Water fluxes pattern growth and identity in shoot meristems.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
13 Aug 2024
Historique:
received: 27 10 2023
accepted: 28 07 2024
medline: 14 8 2024
pubmed: 14 8 2024
entrez: 13 8 2024
Statut: epublish

Résumé

In multicellular organisms, tissue outgrowth creates a new water sink, modifying local hydraulic patterns. Although water fluxes are often considered passive by-products of development, their contribution to morphogenesis remains largely unexplored. Here, we mapped cell volumetric growth across the shoot apex in Arabidopsis thaliana. We found that, as organs grow, a subpopulation of cells at the organ-meristem boundary shrinks. Growth simulations using a model that integrates hydraulics and mechanics revealed water fluxes and predicted a water deficit for boundary cells. In planta, a water-soluble dye preferentially allocated to fast-growing tissues and failed to enter the boundary domain. Cell shrinkage next to fast-growing domains was also robust to different growth conditions and different topographies. Finally, a molecular signature of water deficit at the boundary confirmed our conclusion. Taken together, we propose that the differential sink strength of emerging organs prescribes the hydraulic patterns that define boundary domains at the shoot apex.

Identifiants

pubmed: 39138210
doi: 10.1038/s41467-024-51099-x
pii: 10.1038/s41467-024-51099-x
doi:

Substances chimiques

Water 059QF0KO0R

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6944

Subventions

Organisme : EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
ID : ERC-2021-AdG-101019515

Informations de copyright

© 2024. The Author(s).

