The translocation assembly module (TAM) catalyzes the assembly of bacterial outer membrane proteins in vitro.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
23 Aug 2024
Historique:
received: 20 10 2023
accepted: 12 08 2024
medline: 23 8 2024
pubmed: 23 8 2024
entrez: 22 8 2024
Statut: epublish

Résumé

The translocation and assembly module (TAM) has been proposed to play a crucial role in the assembly of a small subset of outer membrane proteins (OMPs) in Proteobacteria based on experiments conducted in vivo using tamA and tamB mutant strains and in vitro using biophysical methods. TAM consists of an OMP (TamA) and a periplasmic protein that is anchored to the inner membrane by a single α helix (TamB). Here we examine the function of the purified E. coli complex in vitro after reconstituting it into proteoliposomes. We find that TAM catalyzes the assembly of four model OMPs nearly as well as the β-barrel assembly machine (BAM), a universal heterooligomer that contains a TamA homolog (BamA) and that catalyzes the assembly of almost all E. coli OMPs. Consistent with previous results, both TamA and TamB are required for significant TAM activity. Our study provides direct evidence that TAM can function as an independent OMP insertase and describes a new method to gain insights into TAM function.

Identifiants

pubmed: 39174534
doi: 10.1038/s41467-024-51628-8
pii: 10.1038/s41467-024-51628-8
doi:

Substances chimiques

Bacterial Outer Membrane Proteins 0
Escherichia coli Proteins 0
BamA protein, E coli 0
proteoliposomes 0
Proteolipids 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7246

