Acyl-CoA synthetase 6 controls rod photoreceptor function and survival by shaping the phospholipid composition of retinal membranes.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
21 Aug 2024
Historique:
received: 14 11 2023
accepted: 06 08 2024
medline: 22 8 2024
pubmed: 22 8 2024
entrez: 21 8 2024
Statut: epublish

Résumé

The retina is light-sensitive neuronal tissue in the back of the eye. The phospholipid composition of the retina is unique and highly enriched in polyunsaturated fatty acids, including docosahexaenoic fatty acid (DHA). While it is generally accepted that a high DHA content is important for vision, surprisingly little is known about the mechanisms of DHA enrichment in the retina. Furthermore, the biological processes controlled by DHA in the eye remain poorly defined as well. Here, we combined genetic manipulations with lipidomic analysis in mice to demonstrate that acyl-CoA synthetase 6 (Acsl6) serves as a regulator of the unique composition of retinal membranes. Inactivation of Acsl6 reduced the levels of DHA-containing phospholipids, led to progressive loss of light-sensitive rod photoreceptor neurons, attenuated the light responses of these cells, and evoked distinct transcriptional response in the retina involving the Srebf1/2 (sterol regulatory element binding transcription factors 1/2) pathway. This study identifies one of the major enzymes responsible for DHA enrichment in the retinal membranes and introduces a model allowing an evaluation of rod functioning and pathology caused by impaired DHA incorporation/retention in the retina.

Identifiants

pubmed: 39169121
doi: 10.1038/s42003-024-06691-8
pii: 10.1038/s42003-024-06691-8
doi:

Substances chimiques

Phospholipids 0
Coenzyme A Ligases EC 6.2.1.-
Docosahexaenoic Acids 25167-62-8

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1027

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY030043
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY008098
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY030451
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY005722
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY032051
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY031720
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY008098
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY032462
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY030513
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY021725
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY031706
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY034986
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY014800
Organisme : U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
ID : EY024234

Informations de copyright

© 2024. The Author(s).

