585 (2019).
pubmed: 31037307
doi: 10.1093/jxb/erz205
Trinh, D.-C. et al. How mechanical forces shape plant organs. Curr. Biol. 31, R143–R159 (2021).
pubmed: 33561417
doi: 10.1016/j.cub.2020.12.001
Hamant, O. et al. Developmental patterning by mechanical signals in Arabidopsis. Science 322, 1650–1655 (2008).
pubmed: 19074340
doi: 10.1126/science.1165594
Nakayama, N. et al. Mechanical regulation of auxin-mediated growth. Curr. Biol. 22, 1468–1476 (2012).
pubmed: 22818916
doi: 10.1016/j.cub.2012.06.050
Heisler, M. G. et al. Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. PLoS Biol. 8, e1000516 (2010).
Fal, K. et al. Tissue folding at the organ-meristem boundary results in nuclear compression and chromatin compaction. Proc. Natl. Acad. Sci. USA 118, e2017859118 (2021).
pubmed: 33608459
pmcid: 7923354
doi: 10.1073/pnas.2017859118
Landrein, B. et al. Mechanical stress contributes to the expression of the STM homeobox gene in Arabidopsis shoot meristems. Elife 4, e07811 (2015).
pubmed: 26623515
pmcid: 4666715
doi: 10.7554/eLife.07811
Weits, D. A. et al. An apical hypoxic niche sets the pace of shoot meristem activity. Nature 569, 714–717 (2019).
pubmed: 31092919
doi: 10.1038/s41586-019-1203-6
Dinneny, J. R. Developmental responses to water and salinity in root systems. Annu. Rev. Cell Dev. Biol. 35, 239–257 (2019).
pubmed: 31382759
doi: 10.1146/annurev-cellbio-100617-062949
von Wangenheim, D. et al. Early developmental plasticity of lateral roots in response to asymmetric water availability. Nat. Plants 6, 73–77 (2020).
doi: 10.1038/s41477-019-0580-z
Mehra, P. et al. Hydraulic flux–responsive hormone redistribution determines root branching. Science 378, 762–768 (2022).
pubmed: 36395221
doi: 10.1126/science.add3771
Péret, B. et al. Auxin regulates aquaporin function to facilitate lateral root emergence. Nat. Cell Biol. 14, 991–998 (2012).
pubmed: 22983115
doi: 10.1038/ncb2573
Wu, Y. et al. Abscisic acid employs NRP‐dependent PIN2 vacuolar degradation to suppress auxin‐mediated primary root elongation in Arabidopsis. N. Phytol. 233, 297–312 (2022).
doi: 10.1111/nph.17783
Tylewicz, S. et al. Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication. Science 360, 212–215 (2018).
pubmed: 29519919
doi: 10.1126/science.aan8576
Dengler, N. G. The shoot apical meristem and development of vascular architectureThis review is one of a selection of papers published on the Special Theme of Shoot Apical Meristems. Can. J. Bot. 84, 1660–1671 (2006).
doi: 10.1139/b06-126
Boyer, J. S. Cell enlargement and growth-induced water potentials. Physiol. Plant 73, 311–316 (1988).
doi: 10.1111/j.1399-3054.1988.tb00603.x
Robbins, N. E. & Dinneny, J. R. Growth is required for perception of water availability to pattern root branches in plants. Proc. Natl. Acad. Sci. USA 115, E822–E831 (2018).
pubmed: 29317538
pmcid: 5789911
doi: 10.1073/pnas.1710709115
D’Ario, M. et al. Cell size controlled in plants using DNA content as an internal scale. Science 372, 1176–1181 (2021).
pubmed: 34112688
doi: 10.1126/science.abb4348
Refahi, Y. et al. A multiscale analysis of early flower development in Arabidopsis provides an integrated view of molecular regulation and growth control. Dev. Cell 56, 540–556.e8 (2021).
pubmed: 33621494
pmcid: 8519405
doi: 10.1016/j.devcel.2021.01.019
Kwiatkowska, D. & Dumais, J. Growth and morphogenesis at the vegetative shoot apex of Anagallis arvensis L. J. Exp. Bot. 54, 1585–1595 (2003).
pubmed: 12730267
doi: 10.1093/jxb/erg166
Barbier de Reuille, P. et al. MorphoGraphX: A platform for quantifying morphogenesis in 4D. Elife 4, 05864 (2015).
pubmed: 25946108
doi: 10.7554/eLife.05864
Smyth, D. R., Bowman, J. L. & Meyerowitz, E. M. Early flower development in Arabidopsis. Plant Cell 2, 755–767 (1990).