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
ID : Intramural program

Informations de copyright

© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

Références

Silhavy, T. J., Kahne, D. & Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2, a000414 (2010).
pubmed: 20452953 pmcid: 2857177 doi: 10.1101/cshperspect.a000414
Kamio, Y. & Nikaido, H. Outer membrane of Salmonella typhimurium: accessibility of phospholipid head groups to phospholipase C and cyanogen bromide activated dextran in the external medium. Biochemistry 15, 2561–2570 (1976).
pubmed: 820368 doi: 10.1021/bi00657a012
Horne, J. E., Brockwell, D. J. & Radford, S. E. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J. Biol. Chem. 295, 10340–10367 (2020).
pubmed: 32499369 pmcid: 7383365 doi: 10.1074/jbc.REV120.011473
Lauber, F., Deme, J. C., Lea, S. M. & Berks, B. C. Type 9 secretion system structures reveal a new protein transport mechanism. Nature 564, 77–82 (2018).
pubmed: 30405243 pmcid: 6927815 doi: 10.1038/s41586-018-0693-y
Fairman, J. W., Noinaj, N. & Buchanan, S. K. The structural biology of β-barrel membrane proteins: a summary of recent reports. Curr. Opin. Struct. Biol. 21, 523–531 (2011).
pubmed: 21719274 pmcid: 3164749 doi: 10.1016/j.sbi.2011.05.005
Lycklama A. Nijeholt, J. A. & Driessen, A. J. M. The bacterial Sec-translocase: structure and mechanism. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 1016–1028 (2012).
pubmed: 22411975 pmcid: 3297432 doi: 10.1098/rstb.2011.0201
Chen, R. & Henning, U. A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. Mol. Microbiol 19, 1287–1294 (1996).
pubmed: 8730870 doi: 10.1111/j.1365-2958.1996.tb02473.x
Lazar, S. W. & Kolter, R. SurA assists the folding of Escherichia coli outer membrane proteins. J. Bacteriol. 178, 1770–1773 (1996).
pubmed: 8626309 pmcid: 177866 doi: 10.1128/jb.178.6.1770-1773.1996
Rouvière, P. E. & Gross, C. A. SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. Genes Dev. 10, 3170–3182 (1996).
pubmed: 8985185 doi: 10.1101/gad.10.24.3170
Schäfer, U., Beck, K. & Müller, M. Skp, a molecular chaperone of gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J. Biol. Chem. 274, 24567–24574 (1999).
pubmed: 10455120 doi: 10.1074/jbc.274.35.24567
Krojer, T. et al. Structural basis for the regulated protease and chaperone function of DegP. Nature 453, 885–890 (2008).
pubmed: 18496527 doi: 10.1038/nature07004
Yan, Z., Hussain, S., Wang, X., Bernstein, H. D. & Bardwell, J. C. A. Chaperone OsmY facilitates the biogenesis of a major family of autotransporters. Mol. Microbiol. 112, 1373–1387 (2019).
pubmed: 31369167 pmcid: 6842399 doi: 10.1111/mmi.14358
Sikdar, R., Peterson, J. H., Anderson, D. E. & Bernstein, H. D. Folding of a bacterial integral outer membrane protein is initiated in the periplasm. Nat. Commun. 8, 1309 (2017).
pubmed: 29101319 pmcid: 5670179 doi: 10.1038/s41467-017-01246-4
Wang, X. & Bernstein, H. D. The Escherichia coli outer membrane protein OmpA acquires secondary structure prior to its integration into the membrane. J. Biol. Chem. 298, 101802 (2022).
pubmed: 35257747 pmcid: 8987393 doi: 10.1016/j.jbc.2022.101802
Arié, J.-P., Sassoon, N. & Betton, J.-M. Chaperone function of FkpA, a heat shock prolyl isomerase, in the periplasm of Escherichia coli. Mol. Microbiol. 39, 199–210 (2001).
pubmed: 11123702 doi: 10.1046/j.1365-2958.2001.02250.x
Walton, T. A. & Sousa, M. C. Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. Mol. Cell 15, 367–374 (2004).
pubmed: 15304217 doi: 10.1016/j.molcel.2004.07.023
Korndörfer, I. P., Dommel, M. K. & Skerra, A. Structure of the periplasmic chaperone Skp suggests functional similarity with cytosolic chaperones despite differing architecture. Nat. Struct. Mol. Biol. 11, 1015–1020 (2004).
pubmed: 15361861 doi: 10.1038/nsmb828
Wang, X., Peterson, J. H. & Bernstein, H. D. Bacterial outer membrane proteins are targeted to the Bam complex by two parallel mechanisms. mBio 12, e00597–21 (2021).
