Temporal and spatial changes in the abundance of antibiotic resistance gene markers in a wastewater treatment plant.


Journal

Water environment research : a research publication of the Water Environment Federation
ISSN: 1554-7531
Titre abrégé: Water Environ Res
Pays: United States
ID NLM: 9886167

Informations de publication

Date de publication:
Aug 2024
Historique:
revised: 30 07 2024
received: 05 04 2024
accepted: 31 07 2024
medline: 21 8 2024
pubmed: 21 8 2024
entrez: 20 8 2024
Statut: ppublish

Résumé

In this study, we investigated the temporal and spatial quantitative changes in the concentration of antibiotic resistance gene (ARG) markers in a municipal wastewater treatment plant (WWTP). Four ARGs conferring resistance to different classes of antibiotics (ermB, sul1, tet[W], and bla

Identifiants

pubmed: 39164119
doi: 10.1002/wer.11104
doi:

Substances chimiques

Wastewater 0
Anti-Bacterial Agents 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e11104

Subventions

Organisme : City of La-Chaux-de-Fonds

Informations de copyright

© 2024 The Author(s). Water Environment Research published by Wiley Periodicals LLC on behalf of Water Environment Federation.

Références

Alexander, J., Hembach, N., & Schwartz, T. (2020). Evaluation of antibiotic resistance dissemination by wastewater treatment plant effluents with different catchment areas in Germany. Scientific Reports, 10, 8952. https://doi.org/10.1038/s41598-020-65635-4
Baquero, F., Martínez, J. L., & Cantón, R. (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, 19, 260–265. https://doi.org/10.1016/j.copbio.2008.05.006
Bengtsson‐Palme, J., Hammarén, R., Pal, C., Östman, M., Björlenius, B., Flach, C. F., Fick, J., Kristiansson, E., Tysklind, M., & Larsson, D. G. J. (2016). Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Science of the Total Environment, 572, 697–712. https://doi.org/10.1016/j.scitotenv.2016.06.228
Berendonk, T. U., Manaia, C. M., Merlin, C., Fatta‐Kassinos, D., Cytryn, E., Walsh, F., Bürgmann, H., Sørum, H., Norström, M., Pons, M. N., Kreuzinger, N., Huovinen, P., Stefani, S., Schwartz, T., Kisand, V., Baquero, F., & Martinez, J. L. (2015). Tackling antibiotic resistance: The environmental framework. Nature Reviews. Microbiology, 13, 310–317. https://doi.org/10.1038/nrmicro3439
Bouki, C., Venieri, D., & Diamadopoulos, E. (2013). Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review. Ecotoxicology and Environmental Safety, 91, 1–9. https://doi.org/10.1016/j.ecoenv.2013.01.016
Bürgmann, H., Frigon, D., H Gaze, W., M Manaia, C., Pruden, A., Singer, A. C., F Smets, B., & Zhang, T. (2018). Water and sanitation: An essential battlefront in the war on antimicrobial resistance. FEMS Microbiology Ecology, 94, fiy101. https://doi.org/10.1093/femsec/fiy101
Cai, L., & Zhang, T. (2013). Detecting human bacterial pathogens in wastewater treatment plants by a high‐throughput shotgun sequencing technique. Environmental Science & Technology, 47, 5433–5441. https://doi.org/10.1021/es400275r
Czekalski, N., Berthold, T., Caucci, S., Egli, A., & Bürgmann, H. (2012). Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into Lake Geneva, Switzerland. Frontiers in Microbiology, 3, 106. https://doi.org/10.3389/fmicb.2012.00106
Czekalski, N., Gascón Díez, E., & Bürgmann, H. (2014). Wastewater as a point source of antibiotic‐resistance genes in the sediment of a freshwater lake. The ISME Journal, 8, 1381–1390. https://doi.org/10.1038/ismej.2014.8
Czekalski, N., Imminger, S., Salhi, E., Veljkovic, M., Kleffel, K., Drissner, D., Hammes, F., Bürgmann, H., & von Gunten, U. (2016). Inactivation of antibiotic resistant bacteria and resistance genes by ozone: From laboratory experiments to full‐scale wastewater treatment. Environmental Science & Technology, 50, 11862–11871. https://doi.org/10.1021/acs.est.6b02640
Deblonde, T., Cossu‐Leguille, C., & Hartemann, P. (2011). Emerging pollutants in wastewater: A review of the literature. International Journal of Hygiene and Environmental Health, 214, 442–448. https://doi.org/10.1016/j.ijheh.2011.08.002
