Acyl-CoA synthetase 6 controls rod photoreceptor function and survival by shaping the phospholipid composition of retinal membranes.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
21 Aug 2024
21 Aug 2024
Historique:
received:
14
11
2023
accepted:
06
08
2024
medline:
22
8
2024
pubmed:
22
8
2024
entrez:
21
8
2024
Statut:
epublish
Résumé
The retina is light-sensitive neuronal tissue in the back of the eye. The phospholipid composition of the retina is unique and highly enriched in polyunsaturated fatty acids, including docosahexaenoic fatty acid (DHA). While it is generally accepted that a high DHA content is important for vision, surprisingly little is known about the mechanisms of DHA enrichment in the retina. Furthermore, the biological processes controlled by DHA in the eye remain poorly defined as well. Here, we combined genetic manipulations with lipidomic analysis in mice to demonstrate that acyl-CoA synthetase 6 (Acsl6) serves as a regulator of the unique composition of retinal membranes. Inactivation of Acsl6 reduced the levels of DHA-containing phospholipids, led to progressive loss of light-sensitive rod photoreceptor neurons, attenuated the light responses of these cells, and evoked distinct transcriptional response in the retina involving the Srebf1/2 (sterol regulatory element binding transcription factors 1/2) pathway. This study identifies one of the major enzymes responsible for DHA enrichment in the retinal membranes and introduces a model allowing an evaluation of rod functioning and pathology caused by impaired DHA incorporation/retention in the retina.
Identifiants
pubmed: 39169121
doi: 10.1038/s42003-024-06691-8
pii: 10.1038/s42003-024-06691-8
doi:
Substances chimiques
Phospholipids
0
Coenzyme A Ligases
EC 6.2.1.-
Docosahexaenoic Acids
25167-62-8
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1027Subventions
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY030043
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY008098
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY030451
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY005722
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY032051
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY031720
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY008098
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY032462
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY030513
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY021725
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY031706
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY034986
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY014800
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY024234
Informations de copyright
© 2024. The Author(s).
Références
Lewandowski, D. et al. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog. Retin. Eye Res. 89, 101037 (2022).
pubmed: 34971765
doi: 10.1016/j.preteyeres.2021.101037
Swinkels, D. & Baes, M. The essential role of docosahexaenoic acid and its derivatives for retinal integrity. Pharm. Ther. 247, 108440 (2023).
doi: 10.1016/j.pharmthera.2023.108440
SanGiovanni, J. P. & Chew, E. Y. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog. Retin. Eye Res. 24, 87–138 (2005).
pubmed: 15555528
doi: 10.1016/j.preteyeres.2004.06.002
Jeffrey, B. G., Weisinger, H. S., Neuringer, M. & Mitchell, D. C. The role of docosahexaenoic acid in retinal function. Lipids 36, 859–871 (2001).
pubmed: 11724458
doi: 10.1007/s11745-001-0796-3
Lacombe, R. J. S., Chouinard-Watkins, R. & Bazinet, R. P. Brain docosahexaenoic acid uptake and metabolism. Mol. Asp. Med. 64, 109–134 (2018).
doi: 10.1016/j.mam.2017.12.004
Scott, B. L. & Bazan, N. G. Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc. Natl. Acad. Sci. USA 86, 2903–2907 (1989).
pubmed: 2523075
pmcid: 287028
doi: 10.1073/pnas.86.8.2903
Bazinet, R. P., Bernoud-Hubac, N. & Lagarde, M. How the plasma lysophospholipid and unesterified fatty acid pools supply the brain with docosahexaenoic acid. Prostaglandins Leukot. Ess. Fat. Acids 142, 1–3 (2019).
doi: 10.1016/j.plefa.2018.12.003
Nguyen, L. N. et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509, 503–506 (2014).
pubmed: 24828044
doi: 10.1038/nature13241
Wong, B. H. et al. Mfsd2a Is a Transporter for the Essential omega-3 Fatty Acid Docosahexaenoic Acid (DHA) in Eye and Is Important for Photoreceptor Cell Development. J. Biol. Chem. 291, 10501–10514 (2016).
pubmed: 27008858
pmcid: 4865901
doi: 10.1074/jbc.M116.721340
Lobanova, E. S. et al. Disrupted blood-retina lysophosphatidylcholine transport impairs photoreceptor health but not visual signal transduction. J Neurosci. 39, 9689–9701 (2019).