pubmed: 33947759 pmcid: 8262991 doi: 10.1128/mBio.00597-21
Combs, A. N. & Silhavy, T. J. The sacrificial adaptor protein Skp functions to remove stalled substrates from the β-barrel assembly machine. Proc. Natl Acad. Sci. USA 119, e2114997119 (2022).
pubmed: 34969846 doi: 10.1073/pnas.2114997119
Ge, X. et al. DegP primarily functions as a protease for the biogenesis of β-barrel outer membrane proteins in the Gram-negative bacterium Escherichia coli. FEBS J. 281, 1226–1240 (2014).
pubmed: 24373465 doi: 10.1111/febs.12701
Spiess, C., Beil, A. & Ehrmann, M. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97, 339–347 (1999).
pubmed: 10319814 doi: 10.1016/S0092-8674(00)80743-6
Wu, T. et al. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121, 235–245 (2005).
pubmed: 15851030 doi: 10.1016/j.cell.2005.02.015
Kim, S. et al. Structure and function of an essential component of the outer membrane protein assembly machine. Science 317, 961–964 (2007).
pubmed: 17702946 doi: 10.1126/science.1143993
Gu, Y. et al. Structural basis of outer membrane protein insertion by the BAM complex. Nature 531, 64–69 (2016).
pubmed: 26901871 doi: 10.1038/nature17199
Han, L. et al. Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins. Nat. Struct. Mol. Biol. 23, 192–196 (2016).
pubmed: 26900875 doi: 10.1038/nsmb.3181
Bakelar, J., Buchanan, S. K. & Noinaj, N. The structure of the β-barrel assembly machinery complex. Science 351, 180–186 (2016).
pubmed: 26744406 pmcid: 4883095 doi: 10.1126/science.aad3460
Voulhoux, R., Bos, M. P., Geurtsen, J., Mols, M. & Tommassen, J. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299, 262–265 (2003).
pubmed: 12522254 doi: 10.1126/science.1078973
Malinverni, J. C. et al. YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol. Microbiol 61, 151–164 (2006).
pubmed: 16824102 doi: 10.1111/j.1365-2958.2006.05211.x
Doerner, P. A. & Sousa, M. C. Extreme dynamics in the BamA β-barrel seam. Biochemistry 56, 3142–3149 (2017).
pubmed: 28569500 doi: 10.1021/acs.biochem.7b00281
Gessmann, D. et al. Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA. Proc. Natl Acad. Sci. USA 111, 5878–5883 (2014).
pubmed: 24715731 pmcid: 4000854 doi: 10.1073/pnas.1322473111
Schiffrin, B. et al. Effects of periplasmic chaperones and membrane thickness on BamA-catalyzed outer-membrane protein folding. J. Mol. Biol. 429, 3776–3792 (2017).
pubmed: 28919234 pmcid: 5692476 doi: 10.1016/j.jmb.2017.09.008
Doyle, M. T. & Bernstein, H. D. Bacterial outer membrane proteins assemble via asymmetric interactions with the BamA β-barrel. Nat Commun 10, 3358 (2019).
Höhr, A. I. C. et al. Membrane protein insertion through a mitochondrial β-barrel gate. Science 359, eaah6834 (2018).
pubmed: 29348211 pmcid: 5959003 doi: 10.1126/science.aah6834
Doyle, M. T. et al. Cryo-EM structures reveal multiple stages of bacterial outer membrane protein folding. Cell 185, 1143–1156 (2022).
pubmed: 35294859 pmcid: 8985213 doi: 10.1016/j.cell.2022.02.016
Shen, C. et al. Structural basis of BAM-mediated outer membrane β-barrel protein assembly. Nature 617, 185–193 (2023).
pubmed: 37100902 doi: 10.1038/s41586-023-05988-8
Imai, Y. et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 576, 459–464 (2019).
pubmed: 31747680 pmcid: 7188312 doi: 10.1038/s41586-019-1791-1
Peterson, J. H., Doyle, M. T. & Bernstein, H. D. Small molecule antibiotics inhibit distinct stages of bacterial outer membrane protein assembly. mBio 13, e0228622 (2022).
pubmed: 36165532 doi: 10.1128/mbio.02286-22
Selkrig, J. et al. Discovery of an archetypal protein transport system in bacterial outer membranes. Nat. Struct. Mol. Biol. 19, 506–510 (2012). S1.
pubmed: 22466966 doi: 10.1038/nsmb.2261
Stegmeier, J. F., Glück, A., Sukumaran, S., Mäntele, W. & Andersen, C. Characterisation of YtfM, a second member of the Omp85 family in Escherichia coli. Biol. Chem. 388, 37–46 (2007).
pubmed: 17214547 doi: 10.1515/BC.2007.004