Références

Lewandowski, D. et al. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog. Retin. Eye Res. 89, 101037 (2022).
pubmed: 34971765 doi: 10.1016/j.preteyeres.2021.101037
Swinkels, D. & Baes, M. The essential role of docosahexaenoic acid and its derivatives for retinal integrity. Pharm. Ther. 247, 108440 (2023).
doi: 10.1016/j.pharmthera.2023.108440
SanGiovanni, J. P. & Chew, E. Y. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog. Retin. Eye Res. 24, 87–138 (2005).
pubmed: 15555528 doi: 10.1016/j.preteyeres.2004.06.002
Jeffrey, B. G., Weisinger, H. S., Neuringer, M. & Mitchell, D. C. The role of docosahexaenoic acid in retinal function. Lipids 36, 859–871 (2001).
pubmed: 11724458 doi: 10.1007/s11745-001-0796-3
Lacombe, R. J. S., Chouinard-Watkins, R. & Bazinet, R. P. Brain docosahexaenoic acid uptake and metabolism. Mol. Asp. Med. 64, 109–134 (2018).
doi: 10.1016/j.mam.2017.12.004
Scott, B. L. & Bazan, N. G. Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc. Natl. Acad. Sci. USA 86, 2903–2907 (1989).
pubmed: 2523075 pmcid: 287028 doi: 10.1073/pnas.86.8.2903
Bazinet, R. P., Bernoud-Hubac, N. & Lagarde, M. How the plasma lysophospholipid and unesterified fatty acid pools supply the brain with docosahexaenoic acid. Prostaglandins Leukot. Ess. Fat. Acids 142, 1–3 (2019).
doi: 10.1016/j.plefa.2018.12.003
Nguyen, L. N. et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509, 503–506 (2014).
pubmed: 24828044 doi: 10.1038/nature13241
Wong, B. H. et al. Mfsd2a Is a Transporter for the Essential omega-3 Fatty Acid Docosahexaenoic Acid (DHA) in Eye and Is Important for Photoreceptor Cell Development. J. Biol. Chem. 291, 10501–10514 (2016).
pubmed: 27008858 pmcid: 4865901 doi: 10.1074/jbc.M116.721340
Lobanova, E. S. et al. Disrupted blood-retina lysophosphatidylcholine transport impairs photoreceptor health but not visual signal transduction. J Neurosci. 39, 9689–9701 (2019).
Chan, J. P. et al. The lysolipid transporter Mfsd2a regulates lipogenesis in the developing brain. PLoS Biol. 16, e2006443 (2018).
pubmed: 30074985 pmcid: 6093704 doi: 10.1371/journal.pbio.2006443
Guemez-Gamboa, A. et al. Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nat. Genet. 47, 809–813 (2015).
pubmed: 26005868 pmcid: 4547531 doi: 10.1038/ng.3311
Alakbarzade, V. et al. A partially inactivating mutation in the sodium-dependent lysophosphatidylcholine transporter MFSD2A causes a non-lethal microcephaly syndrome. Nat. Genet. 47, 814–817 (2015).
pubmed: 26005865 doi: 10.1038/ng.3313
Agbaga, M. P. et al. Role of Elovl4 protein in the biosynthesis of docosahexaenoic acid. Adv. Exp. Med. Biol. 664, 233–242 (2010).
pubmed: 20238022 pmcid: 4350578 doi: 10.1007/978-1-4419-1399-9_27
Agbaga, M. P. et al. Differential composition of DHA and very-long-chain PUFAs in rod and cone photoreceptors. J. Lipid Res. 59, 1586–1596 (2018).
pubmed: 29986998 pmcid: 6121944 doi: 10.1194/jlr.M082495
Aguirre, G. D., Acland, G. M., Maude, M. B. & Anderson, R. E. Diets enriched in docosahexaenoic acid fail to correct progressive rod-cone degeneration (prcd) phenotype. Invest. Ophthalmol. Vis. Sci. 38, 2387–2407 (1997).
pubmed: 9344362
Anderson, R. E. et al. Low docosahexaenoic acid levels in rod outer segments of rats with P23H and S334ter rhodopsin mutations. Mol. Vis. 8, 351–358 (2002).
pubmed: 12355064
Liu, A., Lin, Y., Terry, R., Nelson, K. & Bernstein, P. S. Role of long-chain and very-long-chain polyunsaturated fatty acids in macular degenerations and dystrophies. Clin. Lipido. 6, 593–613 (2011).
doi: 10.2217/clp.11.41
Becker, S., Carroll, L. S. & Vinberg, F. Diabetic photoreceptors: Mechanisms underlying changes in structure and function. Vis. Neurosci. 37, E008 (2020).
pubmed: 33019947 pmcid: 8694110 doi: 10.1017/S0952523820000097
Futterman, S. & Kupfer, C. The fatty acid composition of the retinal vasculature of normal and diabetic human eyes. Invest. Ophthalmol. 7, 105–108 (1968).