Chan, J. P. et al. The lysolipid transporter Mfsd2a regulates lipogenesis in the developing brain. PLoS Biol. 16, e2006443 (2018).
pubmed: 30074985
pmcid: 6093704
doi: 10.1371/journal.pbio.2006443
Guemez-Gamboa, A. et al. Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nat. Genet. 47, 809–813 (2015).
pubmed: 26005868
pmcid: 4547531
doi: 10.1038/ng.3311
Alakbarzade, V. et al. A partially inactivating mutation in the sodium-dependent lysophosphatidylcholine transporter MFSD2A causes a non-lethal microcephaly syndrome. Nat. Genet. 47, 814–817 (2015).
pubmed: 26005865
doi: 10.1038/ng.3313
Agbaga, M. P. et al. Role of Elovl4 protein in the biosynthesis of docosahexaenoic acid. Adv. Exp. Med. Biol. 664, 233–242 (2010).
pubmed: 20238022
pmcid: 4350578
doi: 10.1007/978-1-4419-1399-9_27
Agbaga, M. P. et al. Differential composition of DHA and very-long-chain PUFAs in rod and cone photoreceptors. J. Lipid Res. 59, 1586–1596 (2018).
pubmed: 29986998
pmcid: 6121944
doi: 10.1194/jlr.M082495
Aguirre, G. D., Acland, G. M., Maude, M. B. & Anderson, R. E. Diets enriched in docosahexaenoic acid fail to correct progressive rod-cone degeneration (prcd) phenotype. Invest. Ophthalmol. Vis. Sci. 38, 2387–2407 (1997).
pubmed: 9344362
Anderson, R. E. et al. Low docosahexaenoic acid levels in rod outer segments of rats with P23H and S334ter rhodopsin mutations. Mol. Vis. 8, 351–358 (2002).
pubmed: 12355064
Liu, A., Lin, Y., Terry, R., Nelson, K. & Bernstein, P. S. Role of long-chain and very-long-chain polyunsaturated fatty acids in macular degenerations and dystrophies. Clin. Lipido. 6, 593–613 (2011).
doi: 10.2217/clp.11.41
Becker, S., Carroll, L. S. & Vinberg, F. Diabetic photoreceptors: Mechanisms underlying changes in structure and function. Vis. Neurosci. 37, E008 (2020).
pubmed: 33019947
pmcid: 8694110
doi: 10.1017/S0952523820000097
Futterman, S. & Kupfer, C. The fatty acid composition of the retinal vasculature of normal and diabetic human eyes. Invest. Ophthalmol. 7, 105–108 (1968).
pubmed: 5636782
Tikhonenko, M. et al. Remodeling of retinal Fatty acids in an animal model of diabetes: a decrease in long-chain polyunsaturated fatty acids is associated with a decrease in fatty acid elongases Elovl2 and Elovl4. Diabetes 59, 219–227 (2010).
pubmed: 19875612
doi: 10.2337/db09-0728
Brito, M. et al. Understanding the Impact of Polyunsaturated Fatty Acids on Age-Related Macular Degeneration: A Review. Int. J. Mol. Sci. 25, 4099 (2024).
Bazan, N. G. Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci. 29, 263–271 (2006).
pubmed: 16580739
doi: 10.1016/j.tins.2006.03.005
Salem, N. Jr., Loewke, J., Catalan, J. N., Majchrzak, S. & Moriguchi, T. Incomplete replacement of docosahexaenoic acid by n-6 docosapentaenoic acid in the rat retina after an n-3 fatty acid deficient diet. Exp. Eye Res. 81, 655–663 (2005).
pubmed: 15967432
doi: 10.1016/j.exer.2005.04.003
Organisciak, D. T., Darrow, R. M., Jiang, Y. L. & Blanks, J. C. Retinal light damage in rats with altered levels of rod outer segment docosahexaenoate. Invest. Ophthalmol. Vis. Sci. 37, 2243–2257 (1996).
pubmed: 8843911
Rice, D. S. et al. Adiponectin receptor 1 conserves docosahexaenoic acid and promotes photoreceptor cell survival. Nat. Commun. 6, 6228 (2015).
pubmed: 25736573
doi: 10.1038/ncomms7228
Kautzmann, M. I. et al. Membrane-type frizzled-related protein regulates lipidome and transcription for photoreceptor function. FASEB J. 34, 912–929 (2020).