Heinz, E., Selkrig, J., Belousoff, M. J. & Lithgow, T. Evolution of the translocation and assembly module (TAM). Genome Biol. Evol. 7, 1628–1643 (2015).
pubmed: 25994932 pmcid: 4494059 doi: 10.1093/gbe/evv097
Webb, C. T., Heinz, E. & Lithgow, T. Evolution of the β-barrel assembly machinery. Trends Microbiol. 20, 612–620 (2012).
pubmed: 22959613 doi: 10.1016/j.tim.2012.08.006
Gruss, F. et al. The structural basis of autotransporter translocation by TamA. Nat. Struct. Mol. Biol. 20, 1318–1320 (2013).
pubmed: 24056943 doi: 10.1038/nsmb.2689
Stubenrauch, C. J., Bamert, R. S., Wang, J. & Lithgow, T. A noncanonical chaperone interacts with drug efflux pumps during their assembly into bacterial outer membranes. PLoS Biol. 20, e3001523 (2022).
pubmed: 35061668 pmcid: 8809574 doi: 10.1371/journal.pbio.3001523
Shen, H.-H. et al. Reconstitution of a nanomachine driving the assembly of proteins into bacterial outer membranes. Nat. Commun. 5, 5078 (2014).
pubmed: 25341963 doi: 10.1038/ncomms6078
Stubenrauch, C. J. & Lithgow, T. The TAM: a translocation and assembly module of the β-barrel assembly machinery in bacterial outer membranes. EcoSal Plus 8, https://doi.org/10.1128/ecosalplus.ESP-0036-2018 (2019).
Selkrig, J. et al. Conserved features in tama enable interaction with tamb to drive the activity of the translocation and assembly module. Sci. Rep. 5, 12905 (2015).
pubmed: 26243377 pmcid: 4525385 doi: 10.1038/srep12905
Bamert, R. S. et al. Structural basis for substrate selection by the translocation and assembly module of the beta-barrel assembly machinery. Mol. Microbiol 106, 142–156 (2017).
pubmed: 28752534 pmcid: 5607099 doi: 10.1111/mmi.13757
McDonnell, R. T., Patel, N., Wehrspan, Z. J. & Elcock, A. H. Atomic models of all major trans-envelope complexes involved in lipid trafficking in Escherichia Coli constructed using a combination of AlphaFold2, AF2Complex, and membrane morphing simulations. Preprint at https://www.biorxiv.org/content/10.1101/2023.04.28.538765 (2023).
Li, G.-W., Burkhardt, D., Gross, C. & Weissman, J. S. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157, 624–635 (2014).
pubmed: 24766808 pmcid: 4006352 doi: 10.1016/j.cell.2014.02.033
Wiśniewski, J. R. & Rakus, D. Multi-enzyme digestion FASP and the ‘Total Protein Approach’-based absolute quantification of the Escherichia coli proteome. J. Proteom. 109, 322–331 (2014).
doi: 10.1016/j.jprot.2014.07.012
Kang’ethe, W. & Bernstein, H. D. Charge-dependent secretion of an intrinsically disordered protein via the autotransporter pathway. Proc. Natl Acad. Sci. USA 110, E4246–E4255 (2013).
pubmed: 24145447 pmcid: 3831499 doi: 10.1073/pnas.1310345110
Heinz, E. et al. Conserved features in the structure, mechanism, and biogenesis of the inverse autotransporter protein family. Genome Biol. Evol. 8, 1690–1705 (2016).
pubmed: 27190006 pmcid: 4943183 doi: 10.1093/gbe/evw112
Stubenrauch, C. J., Dougan, G., Lithgow, T. & Heinz, E. Constraints on lateral gene transfer in promoting fimbrial usher protein diversity and function. Open Biol. 7, 170144 (2017).
pubmed: 29142104 pmcid: 5717340 doi: 10.1098/rsob.170144
Goh, K. J., Stubenrauch, C. J. & Lithgow, T. The TAM, a translocation and assembly module for protein assembly and potential conduit for phospholipid transfer. EMBO Rep 25, 1711–1720 (2024).
Li, M., Jia, B., Sun, Y. & Sun, L. The translocation and assembly module (TAM) of Edwardsiella tarda Is essential for stress resistance and host infection. Front Microbiol 11, 1743 (2020).
pubmed: 32793174 pmcid: 7393178 doi: 10.3389/fmicb.2020.01743
Burall, L. S. et al. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect. Immun. 72, 2922–2938 (2004).
pubmed: 15102805 pmcid: 387873 doi: 10.1128/IAI.72.5.2922-2938.2004
Struve, C., Forestier, C. & Krogfelt, K. A. Application of a novel multi-screening signature-tagged mutagenesis assay for identification of Klebsiella pneumoniae genes essential in colonization and infection. Microbiology 149, 167–176 (2003).
pubmed: 12576590 doi: 10.1099/mic.0.25833-0