pubmed: 5636782
Tikhonenko, M. et al. Remodeling of retinal Fatty acids in an animal model of diabetes: a decrease in long-chain polyunsaturated fatty acids is associated with a decrease in fatty acid elongases Elovl2 and Elovl4. Diabetes 59, 219–227 (2010).
pubmed: 19875612 doi: 10.2337/db09-0728
Brito, M. et al. Understanding the Impact of Polyunsaturated Fatty Acids on Age-Related Macular Degeneration: A Review. Int. J. Mol. Sci. 25, 4099 (2024).
Bazan, N. G. Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci. 29, 263–271 (2006).
pubmed: 16580739 doi: 10.1016/j.tins.2006.03.005
Salem, N. Jr., Loewke, J., Catalan, J. N., Majchrzak, S. & Moriguchi, T. Incomplete replacement of docosahexaenoic acid by n-6 docosapentaenoic acid in the rat retina after an n-3 fatty acid deficient diet. Exp. Eye Res. 81, 655–663 (2005).
pubmed: 15967432 doi: 10.1016/j.exer.2005.04.003
Organisciak, D. T., Darrow, R. M., Jiang, Y. L. & Blanks, J. C. Retinal light damage in rats with altered levels of rod outer segment docosahexaenoate. Invest. Ophthalmol. Vis. Sci. 37, 2243–2257 (1996).
pubmed: 8843911
Rice, D. S. et al. Adiponectin receptor 1 conserves docosahexaenoic acid and promotes photoreceptor cell survival. Nat. Commun. 6, 6228 (2015).
pubmed: 25736573 doi: 10.1038/ncomms7228
Kautzmann, M. I. et al. Membrane-type frizzled-related protein regulates lipidome and transcription for photoreceptor function. FASEB J. 34, 912–929 (2020).
pubmed: 31914617 doi: 10.1096/fj.201902359R
Lewandowski, D. et al. Inhibition of ceramide accumulation in AdipoR1−/− mice increases photoreceptor survival and improves vision. JCI Insight 7, e156301 (2022).
pubmed: 35015730 pmcid: 8876453 doi: 10.1172/jci.insight.156301
Fang, H. & Judd, R. L. Adiponectin Regulation and Function. Compr. Physiol. 8, 1031–1063 (2018).
pubmed: 29978896 doi: 10.1002/cphy.c170046
Kameya, S. et al. Mfrp, a gene encoding a frizzled related protein, is mutated in the mouse retinal degeneration 6. Hum. Mol. Genet. 11, 1879–1886 (2002).
pubmed: 12140190 doi: 10.1093/hmg/11.16.1879
Shindou, H. et al. Docosahexaenoic acid preserves visual function by maintaining correct disc morphology in retinal photoreceptor cells. J. Biol. Chem. 292, 12054–12064 (2017).
pubmed: 28578316 pmcid: 5519357 doi: 10.1074/jbc.M117.790568
Hishikawa, D. et al. Hepatic Levels of DHA-Containing Phospholipids Instruct SREBP1-Mediated Synthesis and Systemic Delivery of Polyunsaturated Fatty Acids. iScience 23, 101495 (2020).
pubmed: 32891885 pmcid: 7481256 doi: 10.1016/j.isci.2020.101495
Landowski, M. et al. Transmembrane protein 135 regulates lipid homeostasis through its role in peroxisomal DHA metabolism. Commun. Biol. 6, 8 (2023).
pubmed: 36599953 pmcid: 9813353 doi: 10.1038/s42003-022-04404-7
Lee, W. H. et al. Mouse Tmem135 mutation reveals a mechanism involving mitochondrial dynamics that leads to age-dependent retinal pathologies. Elife 5, e19264 (2016).
pubmed: 27863209 pmcid: 5117855 doi: 10.7554/eLife.19264
Landowski, M., Gogoi, P., Ikeda, S. & Ikeda, A. Roles of transmembrane protein 135 in mitochondrial and peroxisomal functions - implications for age-related retinal disease. Front. Ophthalmol. 4, 1355379 (2024).
doi: 10.3389/fopht.2024.1355379
Bradley, R. M. & Duncan, R. E. The lysophosphatidic acid acyltransferases (acylglycerophosphate acyltransferases) family: one reaction, five enzymes, many roles. Curr. Opin. Lipido. 29, 110–115 (2018).
doi: 10.1097/MOL.0000000000000492
Grevengoed, T. J., Klett, E. L. & Coleman, R. A. Acyl-CoA metabolism and partitioning. Annu. Rev. Nutr. 34, 1–30 (2014).
pubmed: 24819326 pmcid: 5881898 doi: 10.1146/annurev-nutr-071813-105541
Marszalek, J. R., Kitidis, C., Dirusso, C. C. & Lodish, H. F. Long-chain acyl-CoA synthetase 6 preferentially promotes DHA metabolism. J. Biol. Chem. 280, 10817–10826 (2005).