Références

Lecuit, T., Lenne, P.-F. & Munro, E. Force generation, transmission, and integration during cell and tissue morphogenesis. Annu. Rev. Cell Dev. Biol. 27, 157–184 (2011).
pubmed: 21740231 doi: 10.1146/annurev-cellbio-100109-104027
Hayward, M.-K., Muncie, J. M. & Weaver, V. M. Tissue mechanics in stem cell fate, development, and cancer. Dev. Cell 56, 1833–1847 (2021).
pubmed: 34107299 pmcid: 9056158 doi: 10.1016/j.devcel.2021.05.011
Godard, B. G. & Heisenberg, C.-P. Cell division and tissue mechanics. Curr. Opin. Cell Biol. 60, 114–120 (2019).
pubmed: 31288206 doi: 10.1016/j.ceb.2019.05.007
Mammoto, T., Mammoto, A. & Ingber, D. E. Mechanobiology and developmental control. Annu. Rev. Cell Dev. Biol. 29, 27–61 (2013).
pubmed: 24099083 doi: 10.1146/annurev-cellbio-101512-122340
Hamant, O. & Saunders, T. E. Shaping organs: Shared structural principles across kingdoms. Annu. Rev. Cell Dev. Biol. 36, 385–410 (2020).
pubmed: 32628862 doi: 10.1146/annurev-cellbio-012820-103850
Echevin, E. et al. Growth and biomechanics of shoot organs. J. Exp. Bot. 70, 3573–3585 (2019).
pubmed: 31037307 doi: 10.1093/jxb/erz205
Trinh, D.-C. et al. How mechanical forces shape plant organs. Curr. Biol. 31, R143–R159 (2021).
pubmed: 33561417 doi: 10.1016/j.cub.2020.12.001
Hamant, O. et al. Developmental patterning by mechanical signals in Arabidopsis. Science 322, 1650–1655 (2008).
pubmed: 19074340 doi: 10.1126/science.1165594
Nakayama, N. et al. Mechanical regulation of auxin-mediated growth. Curr. Biol. 22, 1468–1476 (2012).
pubmed: 22818916 doi: 10.1016/j.cub.2012.06.050
Heisler, M. G. et al. Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. PLoS Biol. 8, e1000516 (2010).
Fal, K. et al. Tissue folding at the organ-meristem boundary results in nuclear compression and chromatin compaction. Proc. Natl. Acad. Sci. USA 118, e2017859118 (2021).
pubmed: 33608459 pmcid: 7923354 doi: 10.1073/pnas.2017859118
Landrein, B. et al. Mechanical stress contributes to the expression of the STM homeobox gene in Arabidopsis shoot meristems. Elife 4, e07811 (2015).
pubmed: 26623515 pmcid: 4666715 doi: 10.7554/eLife.07811
Weits, D. A. et al. An apical hypoxic niche sets the pace of shoot meristem activity. Nature 569, 714–717 (2019).
pubmed: 31092919 doi: 10.1038/s41586-019-1203-6
Dinneny, J. R. Developmental responses to water and salinity in root systems. Annu. Rev. Cell Dev. Biol. 35, 239–257 (2019).
pubmed: 31382759 doi: 10.1146/annurev-cellbio-100617-062949
von Wangenheim, D. et al. Early developmental plasticity of lateral roots in response to asymmetric water availability. Nat. Plants 6, 73–77 (2020).
doi: 10.1038/s41477-019-0580-z
Mehra, P. et al. Hydraulic flux–responsive hormone redistribution determines root branching. Science 378, 762–768 (2022).
pubmed: 36395221 doi: 10.1126/science.add3771
Péret, B. et al. Auxin regulates aquaporin function to facilitate lateral root emergence. Nat. Cell Biol. 14, 991–998 (2012).
pubmed: 22983115 doi: 10.1038/ncb2573
Wu, Y. et al. Abscisic acid employs NRP‐dependent PIN2 vacuolar degradation to suppress auxin‐mediated primary root elongation in Arabidopsis. N. Phytol. 233, 297–312 (2022).
doi: 10.1111/nph.17783
Tylewicz, S. et al. Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication. Science 360, 212–215 (2018).
pubmed: 29519919 doi: 10.1126/science.aan8576
Dengler, N. G. The shoot apical meristem and development of vascular architectureThis review is one of a selection of papers published on the Special Theme of Shoot Apical Meristems. Can. J. Bot. 84, 1660–1671 (2006).
doi: 10.1139/b06-126
Boyer, J. S. Cell enlargement and growth-induced water potentials. Physiol. Plant 73, 311–316 (1988).
doi: 10.1111/j.1399-3054.1988.tb00603.x
Robbins, N. E. & Dinneny, J. R. Growth is required for perception of water availability to pattern root branches in plants. Proc. Natl. Acad. Sci. USA 115, E822–E831 (2018).
pubmed: 29317538 pmcid: 5789911 doi: 10.1073/pnas.1710709115
D’Ario, M. et al. Cell size controlled in plants using DNA content as an internal scale. Science 372, 1176–1181 (2021).
pubmed: 34112688 doi: 10.1126/science.abb4348
Refahi, Y. et al. A multiscale analysis of early flower development in Arabidopsis provides an integrated view of molecular regulation and growth control. Dev. Cell 56, 540–556.e8 (2021).
pubmed: 33621494 pmcid: 8519405 doi: 10.1016/j.devcel.2021.01.019