Kelly, M. et al. Essential role of the type III secretion system effector NleB in colonization of mice by Citrobacter rodentium. Infect. Immun. 74, 2328–2337 (2006).
pubmed: 16552063 pmcid: 1418941 doi: 10.1128/IAI.74.4.2328-2337.2006
Jung, H.-J., Sorbara, M. T. & Pamer, E. G. TAM mediates adaptation of carbapenem-resistant Klebsiella pneumoniae to antimicrobial stress during host colonization and infection. PLoS Pathog. 17, e1009309 (2021).
pubmed: 33556154 pmcid: 7895364 doi: 10.1371/journal.ppat.1009309
Brooks, J. F. et al. Global discovery of colonization determinants in the squid symbiont Vibrio fischeri. Proc. Natl Acad. Sci. USA 111, 17284–17289 (2014).
pubmed: 25404340 pmcid: 4260577 doi: 10.1073/pnas.1415957111
Gallant, C. V., Sedic, M., Chicoine, E. A., Ruiz, T. & Mintz, K. P. Membrane morphology and leukotoxin secretion are associated with a novel membrane protein of Aggregatibacter actinomycetemcomitans. J. Bacteriol. 190, 5972–5980 (2008).
pubmed: 18621903 pmcid: 2519528 doi: 10.1128/JB.00548-08
Smith, K. P., Voogt, R. D., Ruiz, T. & Mintz, K. P. The conserved carboxyl domain of MorC, an inner membrane protein of Aggregatibacter actinomycetemcomitans, is essential for membrane function. Mol. Oral. Microbiol 31, 43–58 (2016).
pubmed: 26205976 doi: 10.1111/omi.12120
Bialer, M. G. et al. MapB, the Brucella suis TamB homologue, is involved in cell envelope biogenesis, cell division and virulence. Sci. Rep. 9, 2158 (2019).
pubmed: 30770847 pmcid: 6377625 doi: 10.1038/s41598-018-37668-3
Doyle, M. T. & Bernstein, H. D. Function of the Omp85 superfamily of outer, membrane protein assembly factors and polypeptide transporters. Annu. Rev. Microbiol. 76, 259–279 (2022).
pubmed: 35650668 doi: 10.1146/annurev-micro-033021-023719
Josts, I. et al. The structure of a conserved domain of TamB reveals a hydrophobic β taco fold. Structure 25, 1898–1906.e5 (2017).
pubmed: 29129383 pmcid: 5719984 doi: 10.1016/j.str.2017.10.002
Iqbal, H., Kenedy, M. R., Lybecker, M. & Akins, D. R. The TamB ortholog of Borrelia burgdorferi interacts with the β-barrel assembly machine (BAM) complex protein BamA. Mol. Microbiol 102, 757–774 (2016).
pubmed: 27588694 pmcid: 5582053 doi: 10.1111/mmi.13492
Ruiz, N., Davis, R. M. & Kumar, S. YhdP, TamB, and YdbH are redundant but essential for growth and lipid homeostasis of the gram-negative outer membrane. mBio 12, e0271421 (2021).
pubmed: 34781743 doi: 10.1128/mBio.02714-21
Douglass, M. V., McLean, A. B. & Trent, M. S. Absence of YhdP, TamB, and YdbH leads to defects in glycerophospholipid transport and cell morphology in Gram-negative bacteria. PLoS Genet 18, e1010096 (2022).
pubmed: 35226662 pmcid: 8912898 doi: 10.1371/journal.pgen.1010096
Pautsch, A. & Schulz, G. E. Structure of the outer membrane protein A transmembrane domain. Nat. Struct. Biol. 5, 1013–1017 (1998).
pubmed: 9808047 doi: 10.1038/2983
Roman-Hernandez, G., Peterson, J. H. & Bernstein, H. D. Reconstitution of bacterial autotransporter assembly using purified components. Elife 3, e04234 (2014).
pubmed: 25182416 pmcid: 4174580 doi: 10.7554/eLife.04234
Brunder, W., Schmidt, H. & Karch, H. EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V. Mol. Microbiol 24, 767–778 (1997).
pubmed: 9194704 doi: 10.1046/j.1365-2958.1997.3871751.x
Pavlova, O., Peterson, J. H., Ieva, R. & Bernstein, H. D. Mechanistic link between β barrel assembly and the initiation of autotransporter secretion. Proc. Natl Acad. Sci. USA 110, E938–E947 (2013).
pubmed: 23431155 pmcid: 3593871 doi: 10.1073/pnas.1219076110
Hussain, S. & Bernstein, H. D. The Bam complex catalyzes efficient insertion of bacterial outer membrane proteins into membrane vesicles of variable lipid composition. J. Biol. Chem. 293, 2959–2973 (2018).
pubmed: 29311257 pmcid: 5827433 doi: 10.1074/jbc.RA117.000349
Owen, P., Meehan, M., de Loughry-Doherty, H. & Henderson, I. Phase-variable outer membrane proteins in Escherichia coli. FEMS Immunol. Med. Microbiol. 16, 63–76 (1996).