pubmed: 15655248 doi: 10.1074/jbc.M411750200
Fernandez, R. F. et al. Acyl-CoA synthetase 6 enriches the neuroprotective omega-3 fatty acid DHA in the brain. Proc. Natl. Acad. Sci. USA 115, 12525–12530 (2018).
pubmed: 30401738 pmcid: 6298081 doi: 10.1073/pnas.1807958115
Fernandez, R. F. & Ellis, J. M. Acyl-CoA synthetases as regulators of brain phospholipid acyl-chain diversity. Prostaglandins Leukot. Ess. Fat. Acids 161, 102175 (2020).
doi: 10.1016/j.plefa.2020.102175
Zhao, L. et al. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol. Med. 7, 1179–1197 (2015).
pubmed: 26139610 pmcid: 4568951 doi: 10.15252/emmm.201505298
Natoli, R. et al. A model of progressive photo-oxidative degeneration and inflammation in the pigmented C57BL/6J mouse retina. Exp. Eye Res. 147, 114–127 (2016).
pubmed: 27155143 doi: 10.1016/j.exer.2016.04.015
O’Koren, E. G. et al. Microglial Function Is Distinct in Different Anatomical Locations during Retinal Homeostasis and Degeneration. Immunity 50, 723–737 e727 (2019).
pubmed: 30850344 pmcid: 6592635 doi: 10.1016/j.immuni.2019.02.007
Sander, C. L. et al. Nano-scale resolution of native retinal rod disk membranes reveals differences in lipid composition. J. Cell Biol. 220, e202101063 (2021).
pubmed: 34132745 pmcid: 8240855 doi: 10.1083/jcb.202101063
Yeboah, G. K., Lobanova, E. S., Brush, R. S. & Agbaga, M. P. Very long chain fatty acid-containing lipids: a decade of novel insights from the study of ELOVL4. J. Lipid Res. 62, 100030 (2021).
pubmed: 33556440 pmcid: 8042400 doi: 10.1016/j.jlr.2021.100030
Hopiavuori, B. R. et al. Regional changes in CNS and retinal glycerophospholipid profiles with age: a molecular blueprint. J. Lipid Res. 58, 668–680 (2017).
pubmed: 28202633 pmcid: 5392743 doi: 10.1194/jlr.M070714
Joyal, J. S., Gantner, M. L. & Smith, L. E. H. Retinal energy demands control vascular supply of the retina in development and disease: The role of neuronal lipid and glucose metabolism. Prog. Retin Eye Res. 64, 131–156 (2018).
pubmed: 29175509 doi: 10.1016/j.preteyeres.2017.11.002
Pan, W. W., Wubben, T. J. & Besirli, C. G. Photoreceptor metabolic reprogramming: current understanding and therapeutic implications. Commun. Biol. 4, 245 (2021).
pubmed: 33627778 pmcid: 7904922 doi: 10.1038/s42003-021-01765-3
Fu, Z., Kern, T. S., Hellstrom, A. & Smith, L. E. H. Fatty acid oxidation and photoreceptor metabolic needs. J. Lipid Res. 62, 100035 (2021).
pubmed: 32094231 pmcid: 7905050 doi: 10.1194/jlr.TR120000618
Fernandez, R. F. et al. Acyl-CoA synthetase 6 is required for brain docosahexaenoic acid retention and neuroprotection during aging. JCI Insight 6, e144351 (2021).
pubmed: 34100386 pmcid: 8262339 doi: 10.1172/jci.insight.144351
Rowan, S. & Cepko, C. L. Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. Dev. Biol. 271, 388–402 (2004).
pubmed: 15223342 doi: 10.1016/j.ydbio.2004.03.039
Pilecky, M., Zavorka, L., Arts, M. T. & Kainz, M. J. Omega-3 PUFA profoundly affect neural, physiological, and behavioural competences - implications for systemic changes in trophic interactions. Biol. Rev. Camb. Philos. Soc. 96, 2127–2145 (2021).
pubmed: 34018324 doi: 10.1111/brv.12747
Anderson, R. E. & Maude, M. B. Lipids of ocular tissues. 8. The effects of essential fatty acid deficiency on the phospholipids of the photoreceptor membranes of rat retina. Arch. Biochem. Biophys. 151, 270–276 (1972).
pubmed: 5044519 doi: 10.1016/0003-9861(72)90497-3
Benolken, R. M., Anderson, R. E. & Wheeler, T. G. Membrane fatty acids associated with the electrical response in visual excitation. Science 182, 1253–1254 (1973).
pubmed: 4752217 doi: 10.1126/science.182.4118.1253
Wheeler, T. G., Benolken, R. M. & Anderson, R. E. Visual membranes: specificity of fatty acid precursors for the electrical response to illumination. Science 188, 1312–1314 (1975).