pubmed: 2152125
pmcid: 159928
Breuil-Broyer, S. et al. High-resolution boundary analysis during Arabidopsis thaliana flower development. Plant J. 38, 182–192 (2004).
pubmed: 15053771
doi: 10.1111/j.1365-313X.2004.02026.x
Cheddadi, I., Génard, M., Bertin, N. & Godin, C. Coupling water fluxes with cell wall mechanics in a multicellular model of plant development. PLoS Comput. Biol. 15, e1007121 (2019).
pubmed: 31220080
pmcid: 6605655
doi: 10.1371/journal.pcbi.1007121
Ortega, J. K. E. Augmented Growth Equation for Cell Wall Expansion. Plant Physiol. 79, 318–320 (1985).
pubmed: 16664396
pmcid: 1074876
doi: 10.1104/pp.79.1.318
Gisel, A., Barella, S., Hempel, F. D. & Zambryski, P. C. Temporal and spatial regulation of symplastic trafficking during development in Arabidopsis thaliana apices. Development 126, 1879–1889 (1999).
pubmed: 10101122
doi: 10.1242/dev.126.9.1879
Léon‐Kloosterziel, K. M. et al. Isolation and characterization of abscisic acid‐deficient Arabidopsis mutants at two new loci. Plant J. 10, 655–661 (1996).
pubmed: 8893542
doi: 10.1046/j.1365-313X.1996.10040655.x
Hamant, O., Das, P. & Burian, A. Time-lapse imaging of developing shoot meristems using a confocal laser scanning microscope. in Plant Cell Morphogenesis (eds. Cvrčková, F. & Žárský, V.) vol. 1992 257–268 (Springer New York, New York, NY, 2019).
Tian, C. et al. A gene expression map of shoot domains reveals regulatory mechanisms. Nat. Commun. 10, 141 (2019).
pubmed: 30635575
pmcid: 6329838
doi: 10.1038/s41467-018-08083-z
Goswami, R. et al. Mechanical shielding in plant nuclei. Curr. Biol. 30, 2013–2025 (2020).
pubmed: 32330420
doi: 10.1016/j.cub.2020.03.059
Ascenzi, R. & Gantt, J. S. Molecular genetic analysis of the drought-inducible linker histone variant in Arabidopsis thaliana. Plant Mol. Biol. 41, 159–169 (1999).
pubmed: 10579484
doi: 10.1023/A:1006302330879
Rutowicz, K. et al. A specialized histone H1 variant is required for adaptive responses to complex abiotic stress and related DNA methylation in arabidopsis. Plant Physiol. 169, 2080–2101 (2015).
pubmed: 26351307
pmcid: 4634048
Tarancón, C., González-Grandío, E., Oliveros, J. C., Nicolas, M. & Cubas, P. A conserved carbon starvation response underlies bud dormancy in woody and herbaceous species. Front. Plant Sci. 8, 788 (2017).
pubmed: 28588590
pmcid: 5440562
doi: 10.3389/fpls.2017.00788
Cadman, C. S. C., Toorop, P. E., Hilhorst, H. W. M. & Finch-Savage, W. E. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J. 46, 805–822 (2006).
pubmed: 16709196
doi: 10.1111/j.1365-313X.2006.02738.x
Rutowicz, K. et al. Linker histones are fine-scale chromatin architects modulating developmental decisions in Arabidopsis. Genome Biol. 20, 157 (2019).
pubmed: 31391082
pmcid: 6685187
doi: 10.1186/s13059-019-1767-3
Molz, F. J. & Boyer, J. S. Growth-induced water potentials in plant cells and tissues. Plant Physiol. 62, 423–429 (1978).
pubmed: 16660530
pmcid: 1092139
doi: 10.1104/pp.62.3.423
Nonami, H. & Boyer, J. S. Direct demonstration of a growth-induced water potential gradient. Plant Physiol. 102, 13–19 (1993).
pubmed: 12231794
pmcid: 158741
doi: 10.1104/pp.102.1.13
Tian, C. et al. An organ boundary-enriched gene regulatory network uncovers regulatory hierarchies underlying axillary meristem initiation. Mol. Syst. Biol. 10, 755–755 (2014).
pubmed: 25358340
doi: 10.15252/msb.20145470
Aida, M. & Tasaka, M. Genetic control of shoot organ boundaries. Curr. Opin. Plant Biol. 9, 72–77 (2006).