pubmed: 8988388 doi: 10.1111/j.1574-695X.1996.tb00124.x
Ageorges, V. et al. Genome-wide analysis of antigen 43 (Ag43) variants: new insights in their diversity, distribution and prevalence in bacteria. Int. J. Mol. Sci. 24, 5500 (2023).
pubmed: 36982580 pmcid: 10058404 doi: 10.3390/ijms24065500
van den Berg, B., Black, P. N., Clemons, W. M. & Rapoport, T. A. Crystal structure of the long-chain fatty acid transporter FadL. Science 304, 1506–1509 (2004).
pubmed: 15178802 doi: 10.1126/science.1097524
Freudl, R. et al. An outer membrane protein (OmpA) of Escherichia coli K-12 undergoes a conformational change during export. J. Biol. Chem. 261, 11355–11361 (1986).
pubmed: 2426271 doi: 10.1016/S0021-9258(18)67391-0
Forsström, B. et al. Dissecting antibodies with regards to linear and conformational epitopes. PLoS One 10, e0121673 (2015).
pubmed: 25816293 pmcid: 4376703 doi: 10.1371/journal.pone.0121673
Iadanza, M. G. et al. Distortion of the bilayer and dynamics of the BAM complex in lipid nanodiscs. Commun. Biol. 3, 766 (2020).
pubmed: 33318620 pmcid: 7736308 doi: 10.1038/s42003-020-01419-w
Rath, P. et al. High-throughput screening of BAM inhibitors in native membrane environment. Nat. Commun. 14, 5648 (2023).
pubmed: 37704632 pmcid: 10499997 doi: 10.1038/s41467-023-41445-w
Dautin, N., Barnard, T. J., Anderson, D. E. & Bernstein, H. D. Cleavage of a bacterial autotransporter by an evolutionarily convergent autocatalytic mechanism. EMBO J. 26, 1942–1952 (2007).
pubmed: 17347646 pmcid: 1847664 doi: 10.1038/sj.emboj.7601638
Charbonneau, M.-È., Janvore, J. & Mourez, M. Autoprocessing of the Escherichia coli AIDA-I Autotransporter. J. Biol. Chem. 284, 17340–17351 (2009).
pubmed: 19398552 pmcid: 2719369 doi: 10.1074/jbc.M109.010108
Hussain, S., Peterson, J. H. & Bernstein, H. D. Bam complex-mediated assembly of bacterial outer membrane proteins synthesized in an in vitro translation system. Sci. Rep. 10, 4557 (2020).
pubmed: 32165713 pmcid: 7067875 doi: 10.1038/s41598-020-61431-2
Hagan, C. L., Kim, S. & Kahne, D. Reconstitution of outer membrane protein assembly from purified components. Science 328, 890–892 (2010).
pubmed: 20378773 pmcid: 2873164 doi: 10.1126/science.1188919
Lundquist, K., Bakelar, J., Noinaj, N. & Gumbart, J. C. C-terminal kink formation is required for lateral gating in BamA. Proc. Natl Acad. Sci. USA 115, E7942–E7949 (2018).
pubmed: 30087180 pmcid: 6112699 doi: 10.1073/pnas.1722530115
Noinaj, N. et al. Structural insight into the biogenesis of β-barrel membrane proteins. Nature 501, 385–390 (2013).
pubmed: 23995689 pmcid: 3779476 doi: 10.1038/nature12521
Guérin, J. et al. Dynamic interplay of membrane-proximal POTRA domain and conserved loop L6 in Omp85 transporter FhaC. Mol. Microbiol. 98, 490–501 (2015).
pubmed: 26192332 doi: 10.1111/mmi.13137
Rigel, N. W., Ricci, D. P. & Silhavy, T. J. Conformation-specific labeling of BamA and suppressor analysis suggest a cyclic mechanism for β-barrel assembly in Escherichia coli. Proc. Natl Acad. Sci. 110, 5151–5156 (2013).
pubmed: 23479609 pmcid: 3612609 doi: 10.1073/pnas.1302662110
Heinz, E. & Lithgow, T. A comprehensive analysis of the Omp85/TpsB protein superfamily structural diversity, taxonomic occurrence, and evolution. Front. Microbiol. 5, 370 (2014).
Peterson, J. H., Plummer, A. M., Fleming, K. G. & Bernstein, H. D. Selective pressure for rapid membrane integration constrains the sequence of bacterial outer membrane proteins. Mol. Microbiol 106, 777–792 (2017).
pubmed: 28941249 pmcid: 5705044 doi: 10.1111/mmi.13845
Kaur, H. et al. The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase. Nature 593, 125–129 (2021).
pubmed: 33854236 doi: 10.1038/s41586-021-03455-w
Haysom, S. F. et al. Darobactin B Stabilises a Lateral-Closed Conformation of the BAM Complex in E. coli Cells. Angew. Chem. Int. Ed. 62, e202218783 (2023).
doi: 10.1002/anie.202218783