Gillings, M. R., Gaze, W. H., Pruden, A., Smalla, K., Tiedje, J. M., & Zhu, Y.‐G. (2015). Using the class 1 integron‐integrase gene as a proxy for anthropogenic pollution. The ISME Journal, 9, 1269–1279. https://doi.org/10.1038/ismej.2014.226
Han, J., Li, W., Yang, Y., Zhang, X., Bao, S., Zhang, X., Zhang, T., & Leung, K. M. Y. (2023). UV‐based advanced oxidation processes for antibiotic resistance control: Efficiency, influencing factors, and energy consumption. Engineering, 37, 27–39. https://doi.org/10.1016/j.eng.2023.09.021
Herrig, I., Fleischmann, S., Regnery, J., Wesp, J., Reifferscheid, G., & Manz, W. (2020). Prevalence and seasonal dynamics of blaCTX‐M antibiotic resistance genes and fecal indicator organisms in the lower Lahn River, Germany. PLoS ONE, 15, e0232289. https://doi.org/10.1371/journal.pone.0232289
Honda, R., Matsuura, N., Sorn, S., Asakura, S., Morinaga, Y., Van Huy, T., Sabar, M. A., Masakke, Y., Hara‐Yamamura, H., & Watanabe, T. (2023). Transition of antimicrobial resistome in wastewater treatment plants: Impact of process configuration, geographical location and season. npj Clean Water, 6, 46. https://doi.org/10.1038/s41545-023-00261-x
Jäger, T., Hembach, N., Elpers, C., Wieland, A., Alexander, J., Hiller, C., Krauter, G., & Schwartz, T. (2018). Reduction of antibiotic resistant bacteria during conventional and advanced wastewater treatment, and the disseminated loads released to the environment. Frontiers in Microbiology, 9, 1–16. https://doi.org/10.3389/fmicb.2018.02599
Ju, F., Beck, K., Yin, X., Maccagnan, A., McArdell, C. S., Singer, H. P., Johnson, D. R., Zhang, T., & Bürgmann, H. (2019). Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes. The ISME Journal, 13, 346–360. https://doi.org/10.1038/s41396-018-0277-8
Karkman, A., Do, T. T., Walsh, F., & Virta, M. P. J. (2018). Antibiotic‐resistance genes in waste water. Trends in Microbiology, 26, 220–228. https://doi.org/10.1016/j.tim.2017.09.005
Kassambara, A., (2018) ggpubr:’ggplot2’ based publication ready plots. R Package Version 2.
LaPara, T. M., Burch, T. R., McNamara, P. J., Tan, D. T., Yan, M., & Eichmiller, J. J. (2011). Tertiary‐treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth‐Superior Harbor. Environmental Science & Technology, 45, 9543–9549. https://doi.org/10.1021/es202775r
Lee, J., Jeon, J. H., Shin, J., Jang, H. M., Kim, S., Song, M. S., & Kim, Y. M. (2017). Quantitative and qualitative changes in antibiotic resistance genes after passing through treatment processes in municipal wastewater treatment plants. Science of the Total Environment, 605–606, 906–914. https://doi.org/10.1016/j.scitotenv.2017.06.250
Lee, J., Ju, F., Beck, K., & Bürgmann, H. (2023). Differential effects of wastewater treatment plant effluents on the antibiotic resistomes of diverse river habitats. The ISME Journal, 17, 1993–2002. https://doi.org/10.1038/s41396-023-01506-w
Lee, J., Ju, F., Maile‐Moskowitz, A., Beck, K., Maccagnan, A., McArdell, C. S., Dal Molin, M., Fenicia, F., Vikesland, P. J., Pruden, A., Stamm, C., & Bürgmann, H. (2021). Unraveling the riverine antibiotic resistome: The downstream fate of anthropogenic inputs. Water Research, 197, 117050. https://doi.org/10.1016/j.watres.2021.117050
Li, L., Dechesne, A., He, Z., Madsen, J. S., Nesme, J., Sørensen, S. J., & Smets, B. F. (2018). Estimating the transfer range of plasmids encoding antimicrobial resistance in a wastewater treatment plant microbial community. Environmental Science & Technology Letters, 5, 260–265. https://doi.org/10.1021/acs.estlett.8b00105
Lin, Z.‐J., Zhou, Z.‐C., Zhu, L., Meng, L.‐X., Shuai, X.‐Y., Sun, Y.‐J., & Chen, H. (2021). Behavior of antibiotic resistance genes in a wastewater treatment plant with different upgrading processes. Science of the Total Environment, 771, 144814. https://doi.org/10.1016/j.scitotenv.2020.144814
Liu, X., Lu, S., Guo, W., Xi, B., & Wang, W. (2018). Antibiotics in the aquatic environments: A review of lakes, China. Science of the Total Environment, 627, 1195–1208. https://doi.org/10.1016/j.scitotenv.2018.01.271