pubmed: 16337829
doi: 10.1016/j.pbi.2005.11.011
Wang, Y. Stem cell basis for fractal patterns: axillary meristem initiation. Front. Plant Sci. 12, 805434 (2021).
pubmed: 34975997
pmcid: 8718902
doi: 10.3389/fpls.2021.805434
Peaucelle, A. et al. Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr. Biol. 21, 1720–1726 (2011).
pubmed: 21982593
doi: 10.1016/j.cub.2011.08.057
Cui, F. et al. Dissecting abscisic acid signaling pathways involved in cuticle formation. Mol. Plant 9, 926–938 (2016).
pubmed: 27060495
doi: 10.1016/j.molp.2016.04.001
Ramachandran, P. et al. Abscisic acid signaling activates distinct VND transcription factors to promote xylem differentiation in Arabidopsis. Curr. Biol. 31, 3153–3161.e5 (2021).
pubmed: 34043949
doi: 10.1016/j.cub.2021.04.057
Grondin, A. et al. Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. Plant Cell 27, 1945–1954 (2015).
pubmed: 26163575
pmcid: 4531361
doi: 10.1105/tpc.15.00421
Mao, Z. & Sun, W. Arabidopsis seed-specific vacuolar aquaporins are involved in maintaining seed longevity under the control of ABSCISIC ACID INSENSITIVE 3. J. Exp. Bot. 66, 4781–4794 (2015).
pubmed: 26019256
pmcid: 4507774
doi: 10.1093/jxb/erv244
Hachez, C. et al. The arabidopsis abiotic stress-induced TSPO-related protein reduces cell-surface expression of the aquaporin PIP2;7 through protein-protein interactions and autophagic degradation. Plant Cell 26, 4974–4990 (2014).
pubmed: 25538184
pmcid: 4311218
doi: 10.1105/tpc.114.134080
Long, Y. et al. Cellular heterogeneity in pressure and growth emerges from tissue topology and geometry. Curr. Biol. 30, 1504–1516 (2020).
pubmed: 32169211
doi: 10.1016/j.cub.2020.02.027
Asnacios, A. & Hamant, O. The mechanics behind cell polarity. Trends Cell Biol. 22, 584–591 (2012).
pubmed: 22980034
doi: 10.1016/j.tcb.2012.08.005
Shapiro, B. E., Tobin, C., Mjolsness, E. & Meyerowitz, E. M. Analysis of cell division patterns in the Arabidopsis shoot apical meristem. Proc. Natl. Acad. Sci. USA 112, 4815–4820 (2015).
pubmed: 25825722
pmcid: 4403164
doi: 10.1073/pnas.1502588112
Alt, S., Ganguly, P. & Salbreux, G. Vertex models: from cell mechanics to tissue morphogenesis. Philos. Trans. R. Soc. B 372, 20150520 (2017).
doi: 10.1098/rstb.2015.0520
Lockhart, J. A. An analysis of irreversible plant cell elongation. J. Theor. Biol. 8, 264–275 (1965).
pubmed: 5876240
doi: 10.1016/0022-5193(65)90077-9
Forterre, Y. Chapter 1. Basic soft matter for plants. in Soft Matter Series (eds. Jensen, K. & Forterre, Y.) 1–65 (Royal Society of Chemistry, Cambridge, 2022).
Kiss, A. et al. Segmentation of 3D images of plant tissues at multiple scales using the level set method. Plant Methods 13, 114 (2017).
pubmed: 29296118
pmcid: 5738845
doi: 10.1186/s13007-017-0264-5
Fernandez, R. et al. Imaging plant growth in 4D: robust tissue reconstruction and lineaging at cell resolution. Nat. Methods 7, 547–553 (2010).
pubmed: 20543845
doi: 10.1038/nmeth.1472
Ourselin, S., Roche, A., Prima, S. & Ayache, N. Block matching: A general framework to improve robustness of rigid registration of medical images. in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2000 (eds. Delp, S. L., DiGoia, A. M. & Jaramaz, B.) vol. 1935, 557–566 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2000).
Schroeder, W. J. et al. The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics; [Visualize Data in 3D - Medical, Engineering or Scientific; Build Your Own Applications with C++, Tcl, Java or Python; Includes Source Code for VTK (Supports UNIX, Windows and Mac)]. (Kitware, Inc, Clifton Park, NY, 2006).
Theisel, H., Rossl, C., Zayer, R. & Seidel, H.-P. Normal based estimation of the curvature tensor for triangular meshes. in 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings. 288–297 (IEEE, Seoul, Korea, 2004).