pubmed: 1145197 doi: 10.1126/science.1145197
Mitchell, D. C., Niu, S. L. & Litman, B. J. Enhancement of G protein-coupled signaling by DHA phospholipids. Lipids 38, 437–443 (2003).
pubmed: 12848291 doi: 10.1007/s11745-003-1081-1
Jeffrey, B. G., Mitchell, D. C., Gibson, R. A. & Neuringer, M. n-3 fatty acid deficiency alters recovery of the rod photoresponse in rhesus monkeys. Invest. Ophthalmol. Vis. Sci. 43, 2806–2814 (2002).
pubmed: 12147619
Jeffrey, B. G. & Neuringer, M. Age-related decline in rod phototransduction sensitivity in rhesus monkeys fed an n-3 fatty acid-deficient diet. Invest. Ophthalmol. Vis. Sci. 50, 4360–4367 (2009).
pubmed: 19369246 doi: 10.1167/iovs.09-3640
Querques, G., Forte, R. & Souied, E. H. Retina and omega-3. J. Nutr. Metab. 2011, 748361 (2011).
pubmed: 22175009 pmcid: 3206354 doi: 10.1155/2011/748361
Leinonen, H. et al. Homeostatic plasticity in the retina is associated with maintenance of night vision during retinal degenerative disease. Elife 9, e59422 (2020).
pubmed: 32960171 pmcid: 7529457 doi: 10.7554/eLife.59422
Seo, Y. K. et al. Genome-wide analysis of SREBP-1 binding in mouse liver chromatin reveals a preference for promoter proximal binding to a new motif. Proc. Natl. Acad. Sci. USA 106, 13765–13769 (2009).
pubmed: 19666523 pmcid: 2728968 doi: 10.1073/pnas.0904246106
Knebel, B. et al. Liver-specific expression of transcriptionally active SREBP-1c is associated with fatty liver and increased visceral fat mass. PLoS One 7, e31812 (2012).
pubmed: 22363740 pmcid: 3283692 doi: 10.1371/journal.pone.0031812
Angela, M. et al. Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPARgamma directs early activation of T cells. Nat. Commun. 7, 13683 (2016).
pubmed: 27901044 pmcid: 5141517 doi: 10.1038/ncomms13683
Ueki, Y., Wang, J., Chollangi, S. & Ash, J. D. STAT3 activation in photoreceptors by leukemia inhibitory factor is associated with protection from light damage. J. Neurochem. 105, 784–796 (2008).
pubmed: 18088375 doi: 10.1111/j.1471-4159.2007.05180.x
Sancho-Pelluz, J. et al. Photoreceptor cell death mechanisms in inherited retinal degeneration. Mol. Neurobiol. 38, 253–269 (2008).
pubmed: 18982459 doi: 10.1007/s12035-008-8045-9
Zhao, L., Hou, C. & Yan, N. Neuroinflammation in retinitis pigmentosa: Therapies targeting the innate immune system. Front. Immunol. 13, 1059947 (2022).
pubmed: 36389729 pmcid: 9647059 doi: 10.3389/fimmu.2022.1059947
Ntambi, J. M. & Miyazaki, M. Regulation of stearoyl-CoA desaturases and role in metabolism. Prog. Lipid Res. 43, 91–104 (2004).
pubmed: 14654089 doi: 10.1016/S0163-7827(03)00039-0
Guillou, H., Zadravec, D., Martin, P. G. & Jacobsson, A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog. Lipid Res. 49, 186–199 (2010).
pubmed: 20018209 doi: 10.1016/j.plipres.2009.12.002
Lee, H. & Park, W. J. Unsaturated fatty acids, desaturases, and human health. J. Med. Food 17, 189–197 (2014).
pubmed: 24460221 doi: 10.1089/jmf.2013.2917
Hagen, R. M., Rodriguez-Cuenca, S. & Vidal-Puig, A. An allostatic control of membrane lipid composition by SREBP1. FEBS Lett. 584, 2689–2698 (2010).
pubmed: 20385130 doi: 10.1016/j.febslet.2010.04.004
Levental, K. R. et al. Lipidomic and biophysical homeostasis of mammalian membranes counteracts dietary lipid perturbations to maintain cellular fitness. Nat. Commun. 11, 1339 (2020).
pubmed: 32165635 pmcid: 7067841 doi: 10.1038/s41467-020-15203-1
Ben-Zvi, A. et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 509, 507–511 (2014).
pubmed: 24828040 pmcid: 4134871 doi: 10.1038/nature13324
O’Brown, N. M., Megason, S. G. & Gu, C. Suppression of transcytosis regulates zebrafish blood-brain barrier function. Elife 8, e47326 (2019).
pubmed: 31429822 pmcid: 6726461 doi: 10.7554/eLife.47326
Chow, B. W. & Gu, C. Gradual Suppression of Transcytosis Governs Functional Blood-Retinal Barrier Formation. Neuron 93, 1325–1333 e1323 (2017).