Stubenrauch, C. et al. Effective assembly of fimbriae in Escherichia coli depends on the translocation assembly module nanomachine. Nat. Microbiol 1, 1–8 (2016).
doi: 10.1038/nmicrobiol.2016.64
Dunstan, R. A. et al. Assembly of the secretion pores GspD, Wza and CsgG into bacterial outer membranes does not require the Omp85 proteins BamA or TamA. Mol. Microbiol. 97, 616–629 (2015).
pubmed: 25976323 doi: 10.1111/mmi.13055
Takeda, H. et al. Mitochondrial sorting and assembly machinery operates by β-barrel switching. Nature 590, 163–169 (2021).
pubmed: 33408415 doi: 10.1038/s41586-020-03113-7
Bennion, D., Charlson, E. S., Coon, E. & Misra, R. Dissection of β-barrel outer membrane protein assembly pathways through characterizing BamA POTRA 1 mutants of Escherichia coli. Mol. Microbiol 77, 1153–1171 (2010).
pubmed: 20598079 pmcid: 2975826 doi: 10.1111/j.1365-2958.2010.07280.x
Hart, E. M., Gupta, M., Wühr, M. & Silhavy, T. J. The gain-of-function allele bamAE470K bypasses the essential requirement for BamD in β-barrel outer membrane protein assembly. Proc. Natl Acad. Sci. 117, 18737–18743 (2020).
pubmed: 32675245 pmcid: 7414184 doi: 10.1073/pnas.2007696117
Hart, E. M. & Silhavy, T. J. Functions of the BamBCDE Lipoproteins Revealed by Bypass Mutations in BamA. J. Bacteriol. 202, e00401–e00420 (2020).
pubmed: 32817097 pmcid: 7549358 doi: 10.1128/JB.00401-20
Grimm, J. et al. The inner membrane protein YhdP modulates the rate of anterograde phospholipid flow in Escherichia coli. Proc. Natl Acad. Sci. 117, 26907–26914 (2020).
pubmed: 33046656 pmcid: 7604412 doi: 10.1073/pnas.2015556117
Genevrois, S., Steeghs, L., Roholl, P., Letesson, J.-J. & van der Ley, P. The Omp85 protein of Neisseria meningitidis is required for lipid export to the outer membrane. EMBO J. 22, 1780–1789 (2003).
pubmed: 12682011 pmcid: 154466 doi: 10.1093/emboj/cdg174
Rai, A. K. et al. Differentiation of gram-negative intermembrane phospholipid transporter function by intrinsic substrate preference. PLoS Genet. 20, e1011335 (2024).
Szabady, R. L., Peterson, J. H., Skillman, K. M. & Bernstein, H. D. An unusual signal peptide facilitates late steps in the biogenesis of a bacterial autotransporter. Proc. Natl Acad. Sci. USA 102, 221–226 (2005).
pubmed: 15615856 doi: 10.1073/pnas.0406055102
Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).
pubmed: 19363495 doi: 10.1038/nmeth.1318
The Proteomics Protocols Handbook. (Humana Press, Totowa, NJ, 2005). https://doi.org/10.1385/1592598900 .
Pettersen, E. F. et al. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254 doi: 10.1002/jcc.20084
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr D. Biol. Crystallogr 66, 486–501 (2010).
pubmed: 20383002 pmcid: 2852313 doi: 10.1107/S0907444910007493
Williams, C. J. et al. MolProbity: More and better reference data for improved all‐atom structure validation. Protein Sci. 27, 293–315 (2018).
pubmed: 29067766 doi: 10.1002/pro.3330
Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
pubmed: 32881101 doi: 10.1002/pro.3943
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844 pmcid: 8371605 doi: 10.1038/s41586-021-03819-2
Varadi, M. et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).
pubmed: 34791371 doi: 10.1093/nar/gkab1061
Gao, M., Nakajima An, D., Parks, J. M. & Skolnick, J. AF2Complex predicts direct physical interactions in multimeric proteins with deep learning. Nat. Commun. 13, 1744 (2022).
pubmed: 35365655 pmcid: 8975832 doi: 10.1038/s41467-022-29394-2

Auteurs

Xu Wang (X)

Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.

Sarah B Nyenhuis (SB)

Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.

Harris D Bernstein (HD)

Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA. harris_bernstein@nih.gov.

Articles similaires

Female Biofilms Animals Lactobacillus Mice
Humans Formins Phosphorylation Exosomes Jurkat Cells
Host Specificity Bacteriophages Genomics Algorithms Escherichia coli
Biofilms Horses Animals Escherichia coli Mesenchymal Stem Cells

Classifications MeSH