Kwiatkowska, D. & Dumais, J. Growth and morphogenesis at the vegetative shoot apex of Anagallis arvensis L. J. Exp. Bot. 54, 1585–1595 (2003).
pubmed: 12730267 doi: 10.1093/jxb/erg166
Barbier de Reuille, P. et al. MorphoGraphX: A platform for quantifying morphogenesis in 4D. Elife 4, 05864 (2015).
pubmed: 25946108 doi: 10.7554/eLife.05864
Smyth, D. R., Bowman, J. L. & Meyerowitz, E. M. Early flower development in Arabidopsis. Plant Cell 2, 755–767 (1990).
pubmed: 2152125 pmcid: 159928
Breuil-Broyer, S. et al. High-resolution boundary analysis during Arabidopsis thaliana flower development. Plant J. 38, 182–192 (2004).
pubmed: 15053771 doi: 10.1111/j.1365-313X.2004.02026.x
Cheddadi, I., Génard, M., Bertin, N. & Godin, C. Coupling water fluxes with cell wall mechanics in a multicellular model of plant development. PLoS Comput. Biol. 15, e1007121 (2019).
pubmed: 31220080 pmcid: 6605655 doi: 10.1371/journal.pcbi.1007121
Ortega, J. K. E. Augmented Growth Equation for Cell Wall Expansion. Plant Physiol. 79, 318–320 (1985).
pubmed: 16664396 pmcid: 1074876 doi: 10.1104/pp.79.1.318
Gisel, A., Barella, S., Hempel, F. D. & Zambryski, P. C. Temporal and spatial regulation of symplastic trafficking during development in Arabidopsis thaliana apices. Development 126, 1879–1889 (1999).
pubmed: 10101122 doi: 10.1242/dev.126.9.1879
Léon‐Kloosterziel, K. M. et al. Isolation and characterization of abscisic acid‐deficient Arabidopsis mutants at two new loci. Plant J. 10, 655–661 (1996).
pubmed: 8893542 doi: 10.1046/j.1365-313X.1996.10040655.x
Hamant, O., Das, P. & Burian, A. Time-lapse imaging of developing shoot meristems using a confocal laser scanning microscope. in Plant Cell Morphogenesis (eds. Cvrčková, F. & Žárský, V.) vol. 1992 257–268 (Springer New York, New York, NY, 2019).
Tian, C. et al. A gene expression map of shoot domains reveals regulatory mechanisms. Nat. Commun. 10, 141 (2019).
pubmed: 30635575 pmcid: 6329838 doi: 10.1038/s41467-018-08083-z
Goswami, R. et al. Mechanical shielding in plant nuclei. Curr. Biol. 30, 2013–2025 (2020).
pubmed: 32330420 doi: 10.1016/j.cub.2020.03.059
Ascenzi, R. & Gantt, J. S. Molecular genetic analysis of the drought-inducible linker histone variant in Arabidopsis thaliana. Plant Mol. Biol. 41, 159–169 (1999).
pubmed: 10579484 doi: 10.1023/A:1006302330879
Rutowicz, K. et al. A specialized histone H1 variant is required for adaptive responses to complex abiotic stress and related DNA methylation in arabidopsis. Plant Physiol. 169, 2080–2101 (2015).
pubmed: 26351307 pmcid: 4634048
Tarancón, C., González-Grandío, E., Oliveros, J. C., Nicolas, M. & Cubas, P. A conserved carbon starvation response underlies bud dormancy in woody and herbaceous species. Front. Plant Sci. 8, 788 (2017).
pubmed: 28588590 pmcid: 5440562 doi: 10.3389/fpls.2017.00788
Cadman, C. S. C., Toorop, P. E., Hilhorst, H. W. M. & Finch-Savage, W. E. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J. 46, 805–822 (2006).
pubmed: 16709196 doi: 10.1111/j.1365-313X.2006.02738.x
Rutowicz, K. et al. Linker histones are fine-scale chromatin architects modulating developmental decisions in Arabidopsis. Genome Biol. 20, 157 (2019).
pubmed: 31391082 pmcid: 6685187 doi: 10.1186/s13059-019-1767-3
Molz, F. J. & Boyer, J. S. Growth-induced water potentials in plant cells and tissues. Plant Physiol. 62, 423–429 (1978).
pubmed: 16660530 pmcid: 1092139 doi: 10.1104/pp.62.3.423
Nonami, H. & Boyer, J. S. Direct demonstration of a growth-induced water potential gradient. Plant Physiol. 102, 13–19 (1993).
pubmed: 12231794 pmcid: 158741 doi: 10.1104/pp.102.1.13
Tian, C. et al. An organ boundary-enriched gene regulatory network uncovers regulatory hierarchies underlying axillary meristem initiation. Mol. Syst. Biol. 10, 755–755 (2014).
pubmed: 25358340 doi: 10.15252/msb.20145470
Aida, M. & Tasaka, M. Genetic control of shoot organ boundaries. Curr. Opin. Plant Biol. 9, 72–77 (2006).
pubmed: 16337829 doi: 10.1016/j.pbi.2005.11.011
Wang, Y. Stem cell basis for fractal patterns: axillary meristem initiation. Front. Plant Sci. 12, 805434 (2021).
pubmed: 34975997 pmcid: 8718902 doi: 10.3389/fpls.2021.805434
Peaucelle, A. et al. Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr. Biol. 21, 1720–1726 (2011).
pubmed: 21982593 doi: 10.1016/j.cub.2011.08.057
Cui, F. et al. Dissecting abscisic acid signaling pathways involved in cuticle formation. Mol. Plant 9, 926–938 (2016).
pubmed: 27060495 doi: 10.1016/j.molp.2016.04.001