Marano, R. B. M., Fernandes, T., Manaia, C. M., Nunes, O., Morrison, D., Berendonk, T. U., Kreuzinger, N., Tenson, T., Corno, G., Fatta‐Kassinos, D., Merlin, C., Topp, E., Jurkevitch, E., Henn, L., Scott, A., Heß, S., Slipko, K., Laht, M., Kisand, V., … Cytryn, E. (2020). A global multinational survey of cefotaxime‐resistant coliforms in urban wastewater treatment plants. Environment International, 144, 106035. https://doi.org/10.1016/j.envint.2020.106035
Margot, J., Rossi, L., Barry, D. A., & Holliger, C. (2015). A review of the fate of micropollutants in wastewater treatment plants. Wiley Interdisciplinary Reviews Water, 2, 457–487. https://doi.org/10.1002/wat2.1090
Marti, E., Variatza, E., & Balcazar, J. L. (2014). The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends in Microbiology, 22, 36–41. https://doi.org/10.1016/j.tim.2013.11.001
McKinney, C. W., & Pruden, A. (2012). Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater. Environmental Science & Technology, 46, 13393–13400. https://doi.org/10.1021/es303652q
Munck, C., Albertsen, M., Telke, A., Ellabaan, M., Nielsen, P. H., & Sommer, M. O. A. (2015). Limited dissemination of the wastewater treatment plant core resistome. Nature Communications, 6, 8452. https://doi.org/10.1038/ncomms9452
Munir, M., Wong, K., & Xagoraraki, I. (2011). Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Research, 45, 681–693. https://doi.org/10.1016/j.watres.2010.08.033
Okoh, A. I., Odjadjare, E. E., Igbinosa, E. O., & Osode, A. N. (2007). Wastewater treatment plants as a source of microbial pathogens in receiving watersheds. African Journal of Biotechnology, 6, 2932–2944. https://doi.org/10.5897/ajb2007.000-2462
Oliveira, M., Nunes, M., Barreto Crespo, M. T., & Silva, A. F. (2020). The environmental contribution to the dissemination of carbapenem and (fluoro)quinolone resistance genes by discharged and reused wastewater effluents: The role of cellular and extracellular DNA. Water Research, 182, 116011. https://doi.org/10.1016/j.watres.2020.116011
Osunmakinde, C. O., Selvarajan, R., Mamba, B. B., & Msagati, T. A. M. (2019). Profiling bacterial diversity and potential pathogens in wastewater treatment plants using high‐throughput sequencing analysis. Microorganisms, 7, 506. https://doi.org/10.3390/microorganisms7110506
Pallares‐Vega, R., Blaak, H., van der Plaats, R., de Roda Husman, A. M., Hernandez Leal, L., van Loosdrecht, M. C. M., Weissbrodt, D. G., & Schmitt, H. (2019). Determinants of presence and removal of antibiotic resistance genes during WWTP treatment: A cross‐sectional study. Water Research, 161, 319–328. https://doi.org/10.1016/j.watres.2019.05.100
Pazda, M., Kumirska, J., Stepnowski, P., & Mulkiewicz, E. (2019). Antibiotic resistance genes identified in wastewater treatment plant systems — A review. Science of the Total Environment, 697, 134023. https://doi.org/10.1016/j.scitotenv.2019.134023
Pazda, M., Rybicka, M., Stolte, S., Bielawski, K. P., Stepnowski, P., Kumirska, J., Wolecki, D., & Mulkiewicz, E. (2020). Identification of selected antibiotic resistance genes in two different wastewater treatment plant systems in Poland: A preliminary study. Molecules, 25, 1–18. https://doi.org/10.3390/molecules25122851
Pruden, A., Arabi, M., & Storteboom, H. N. (2012). Correlation between upstream human activities and riverine antibiotic resistance genes. Environmental Science & Technology, 46, 11541–11549. https://doi.org/10.1021/es302657r
Qin, K., Wei, L., Li, J., Lai, B., Zhu, F., Yu, H., Zhao, Q., & Wang, K. (2020). A review of ARGs in WWTPs: Sources, stressors and elimination. Chinese Chemical Letters, 31, 2603–2613. https://doi.org/10.1016/j.cclet.2020.04.057
R Core Team, R., (2013). R: A language and environment for statistical computing.
Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M. C., Michael, I., & Fatta‐Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Science of the Total Environment, 447, 345–360. https://doi.org/10.1016/j.scitotenv.2013.01.032