pubmed: 31914617
doi: 10.1096/fj.201902359R
Lewandowski, D. et al. Inhibition of ceramide accumulation in AdipoR1−/− mice increases photoreceptor survival and improves vision. JCI Insight 7, e156301 (2022).
pubmed: 35015730
pmcid: 8876453
doi: 10.1172/jci.insight.156301
Fang, H. & Judd, R. L. Adiponectin Regulation and Function. Compr. Physiol. 8, 1031–1063 (2018).
pubmed: 29978896
doi: 10.1002/cphy.c170046
Kameya, S. et al. Mfrp, a gene encoding a frizzled related protein, is mutated in the mouse retinal degeneration 6. Hum. Mol. Genet. 11, 1879–1886 (2002).
pubmed: 12140190
doi: 10.1093/hmg/11.16.1879
Shindou, H. et al. Docosahexaenoic acid preserves visual function by maintaining correct disc morphology in retinal photoreceptor cells. J. Biol. Chem. 292, 12054–12064 (2017).
pubmed: 28578316
pmcid: 5519357
doi: 10.1074/jbc.M117.790568
Hishikawa, D. et al. Hepatic Levels of DHA-Containing Phospholipids Instruct SREBP1-Mediated Synthesis and Systemic Delivery of Polyunsaturated Fatty Acids. iScience 23, 101495 (2020).
pubmed: 32891885
pmcid: 7481256
doi: 10.1016/j.isci.2020.101495
Landowski, M. et al. Transmembrane protein 135 regulates lipid homeostasis through its role in peroxisomal DHA metabolism. Commun. Biol. 6, 8 (2023).
pubmed: 36599953
pmcid: 9813353
doi: 10.1038/s42003-022-04404-7
Lee, W. H. et al. Mouse Tmem135 mutation reveals a mechanism involving mitochondrial dynamics that leads to age-dependent retinal pathologies. Elife 5, e19264 (2016).
pubmed: 27863209
pmcid: 5117855
doi: 10.7554/eLife.19264
Landowski, M., Gogoi, P., Ikeda, S. & Ikeda, A. Roles of transmembrane protein 135 in mitochondrial and peroxisomal functions - implications for age-related retinal disease. Front. Ophthalmol. 4, 1355379 (2024).
doi: 10.3389/fopht.2024.1355379
Bradley, R. M. & Duncan, R. E. The lysophosphatidic acid acyltransferases (acylglycerophosphate acyltransferases) family: one reaction, five enzymes, many roles. Curr. Opin. Lipido. 29, 110–115 (2018).
doi: 10.1097/MOL.0000000000000492
Grevengoed, T. J., Klett, E. L. & Coleman, R. A. Acyl-CoA metabolism and partitioning. Annu. Rev. Nutr. 34, 1–30 (2014).
pubmed: 24819326
pmcid: 5881898
doi: 10.1146/annurev-nutr-071813-105541
Marszalek, J. R., Kitidis, C., Dirusso, C. C. & Lodish, H. F. Long-chain acyl-CoA synthetase 6 preferentially promotes DHA metabolism. J. Biol. Chem. 280, 10817–10826 (2005).
pubmed: 15655248
doi: 10.1074/jbc.M411750200
Fernandez, R. F. et al. Acyl-CoA synthetase 6 enriches the neuroprotective omega-3 fatty acid DHA in the brain. Proc. Natl. Acad. Sci. USA 115, 12525–12530 (2018).
pubmed: 30401738
pmcid: 6298081
doi: 10.1073/pnas.1807958115
Fernandez, R. F. & Ellis, J. M. Acyl-CoA synthetases as regulators of brain phospholipid acyl-chain diversity. Prostaglandins Leukot. Ess. Fat. Acids 161, 102175 (2020).
doi: 10.1016/j.plefa.2020.102175
Zhao, L. et al. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol. Med. 7, 1179–1197 (2015).
pubmed: 26139610
pmcid: 4568951
doi: 10.15252/emmm.201505298
Natoli, R. et al. A model of progressive photo-oxidative degeneration and inflammation in the pigmented C57BL/6J mouse retina. Exp. Eye Res. 147, 114–127 (2016).
pubmed: 27155143
doi: 10.1016/j.exer.2016.04.015
O’Koren, E. G. et al. Microglial Function Is Distinct in Different Anatomical Locations during Retinal Homeostasis and Degeneration. Immunity 50, 723–737 e727 (2019).