Ramachandran, P. et al. Abscisic acid signaling activates distinct VND transcription factors to promote xylem differentiation in Arabidopsis. Curr. Biol. 31, 3153–3161.e5 (2021).
pubmed: 34043949 doi: 10.1016/j.cub.2021.04.057
Grondin, A. et al. Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. Plant Cell 27, 1945–1954 (2015).
pubmed: 26163575 pmcid: 4531361 doi: 10.1105/tpc.15.00421
Mao, Z. & Sun, W. Arabidopsis seed-specific vacuolar aquaporins are involved in maintaining seed longevity under the control of ABSCISIC ACID INSENSITIVE 3. J. Exp. Bot. 66, 4781–4794 (2015).
pubmed: 26019256 pmcid: 4507774 doi: 10.1093/jxb/erv244
Hachez, C. et al. The arabidopsis abiotic stress-induced TSPO-related protein reduces cell-surface expression of the aquaporin PIP2;7 through protein-protein interactions and autophagic degradation. Plant Cell 26, 4974–4990 (2014).
pubmed: 25538184 pmcid: 4311218 doi: 10.1105/tpc.114.134080
Long, Y. et al. Cellular heterogeneity in pressure and growth emerges from tissue topology and geometry. Curr. Biol. 30, 1504–1516 (2020).
pubmed: 32169211 doi: 10.1016/j.cub.2020.02.027
Asnacios, A. & Hamant, O. The mechanics behind cell polarity. Trends Cell Biol. 22, 584–591 (2012).
pubmed: 22980034 doi: 10.1016/j.tcb.2012.08.005
Shapiro, B. E., Tobin, C., Mjolsness, E. & Meyerowitz, E. M. Analysis of cell division patterns in the Arabidopsis shoot apical meristem. Proc. Natl. Acad. Sci. USA 112, 4815–4820 (2015).
pubmed: 25825722 pmcid: 4403164 doi: 10.1073/pnas.1502588112
Alt, S., Ganguly, P. & Salbreux, G. Vertex models: from cell mechanics to tissue morphogenesis. Philos. Trans. R. Soc. B 372, 20150520 (2017).
doi: 10.1098/rstb.2015.0520
Lockhart, J. A. An analysis of irreversible plant cell elongation. J. Theor. Biol. 8, 264–275 (1965).
pubmed: 5876240 doi: 10.1016/0022-5193(65)90077-9
Forterre, Y. Chapter 1. Basic soft matter for plants. in Soft Matter Series (eds. Jensen, K. & Forterre, Y.) 1–65 (Royal Society of Chemistry, Cambridge, 2022).
Kiss, A. et al. Segmentation of 3D images of plant tissues at multiple scales using the level set method. Plant Methods 13, 114 (2017).
pubmed: 29296118 pmcid: 5738845 doi: 10.1186/s13007-017-0264-5
Fernandez, R. et al. Imaging plant growth in 4D: robust tissue reconstruction and lineaging at cell resolution. Nat. Methods 7, 547–553 (2010).
pubmed: 20543845 doi: 10.1038/nmeth.1472
Ourselin, S., Roche, A., Prima, S. & Ayache, N. Block matching: A general framework to improve robustness of rigid registration of medical images. in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2000 (eds. Delp, S. L., DiGoia, A. M. & Jaramaz, B.) vol. 1935, 557–566 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2000).
Schroeder, W. J. et al. The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics; [Visualize Data in 3D - Medical, Engineering or Scientific; Build Your Own Applications with C++, Tcl, Java or Python; Includes Source Code for VTK (Supports UNIX, Windows and Mac)]. (Kitware, Inc, Clifton Park, NY, 2006).
Theisel, H., Rossl, C., Zayer, R. & Seidel, H.-P. Normal based estimation of the curvature tensor for triangular meshes. in 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings. 288–297 (IEEE, Seoul, Korea, 2004).

Auteurs

Juan Alonso-Serra (J)

Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France. juan.alonsoserra@helsinki.fi.
Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland. juan.alonsoserra@helsinki.fi.

Ibrahim Cheddadi (I)

Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France.
Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, France.

Annamaria Kiss (A)

Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France.

Guillaume Cerutti (G)

Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France.

Marianne Lang (M)

Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France.

Sana Dieudonné (S)

Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France.

Claire Lionnet (C)

Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France.

Christophe Godin (C)

Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France.

Olivier Hamant (O)

Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France. olivier.hamant@ens-lyon.fr.

Articles similaires

Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger
Genome Size Genome, Plant Magnoliopsida Evolution, Molecular Arabidopsis
Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction

Classifications MeSH