Rodriguez‐Mozaz, S., Chamorro, S., Marti, E., Huerta, B., Gros, M., Sànchez‐Melsió, A., Borrego, C. M., Barceló, D., & Balcázar, J. L. (2015). Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research, 69, 234–242. https://doi.org/10.1016/j.watres.2014.11.021
Sabri, N. A., van Holst, S., Schmitt, H., van der Zaan, B. M., Gerritsen, H. W., Rijnaarts, H. H. M., & Langenhoff, A. A. M. (2020). Fate of antibiotics and antibiotic resistance genes during conventional and additional treatment technologies in wastewater treatment plants. Science of the Total Environment, 741, 140199. https://doi.org/10.1016/j.scitotenv.2020.140199
Sheena, C., Aurélie, H., Émile, S., & Julian, T. R. (2024). Monitoring ESBL‐Escherichia coli in Swiss wastewater between November 2021 and November 2022: insights into population carriage. mSphere, 9, e00760–23. https://doi.org/10.1128/msphere.00760-23
Shen, W., Chen, Y., Wang, N., Wan, P., Peng, Z., Zhao, H., Wang, W., Xiong, L., Zhang, S., & Liu, R. (2022). Seasonal variability of the correlation network of antibiotics, antibiotic resistance determinants, and bacteria in a wastewater treatment plant and receiving water. Journal of Environmental Management, 317, 115362. https://doi.org/10.1016/j.jenvman.2022.115362
Sims, N., Kannan, A., Holton, E., Jagadeesan, K., Mageiros, L., Standerwick, R., Craft, T., Barden, R., Feil, E. J., & Kasprzyk‐Hordern, B. (2023). Antimicrobials and antimicrobial resistance genes in a one‐year city metabolism longitudinal study using wastewater‐based epidemiology. Environmental Pollution, 333, 122020. https://doi.org/10.1016/j.envpol.2023.122020
Su, H., Li, W., Okumura, S., Wei, Y., Deng, Z., & Li, F. (2024). Transfer, elimination and accumulation of antibiotic resistance genes in decentralized household wastewater treatment facility treating total wastewater from residential complex. Science of the Total Environment, 912, 169144. https://doi.org/10.1016/j.scitotenv.2023.169144
Timraz, K., Xiong, Y., Al Qarni, H., & Hong, P.‐Y. (2017). Removal of bacterial cells, antibiotic resistance genes and integrase genes by on‐site hospital wastewater treatment plants: surveillance of treated hospital effluent quality. Environmental Science: Water Research & Technology, 3, 293–303. https://doi.org/10.1039/C6EW00322B
Uluseker, C., Kaster, K. M., Thorsen, K., Basiry, D., Shobana, S., Jain, M., Kumar, G., Kommedal, R., & Pala‐Ozkok, I. (2021). A review on occurrence and spread of antibiotic resistance in wastewaters and in wastewater treatment plants: Mechanisms and perspectives. Frontiers in Microbiology, 12, 12. https://doi.org/10.3389/fmicb.2021.717809
Wang, J., & Chen, X. (2022). Removal of antibiotic resistance genes (ARGs) in various wastewater treatment processes: An overview. Critical Reviews in Environmental Science and Technology, 52, 571–630. https://doi.org/10.1080/10643389.2020.1835124
Wen, X., Chen, F., Lin, Y., Zhu, H., Yuan, F., Kuang, D., Jia, Z., & Yuan, Z. (2020). Microbial indicators and their use for monitoring drinkingwater quality—A review. Sustainable Switzerland, 12, 2249. https://doi.org/10.3390/su12062249
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., & Hester, J. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4, 1686. https://doi.org/10.21105/joss.01686
Wunderlin, T., Junier, T., Roussel‐Delif, L., Jeanneret, N., & Junier, P. (2013). Stage 0 sporulation gene A as a molecular marker to study diversity of endospore‐forming Firmicutes. Environmental Microbiology Reports, 5, 911–924. https://doi.org/10.1111/1758-2229.12094
Zhang, C. M., Xu, L. M., Wang, X. C., Zhuang, K., & Liu, Q. Q. (2017). Effects of ultraviolet disinfection on antibiotic‐resistant Escherichia coli from wastewater: inactivation, antibiotic resistance profiles and antibiotic resistance genes. Journal of Applied Microbiology, 123, 295–306. https://doi.org/10.1111/jam.13480
Zhu, H., (2021) kableExtra: Construct complex table with ‘kable’ and pipe syntax.
Zhu, T., Su, Z., Lai, W., Zhang, Y., & Liu, Y. (2021). Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology. Journal of Open Source Software, 776, 145906. https://doi.org/10.1016/j.scitotenv.2021.145906

Auteurs

Guillaume Cailleau (G)

Laboratory of Microbiology, University of Neuchâtel, Neuchatel, Switzerland.

Christophe Paul (C)

Laboratory of Microbiology, University of Neuchâtel, Neuchatel, Switzerland.

Mathilda Fatton (M)

Laboratory of Microbiology, University of Neuchâtel, Neuchatel, Switzerland.

Andrea Corona-Ramirez (A)

Laboratory of Microbiology, University of Neuchâtel, Neuchatel, Switzerland.

Ophelie Gning (O)

Laboratory of Microbiology, University of Neuchâtel, Neuchatel, Switzerland.

Karin Beck (K)

Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.

Jacques Vidal (J)

Waste Water Treatment Plant, La Chaux-de-Fonds, Switzerland.

Helmut Bürgmann (H)

Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.
Vital-IT group, Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Pilar Junier (P)

Laboratory of Microbiology, University of Neuchâtel, Neuchatel, Switzerland.

Articles similaires

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Humans Arthroplasty, Replacement, Elbow Prosthesis-Related Infections Debridement Anti-Bacterial Agents
Vancomycin Polyesters Anti-Bacterial Agents Models, Theoretical Drug Liberation
Humans China Cerebral Hemorrhage Patient Care Bundles Length of Stay

Classifications MeSH