pubmed: 28334606 pmcid: 5480403 doi: 10.1016/j.neuron.2017.02.043
Zhang, C. L. et al. Mfsd2a overexpression alleviates vascular dysfunction in diabetic retinopathy. Pharm. Res. 171, 105755 (2021).
doi: 10.1016/j.phrs.2021.105755
Wang, Z. et al. Wnt signaling activates MFSD2A to suppress vascular endothelial transcytosis and maintain blood-retinal barrier. Sci. Adv. 6, eaba7457 (2020).
pubmed: 32923627 pmcid: 7455181 doi: 10.1126/sciadv.aba7457
Eser Ocak, P., Ocak, U., Sherchan, P., Zhang, J. H. & Tang, J. Insights into major facilitator superfamily domain-containing protein-2a (Mfsd2a) in physiology and pathophysiology. What do we know so far? J. Neurosci. Res. 98, 29–41 (2020).
pubmed: 30345547 doi: 10.1002/jnr.24327
Coniglio, S., Shumskaya, M. & Vassiliou, E. Unsaturated Fatty Acids and Their Immunomodulatory Properties. Biology 12, 279 (2023).
pubmed: 36829556 pmcid: 9953405 doi: 10.3390/biology12020279
Zhang, Y. et al. Repopulating retinal microglia restore endogenous organization and function under CX3CL1-CX3CR1 regulation. Sci. Adv. 4, eaap8492 (2018).
pubmed: 29750189 pmcid: 5943055 doi: 10.1126/sciadv.aap8492
Senapati, S. et al. Effect of dietary docosahexaenoic acid on rhodopsin content and packing in photoreceptor cell membranes. Biochim. Biophys. Acta Biomembr. 1860, 1403–1413 (2018).
pubmed: 29626443 doi: 10.1016/j.bbamem.2018.03.030
Landowski, M. et al. A mutation in transmembrane protein 135 impairs lipid metabolism in mouse eyecups. Sci. Rep. 12, 756 (2022).
pubmed: 35031662 pmcid: 8760256 doi: 10.1038/s41598-021-04644-3
Kuroha, S. et al. Long chain acyl-CoA synthetase 6 facilitates the local distribution of di-docosahexaenoic acid- and ultra-long-chain-PUFA-containing phospholipids in the retina to support normal visual function in mice. FASEB J. 37, e23151 (2023).
pubmed: 37585289 doi: 10.1096/fj.202300976R
Wang, Y., Punzo, C., Ash, J. D. & Lobanova, E. S. Tsc2 knockout counteracts ubiquitin-proteasome system insufficiency and delays photoreceptor loss in retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 119, e2118479119 (2022).
pubmed: 35275792 pmcid: 8931319 doi: 10.1073/pnas.2118479119
Wang, Y. et al. Overexpression of Nfe2l1 increases proteasome activity and delays vision loss in a preclinical model of human blindness. Sci. Adv. 9, eadd5479 (2023).
pubmed: 37450596 pmcid: 10348684 doi: 10.1126/sciadv.add5479
Zhu, S. et al. Isocitrate dehydrogenase 3b is required for spermiogenesis but dispensable for retinal viability. J. Biol. Chem. 298, 102387 (2022).
pubmed: 35985423 pmcid: 9478456 doi: 10.1016/j.jbc.2022.102387
Saravanan, M. et al. Tissue-Specific Sex Difference in Mouse Eye and Brain Metabolome Under Fed and Fasted States. Invest. Ophthalmol. Vis. Sci. 64, 18 (2023).
pubmed: 36892534 pmcid: 10010444 doi: 10.1167/iovs.64.3.18
Xu, L. et al. Clarin-1 expression in adult mouse and human retina highlights a role of Muller glia in Usher syndrome. J. Pathol. 250, 195–204 (2020).
pubmed: 31625146 doi: 10.1002/path.5360
Fadl, B. R. et al. An optimized protocol for retina single-cell RNA sequencing. Mol. Vis. 26, 705–717 (2020).
pubmed: 33088174 pmcid: 7553720
Lobanova, E. S. et al. Increased proteasomal activity supports photoreceptor survival in inherited retinal degeneration. Nat. Commun. 9, 1738 (2018).
pubmed: 29712894 pmcid: 5928105 doi: 10.1038/s41467-018-04117-8
Ding, J. D., Salinas, R. Y. & Arshavsky, V. Y. Discs of mammalian rod photoreceptors form through the membrane evagination mechanism. J. Cell Biol. 211, 495–502 (2015).
pubmed: 26527746 pmcid: 4639867 doi: 10.1083/jcb.201508093
Salinas, R. Y. et al. Photoreceptor discs form through peripherin-dependent suppression of ciliary ectosome release. J. Cell Biol. 216, 1489–1499 (2017).
pubmed: 28381413 pmcid: 5412563 doi: 10.1083/jcb.201608081