pubmed: 30850344
pmcid: 6592635
doi: 10.1016/j.immuni.2019.02.007
Sander, C. L. et al. Nano-scale resolution of native retinal rod disk membranes reveals differences in lipid composition. J. Cell Biol. 220, e202101063 (2021).
pubmed: 34132745
pmcid: 8240855
doi: 10.1083/jcb.202101063
Yeboah, G. K., Lobanova, E. S., Brush, R. S. & Agbaga, M. P. Very long chain fatty acid-containing lipids: a decade of novel insights from the study of ELOVL4. J. Lipid Res. 62, 100030 (2021).
pubmed: 33556440
pmcid: 8042400
doi: 10.1016/j.jlr.2021.100030
Hopiavuori, B. R. et al. Regional changes in CNS and retinal glycerophospholipid profiles with age: a molecular blueprint. J. Lipid Res. 58, 668–680 (2017).
pubmed: 28202633
pmcid: 5392743
doi: 10.1194/jlr.M070714
Joyal, J. S., Gantner, M. L. & Smith, L. E. H. Retinal energy demands control vascular supply of the retina in development and disease: The role of neuronal lipid and glucose metabolism. Prog. Retin Eye Res. 64, 131–156 (2018).
pubmed: 29175509
doi: 10.1016/j.preteyeres.2017.11.002
Pan, W. W., Wubben, T. J. & Besirli, C. G. Photoreceptor metabolic reprogramming: current understanding and therapeutic implications. Commun. Biol. 4, 245 (2021).
pubmed: 33627778
pmcid: 7904922
doi: 10.1038/s42003-021-01765-3
Fu, Z., Kern, T. S., Hellstrom, A. & Smith, L. E. H. Fatty acid oxidation and photoreceptor metabolic needs. J. Lipid Res. 62, 100035 (2021).
pubmed: 32094231
pmcid: 7905050
doi: 10.1194/jlr.TR120000618
Fernandez, R. F. et al. Acyl-CoA synthetase 6 is required for brain docosahexaenoic acid retention and neuroprotection during aging. JCI Insight 6, e144351 (2021).
pubmed: 34100386
pmcid: 8262339
doi: 10.1172/jci.insight.144351
Rowan, S. & Cepko, C. L. Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. Dev. Biol. 271, 388–402 (2004).
pubmed: 15223342
doi: 10.1016/j.ydbio.2004.03.039
Pilecky, M., Zavorka, L., Arts, M. T. & Kainz, M. J. Omega-3 PUFA profoundly affect neural, physiological, and behavioural competences - implications for systemic changes in trophic interactions. Biol. Rev. Camb. Philos. Soc. 96, 2127–2145 (2021).
pubmed: 34018324
doi: 10.1111/brv.12747
Anderson, R. E. & Maude, M. B. Lipids of ocular tissues. 8. The effects of essential fatty acid deficiency on the phospholipids of the photoreceptor membranes of rat retina. Arch. Biochem. Biophys. 151, 270–276 (1972).
pubmed: 5044519
doi: 10.1016/0003-9861(72)90497-3
Benolken, R. M., Anderson, R. E. & Wheeler, T. G. Membrane fatty acids associated with the electrical response in visual excitation. Science 182, 1253–1254 (1973).
pubmed: 4752217
doi: 10.1126/science.182.4118.1253
Wheeler, T. G., Benolken, R. M. & Anderson, R. E. Visual membranes: specificity of fatty acid precursors for the electrical response to illumination. Science 188, 1312–1314 (1975).
pubmed: 1145197
doi: 10.1126/science.1145197
Mitchell, D. C., Niu, S. L. & Litman, B. J. Enhancement of G protein-coupled signaling by DHA phospholipids. Lipids 38, 437–443 (2003).
pubmed: 12848291
doi: 10.1007/s11745-003-1081-1
Jeffrey, B. G., Mitchell, D. C., Gibson, R. A. & Neuringer, M. n-3 fatty acid deficiency alters recovery of the rod photoresponse in rhesus monkeys. Invest. Ophthalmol. Vis. Sci. 43, 2806–2814 (2002).
pubmed: 12147619
Jeffrey, B. G. & Neuringer, M. Age-related decline in rod phototransduction sensitivity in rhesus monkeys fed an n-3 fatty acid-deficient diet. Invest. Ophthalmol. Vis. Sci. 50, 4360–4367 (2009).
pubmed: 19369246
doi: 10.1167/iovs.09-3640
Querques, G., Forte, R. & Souied, E. H. Retina and omega-3. J. Nutr. Metab. 2011, 748361 (2011).
pubmed: 22175009
pmcid: 3206354
doi: 10.1155/2011/748361
Leinonen, H. et al. Homeostatic plasticity in the retina is associated with maintenance of night vision during retinal degenerative disease. Elife 9, e59422 (2020).
pubmed: 32960171
pmcid: 7529457
doi: 10.7554/eLife.59422
Seo, Y. K. et al. Genome-wide analysis of SREBP-1 binding in mouse liver chromatin reveals a preference for promoter proximal binding to a new motif. Proc. Natl. Acad. Sci. USA 106, 13765–13769 (2009).
pubmed: 19666523
pmcid: 2728968
doi: 10.1073/pnas.0904246106
Knebel, B. et al. Liver-specific expression of transcriptionally active SREBP-1c is associated with fatty liver and increased visceral fat mass. PLoS One 7, e31812 (2012).
pubmed: 22363740
pmcid: 3283692
doi: 10.1371/journal.pone.0031812
Angela, M. et al. Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPARgamma directs early activation of T cells. Nat. Commun. 7, 13683 (2016).
pubmed: 27901044
pmcid: 5141517
doi: 10.1038/ncomms13683
Ueki, Y., Wang, J., Chollangi, S. & Ash, J. D. STAT3 activation in photoreceptors by leukemia inhibitory factor is associated with protection from light damage. J. Neurochem. 105, 784–796 (2008).
pubmed: 18088375
doi: 10.1111/j.1471-4159.2007.05180.x
Sancho-Pelluz, J. et al. Photoreceptor cell death mechanisms in inherited retinal degeneration. Mol. Neurobiol. 38, 253–269 (2008).
pubmed: 18982459
doi: 10.1007/s12035-008-8045-9
Zhao, L., Hou, C. & Yan, N. Neuroinflammation in retinitis pigmentosa: Therapies targeting the innate immune system. Front. Immunol. 13, 1059947 (2022).
pubmed: 36389729
pmcid: 9647059
doi: 10.3389/fimmu.2022.1059947
Ntambi, J. M. & Miyazaki, M. Regulation of stearoyl-CoA desaturases and role in metabolism. Prog. Lipid Res. 43, 91–104 (2004).
pubmed: 14654089
doi: 10.1016/S0163-7827(03)00039-0
Guillou, H., Zadravec, D., Martin, P. G. & Jacobsson, A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog. Lipid Res. 49, 186–199 (2010).
pubmed: 20018209
doi: 10.1016/j.plipres.2009.12.002
Lee, H. & Park, W. J. Unsaturated fatty acids, desaturases, and human health. J. Med. Food 17, 189–197 (2014).
pubmed: 24460221
doi: 10.1089/jmf.2013.2917
Hagen, R. M., Rodriguez-Cuenca, S. & Vidal-Puig, A. An allostatic control of membrane lipid composition by SREBP1. FEBS Lett. 584, 2689–2698 (2010).
pubmed: 20385130
doi: 10.1016/j.febslet.2010.04.004
Levental, K. R. et al. Lipidomic and biophysical homeostasis of mammalian membranes counteracts dietary lipid perturbations to maintain cellular fitness. Nat. Commun. 11, 1339 (2020).
pubmed: 32165635
pmcid: 7067841
doi: 10.1038/s41467-020-15203-1
Ben-Zvi, A. et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 509, 507–511 (2014).
pubmed: 24828040
pmcid: 4134871
doi: 10.1038/nature13324
O’Brown, N. M., Megason, S. G. & Gu, C. Suppression of transcytosis regulates zebrafish blood-brain barrier function. Elife 8, e47326 (2019).
pubmed: 31429822
pmcid: 6726461
doi: 10.7554/eLife.47326
Chow, B. W. & Gu, C. Gradual Suppression of Transcytosis Governs Functional Blood-Retinal Barrier Formation. Neuron 93, 1325–1333 e1323 (2017).
pubmed: 28334606
pmcid: 5480403
doi: 10.1016/j.neuron.2017.02.043
Zhang, C. L. et al. Mfsd2a overexpression alleviates vascular dysfunction in diabetic retinopathy. Pharm. Res. 171, 105755 (2021).
doi: 10.1016/j.phrs.2021.105755
Wang, Z. et al. Wnt signaling activates MFSD2A to suppress vascular endothelial transcytosis and maintain blood-retinal barrier. Sci. Adv. 6, eaba7457 (2020).
pubmed: 32923627
pmcid: 7455181
doi: 10.1126/sciadv.aba7457
Eser Ocak, P., Ocak, U., Sherchan, P., Zhang, J. H. & Tang, J. Insights into major facilitator superfamily domain-containing protein-2a (Mfsd2a) in physiology and pathophysiology. What do we know so far? J. Neurosci. Res. 98, 29–41 (2020).
pubmed: 30345547
doi: 10.1002/jnr.24327
Coniglio, S., Shumskaya, M. & Vassiliou, E. Unsaturated Fatty Acids and Their Immunomodulatory Properties. Biology 12, 279 (2023).
pubmed: 36829556
pmcid: 9953405
doi: 10.3390/biology12020279
Zhang, Y. et al. Repopulating retinal microglia restore endogenous organization and function under CX3CL1-CX3CR1 regulation. Sci. Adv. 4, eaap8492 (2018).
pubmed: 29750189
pmcid: 5943055
doi: 10.1126/sciadv.aap8492
Senapati, S. et al. Effect of dietary docosahexaenoic acid on rhodopsin content and packing in photoreceptor cell membranes. Biochim. Biophys. Acta Biomembr. 1860, 1403–1413 (2018).
pubmed: 29626443
doi: 10.1016/j.bbamem.2018.03.030
Landowski, M. et al. A mutation in transmembrane protein 135 impairs lipid metabolism in mouse eyecups. Sci. Rep. 12, 756 (2022).
pubmed: 35031662
pmcid: 8760256
doi: 10.1038/s41598-021-04644-3
Kuroha, S. et al. Long chain acyl-CoA synthetase 6 facilitates the local distribution of di-docosahexaenoic acid- and ultra-long-chain-PUFA-containing phospholipids in the retina to support normal visual function in mice. FASEB J. 37, e23151 (2023).
pubmed: 37585289
doi: 10.1096/fj.202300976R
Wang, Y., Punzo, C., Ash, J. D. & Lobanova, E. S. Tsc2 knockout counteracts ubiquitin-proteasome system insufficiency and delays photoreceptor loss in retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 119, e2118479119 (2022).
pubmed: 35275792
pmcid: 8931319
doi: 10.1073/pnas.2118479119
Wang, Y. et al. Overexpression of Nfe2l1 increases proteasome activity and delays vision loss in a preclinical model of human blindness. Sci. Adv. 9, eadd5479 (2023).
pubmed: 37450596
pmcid: 10348684
doi: 10.1126/sciadv.add5479
Zhu, S. et al. Isocitrate dehydrogenase 3b is required for spermiogenesis but dispensable for retinal viability. J. Biol. Chem. 298, 102387 (2022).
pubmed: 35985423
pmcid: 9478456
doi: 10.1016/j.jbc.2022.102387
Saravanan, M. et al. Tissue-Specific Sex Difference in Mouse Eye and Brain Metabolome Under Fed and Fasted States. Invest. Ophthalmol. Vis. Sci. 64, 18 (2023).
pubmed: 36892534
pmcid: 10010444
doi: 10.1167/iovs.64.3.18
Xu, L. et al. Clarin-1 expression in adult mouse and human retina highlights a role of Muller glia in Usher syndrome. J. Pathol. 250, 195–204 (2020).
pubmed: 31625146
doi: 10.1002/path.5360
Fadl, B. R. et al. An optimized protocol for retina single-cell RNA sequencing. Mol. Vis. 26, 705–717 (2020).
pubmed: 33088174
pmcid: 7553720
Lobanova, E. S. et al. Increased proteasomal activity supports photoreceptor survival in inherited retinal degeneration. Nat. Commun. 9, 1738 (2018).
pubmed: 29712894
pmcid: 5928105
doi: 10.1038/s41467-018-04117-8
Ding, J. D., Salinas, R. Y. & Arshavsky, V. Y. Discs of mammalian rod photoreceptors form through the membrane evagination mechanism. J. Cell Biol. 211, 495–502 (2015).
pubmed: 26527746
pmcid: 4639867
doi: 10.1083/jcb.201508093
Salinas, R. Y. et al. Photoreceptor discs form through peripherin-dependent suppression of ciliary ectosome release. J. Cell Biol. 216, 1489–1499 (2017).
pubmed: 28381413
pmcid: 5412563
doi: 10.1083/jcb.201608081