Auteurs

Yixiao Wang (Y)

Department of Ophthalmology, University of Florida, Gainesville, FL, USA.

Silke Becker (S)

Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA.

Stella Finkelstein (S)

Department of Ophthalmology, Duke University, Durham, NC, USA.

Frank M Dyka (FM)

Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.

Haitao Liu (H)

Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.

Mark Eminhizer (M)

Departments of Ophthalmology and Visual Sciences and Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA.

Ying Hao (Y)

Department of Ophthalmology, Duke University, Durham, NC, USA.

Richard S Brush (RS)

Department of Ophthalmology, University of Oklahoma Health Sciences Center and Dean McGee Eye Institute, Oklahoma City, OK, USA.

William J Spencer (WJ)

Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, USA.

Vadim Y Arshavsky (VY)

Department of Ophthalmology, Duke University, Durham, NC, USA.

John D Ash (JD)

Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.

Jianhai Du (J)

Departments of Ophthalmology and Visual Sciences and Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA.

Martin-Paul Agbaga (MP)

Department of Ophthalmology, University of Oklahoma Health Sciences Center and Dean McGee Eye Institute, Oklahoma City, OK, USA.

Frans Vinberg (F)

Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA.

Jessica M Ellis (JM)

East Carolina University, Greenville, NC, USA.

Ekaterina S Lobanova (ES)

Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA. lobanova@pitt.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH