The translocation assembly module (TAM) catalyzes the assembly of bacterial outer membrane proteins in vitro.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
23 Aug 2024
23 Aug 2024
Historique:
received:
20
10
2023
accepted:
12
08
2024
medline:
23
8
2024
pubmed:
23
8
2024
entrez:
22
8
2024
Statut:
epublish
Résumé
The translocation and assembly module (TAM) has been proposed to play a crucial role in the assembly of a small subset of outer membrane proteins (OMPs) in Proteobacteria based on experiments conducted in vivo using tamA and tamB mutant strains and in vitro using biophysical methods. TAM consists of an OMP (TamA) and a periplasmic protein that is anchored to the inner membrane by a single α helix (TamB). Here we examine the function of the purified E. coli complex in vitro after reconstituting it into proteoliposomes. We find that TAM catalyzes the assembly of four model OMPs nearly as well as the β-barrel assembly machine (BAM), a universal heterooligomer that contains a TamA homolog (BamA) and that catalyzes the assembly of almost all E. coli OMPs. Consistent with previous results, both TamA and TamB are required for significant TAM activity. Our study provides direct evidence that TAM can function as an independent OMP insertase and describes a new method to gain insights into TAM function.
Identifiants
pubmed: 39174534
doi: 10.1038/s41467-024-51628-8
pii: 10.1038/s41467-024-51628-8
doi:
Substances chimiques
Bacterial Outer Membrane Proteins
0
Escherichia coli Proteins
0
BamA protein, E coli
0
proteoliposomes
0
Proteolipids
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7246Subventions
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
ID : Intramural program
Informations de copyright
© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
Références
Silhavy, T. J., Kahne, D. & Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2, a000414 (2010).
pubmed: 20452953
pmcid: 2857177
doi: 10.1101/cshperspect.a000414
Kamio, Y. & Nikaido, H. Outer membrane of Salmonella typhimurium: accessibility of phospholipid head groups to phospholipase C and cyanogen bromide activated dextran in the external medium. Biochemistry 15, 2561–2570 (1976).
pubmed: 820368
doi: 10.1021/bi00657a012
Horne, J. E., Brockwell, D. J. & Radford, S. E. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J. Biol. Chem. 295, 10340–10367 (2020).
pubmed: 32499369
pmcid: 7383365
doi: 10.1074/jbc.REV120.011473
Lauber, F., Deme, J. C., Lea, S. M. & Berks, B. C. Type 9 secretion system structures reveal a new protein transport mechanism. Nature 564, 77–82 (2018).
pubmed: 30405243
pmcid: 6927815
doi: 10.1038/s41586-018-0693-y
Fairman, J. W., Noinaj, N. & Buchanan, S. K. The structural biology of β-barrel membrane proteins: a summary of recent reports. Curr. Opin. Struct. Biol. 21, 523–531 (2011).
pubmed: 21719274
pmcid: 3164749
doi: 10.1016/j.sbi.2011.05.005
Lycklama A. Nijeholt, J. A. & Driessen, A. J. M. The bacterial Sec-translocase: structure and mechanism. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 1016–1028 (2012).
pubmed: 22411975
pmcid: 3297432
doi: 10.1098/rstb.2011.0201
Chen, R. & Henning, U. A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. Mol. Microbiol 19, 1287–1294 (1996).
pubmed: 8730870
doi: 10.1111/j.1365-2958.1996.tb02473.x
Lazar, S. W. & Kolter, R. SurA assists the folding of Escherichia coli outer membrane proteins. J. Bacteriol. 178, 1770–1773 (1996).
pubmed: 8626309
pmcid: 177866
doi: 10.1128/jb.178.6.1770-1773.1996
Rouvière, P. E. & Gross, C. A. SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. Genes Dev. 10, 3170–3182 (1996).
pubmed: 8985185
doi: 10.1101/gad.10.24.3170
Schäfer, U., Beck, K. & Müller, M. Skp, a molecular chaperone of gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J. Biol. Chem. 274, 24567–24574 (1999).
pubmed: 10455120
doi: 10.1074/jbc.274.35.24567
Krojer, T. et al. Structural basis for the regulated protease and chaperone function of DegP. Nature 453, 885–890 (2008).
pubmed: 18496527
doi: 10.1038/nature07004
Yan, Z., Hussain, S., Wang, X., Bernstein, H. D. & Bardwell, J. C. A. Chaperone OsmY facilitates the biogenesis of a major family of autotransporters. Mol. Microbiol. 112, 1373–1387 (2019).
pubmed: 31369167
pmcid: 6842399
doi: 10.1111/mmi.14358
Sikdar, R., Peterson, J. H., Anderson, D. E. & Bernstein, H. D. Folding of a bacterial integral outer membrane protein is initiated in the periplasm. Nat. Commun. 8, 1309 (2017).
pubmed: 29101319
pmcid: 5670179
doi: 10.1038/s41467-017-01246-4
Wang, X. & Bernstein, H. D. The Escherichia coli outer membrane protein OmpA acquires secondary structure prior to its integration into the membrane. J. Biol. Chem. 298, 101802 (2022).
pubmed: 35257747
pmcid: 8987393
doi: 10.1016/j.jbc.2022.101802
Arié, J.-P., Sassoon, N. & Betton, J.-M. Chaperone function of FkpA, a heat shock prolyl isomerase, in the periplasm of Escherichia coli. Mol. Microbiol. 39, 199–210 (2001).
pubmed: 11123702
doi: 10.1046/j.1365-2958.2001.02250.x
Walton, T. A. & Sousa, M. C. Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. Mol. Cell 15, 367–374 (2004).
pubmed: 15304217
doi: 10.1016/j.molcel.2004.07.023
Korndörfer, I. P., Dommel, M. K. & Skerra, A. Structure of the periplasmic chaperone Skp suggests functional similarity with cytosolic chaperones despite differing architecture. Nat. Struct. Mol. Biol. 11, 1015–1020 (2004).
pubmed: 15361861
doi: 10.1038/nsmb828
Wang, X., Peterson, J. H. & Bernstein, H. D. Bacterial outer membrane proteins are targeted to the Bam complex by two parallel mechanisms. mBio 12, e00597–21 (2021).
pubmed: 33947759
pmcid: 8262991
doi: 10.1128/mBio.00597-21
Combs, A. N. & Silhavy, T. J. The sacrificial adaptor protein Skp functions to remove stalled substrates from the β-barrel assembly machine. Proc. Natl Acad. Sci. USA 119, e2114997119 (2022).
pubmed: 34969846
doi: 10.1073/pnas.2114997119
Ge, X. et al. DegP primarily functions as a protease for the biogenesis of β-barrel outer membrane proteins in the Gram-negative bacterium Escherichia coli. FEBS J. 281, 1226–1240 (2014).
pubmed: 24373465
doi: 10.1111/febs.12701
Spiess, C., Beil, A. & Ehrmann, M. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97, 339–347 (1999).
pubmed: 10319814
doi: 10.1016/S0092-8674(00)80743-6
Wu, T. et al. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121, 235–245 (2005).
pubmed: 15851030
doi: 10.1016/j.cell.2005.02.015
Kim, S. et al. Structure and function of an essential component of the outer membrane protein assembly machine. Science 317, 961–964 (2007).
pubmed: 17702946
doi: 10.1126/science.1143993
Gu, Y. et al. Structural basis of outer membrane protein insertion by the BAM complex. Nature 531, 64–69 (2016).
pubmed: 26901871
doi: 10.1038/nature17199
Han, L. et al. Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins. Nat. Struct. Mol. Biol. 23, 192–196 (2016).
pubmed: 26900875
doi: 10.1038/nsmb.3181
Bakelar, J., Buchanan, S. K. & Noinaj, N. The structure of the β-barrel assembly machinery complex. Science 351, 180–186 (2016).
pubmed: 26744406
pmcid: 4883095
doi: 10.1126/science.aad3460
Voulhoux, R., Bos, M. P., Geurtsen, J., Mols, M. & Tommassen, J. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299, 262–265 (2003).
pubmed: 12522254
doi: 10.1126/science.1078973
Malinverni, J. C. et al. YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol. Microbiol 61, 151–164 (2006).
pubmed: 16824102
doi: 10.1111/j.1365-2958.2006.05211.x
Doerner, P. A. & Sousa, M. C. Extreme dynamics in the BamA β-barrel seam. Biochemistry 56, 3142–3149 (2017).
pubmed: 28569500
doi: 10.1021/acs.biochem.7b00281
Gessmann, D. et al. Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA. Proc. Natl Acad. Sci. USA 111, 5878–5883 (2014).
pubmed: 24715731
pmcid: 4000854
doi: 10.1073/pnas.1322473111
Schiffrin, B. et al. Effects of periplasmic chaperones and membrane thickness on BamA-catalyzed outer-membrane protein folding. J. Mol. Biol. 429, 3776–3792 (2017).
pubmed: 28919234
pmcid: 5692476
doi: 10.1016/j.jmb.2017.09.008
Doyle, M. T. & Bernstein, H. D. Bacterial outer membrane proteins assemble via asymmetric interactions with the BamA β-barrel. Nat Commun 10, 3358 (2019).
Höhr, A. I. C. et al. Membrane protein insertion through a mitochondrial β-barrel gate. Science 359, eaah6834 (2018).
pubmed: 29348211
pmcid: 5959003
doi: 10.1126/science.aah6834
Doyle, M. T. et al. Cryo-EM structures reveal multiple stages of bacterial outer membrane protein folding. Cell 185, 1143–1156 (2022).
pubmed: 35294859
pmcid: 8985213
doi: 10.1016/j.cell.2022.02.016
Shen, C. et al. Structural basis of BAM-mediated outer membrane β-barrel protein assembly. Nature 617, 185–193 (2023).
pubmed: 37100902
doi: 10.1038/s41586-023-05988-8
Imai, Y. et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 576, 459–464 (2019).
pubmed: 31747680
pmcid: 7188312
doi: 10.1038/s41586-019-1791-1
Peterson, J. H., Doyle, M. T. & Bernstein, H. D. Small molecule antibiotics inhibit distinct stages of bacterial outer membrane protein assembly. mBio 13, e0228622 (2022).
pubmed: 36165532
doi: 10.1128/mbio.02286-22
Selkrig, J. et al. Discovery of an archetypal protein transport system in bacterial outer membranes. Nat. Struct. Mol. Biol. 19, 506–510 (2012). S1.
pubmed: 22466966
doi: 10.1038/nsmb.2261
Stegmeier, J. F., Glück, A., Sukumaran, S., Mäntele, W. & Andersen, C. Characterisation of YtfM, a second member of the Omp85 family in Escherichia coli. Biol. Chem. 388, 37–46 (2007).
pubmed: 17214547
doi: 10.1515/BC.2007.004
Heinz, E., Selkrig, J., Belousoff, M. J. & Lithgow, T. Evolution of the translocation and assembly module (TAM). Genome Biol. Evol. 7, 1628–1643 (2015).
pubmed: 25994932
pmcid: 4494059
doi: 10.1093/gbe/evv097
Webb, C. T., Heinz, E. & Lithgow, T. Evolution of the β-barrel assembly machinery. Trends Microbiol. 20, 612–620 (2012).
pubmed: 22959613
doi: 10.1016/j.tim.2012.08.006
Gruss, F. et al. The structural basis of autotransporter translocation by TamA. Nat. Struct. Mol. Biol. 20, 1318–1320 (2013).
pubmed: 24056943
doi: 10.1038/nsmb.2689
Stubenrauch, C. J., Bamert, R. S., Wang, J. & Lithgow, T. A noncanonical chaperone interacts with drug efflux pumps during their assembly into bacterial outer membranes. PLoS Biol. 20, e3001523 (2022).
pubmed: 35061668
pmcid: 8809574
doi: 10.1371/journal.pbio.3001523
Shen, H.-H. et al. Reconstitution of a nanomachine driving the assembly of proteins into bacterial outer membranes. Nat. Commun. 5, 5078 (2014).
pubmed: 25341963
doi: 10.1038/ncomms6078
Stubenrauch, C. J. & Lithgow, T. The TAM: a translocation and assembly module of the β-barrel assembly machinery in bacterial outer membranes. EcoSal Plus 8, https://doi.org/10.1128/ecosalplus.ESP-0036-2018 (2019).
Selkrig, J. et al. Conserved features in tama enable interaction with tamb to drive the activity of the translocation and assembly module. Sci. Rep. 5, 12905 (2015).
pubmed: 26243377
pmcid: 4525385
doi: 10.1038/srep12905
Bamert, R. S. et al. Structural basis for substrate selection by the translocation and assembly module of the beta-barrel assembly machinery. Mol. Microbiol 106, 142–156 (2017).
pubmed: 28752534
pmcid: 5607099
doi: 10.1111/mmi.13757
McDonnell, R. T., Patel, N., Wehrspan, Z. J. & Elcock, A. H. Atomic models of all major trans-envelope complexes involved in lipid trafficking in Escherichia Coli constructed using a combination of AlphaFold2, AF2Complex, and membrane morphing simulations. Preprint at https://www.biorxiv.org/content/10.1101/2023.04.28.538765 (2023).
Li, G.-W., Burkhardt, D., Gross, C. & Weissman, J. S. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157, 624–635 (2014).
pubmed: 24766808
pmcid: 4006352
doi: 10.1016/j.cell.2014.02.033
Wiśniewski, J. R. & Rakus, D. Multi-enzyme digestion FASP and the ‘Total Protein Approach’-based absolute quantification of the Escherichia coli proteome. J. Proteom. 109, 322–331 (2014).
doi: 10.1016/j.jprot.2014.07.012
Kang’ethe, W. & Bernstein, H. D. Charge-dependent secretion of an intrinsically disordered protein via the autotransporter pathway. Proc. Natl Acad. Sci. USA 110, E4246–E4255 (2013).
pubmed: 24145447
pmcid: 3831499
doi: 10.1073/pnas.1310345110
Heinz, E. et al. Conserved features in the structure, mechanism, and biogenesis of the inverse autotransporter protein family. Genome Biol. Evol. 8, 1690–1705 (2016).
pubmed: 27190006
pmcid: 4943183
doi: 10.1093/gbe/evw112
Stubenrauch, C. J., Dougan, G., Lithgow, T. & Heinz, E. Constraints on lateral gene transfer in promoting fimbrial usher protein diversity and function. Open Biol. 7, 170144 (2017).
pubmed: 29142104
pmcid: 5717340
doi: 10.1098/rsob.170144
Goh, K. J., Stubenrauch, C. J. & Lithgow, T. The TAM, a translocation and assembly module for protein assembly and potential conduit for phospholipid transfer. EMBO Rep 25, 1711–1720 (2024).
Li, M., Jia, B., Sun, Y. & Sun, L. The translocation and assembly module (TAM) of Edwardsiella tarda Is essential for stress resistance and host infection. Front Microbiol 11, 1743 (2020).
pubmed: 32793174
pmcid: 7393178
doi: 10.3389/fmicb.2020.01743
Burall, L. S. et al. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect. Immun. 72, 2922–2938 (2004).
pubmed: 15102805
pmcid: 387873
doi: 10.1128/IAI.72.5.2922-2938.2004
Struve, C., Forestier, C. & Krogfelt, K. A. Application of a novel multi-screening signature-tagged mutagenesis assay for identification of Klebsiella pneumoniae genes essential in colonization and infection. Microbiology 149, 167–176 (2003).
pubmed: 12576590
doi: 10.1099/mic.0.25833-0
Kelly, M. et al. Essential role of the type III secretion system effector NleB in colonization of mice by Citrobacter rodentium. Infect. Immun. 74, 2328–2337 (2006).
pubmed: 16552063
pmcid: 1418941
doi: 10.1128/IAI.74.4.2328-2337.2006
Jung, H.-J., Sorbara, M. T. & Pamer, E. G. TAM mediates adaptation of carbapenem-resistant Klebsiella pneumoniae to antimicrobial stress during host colonization and infection. PLoS Pathog. 17, e1009309 (2021).
pubmed: 33556154
pmcid: 7895364
doi: 10.1371/journal.ppat.1009309
Brooks, J. F. et al. Global discovery of colonization determinants in the squid symbiont Vibrio fischeri. Proc. Natl Acad. Sci. USA 111, 17284–17289 (2014).
pubmed: 25404340
pmcid: 4260577
doi: 10.1073/pnas.1415957111
Gallant, C. V., Sedic, M., Chicoine, E. A., Ruiz, T. & Mintz, K. P. Membrane morphology and leukotoxin secretion are associated with a novel membrane protein of Aggregatibacter actinomycetemcomitans. J. Bacteriol. 190, 5972–5980 (2008).
pubmed: 18621903
pmcid: 2519528
doi: 10.1128/JB.00548-08
Smith, K. P., Voogt, R. D., Ruiz, T. & Mintz, K. P. The conserved carboxyl domain of MorC, an inner membrane protein of Aggregatibacter actinomycetemcomitans, is essential for membrane function. Mol. Oral. Microbiol 31, 43–58 (2016).
pubmed: 26205976
doi: 10.1111/omi.12120
Bialer, M. G. et al. MapB, the Brucella suis TamB homologue, is involved in cell envelope biogenesis, cell division and virulence. Sci. Rep. 9, 2158 (2019).
pubmed: 30770847
pmcid: 6377625
doi: 10.1038/s41598-018-37668-3
Doyle, M. T. & Bernstein, H. D. Function of the Omp85 superfamily of outer, membrane protein assembly factors and polypeptide transporters. Annu. Rev. Microbiol. 76, 259–279 (2022).
pubmed: 35650668
doi: 10.1146/annurev-micro-033021-023719
Josts, I. et al. The structure of a conserved domain of TamB reveals a hydrophobic β taco fold. Structure 25, 1898–1906.e5 (2017).
pubmed: 29129383
pmcid: 5719984
doi: 10.1016/j.str.2017.10.002
Iqbal, H., Kenedy, M. R., Lybecker, M. & Akins, D. R. The TamB ortholog of Borrelia burgdorferi interacts with the β-barrel assembly machine (BAM) complex protein BamA. Mol. Microbiol 102, 757–774 (2016).
pubmed: 27588694
pmcid: 5582053
doi: 10.1111/mmi.13492
Ruiz, N., Davis, R. M. & Kumar, S. YhdP, TamB, and YdbH are redundant but essential for growth and lipid homeostasis of the gram-negative outer membrane. mBio 12, e0271421 (2021).
pubmed: 34781743
doi: 10.1128/mBio.02714-21
Douglass, M. V., McLean, A. B. & Trent, M. S. Absence of YhdP, TamB, and YdbH leads to defects in glycerophospholipid transport and cell morphology in Gram-negative bacteria. PLoS Genet 18, e1010096 (2022).
pubmed: 35226662
pmcid: 8912898
doi: 10.1371/journal.pgen.1010096
Pautsch, A. & Schulz, G. E. Structure of the outer membrane protein A transmembrane domain. Nat. Struct. Biol. 5, 1013–1017 (1998).
pubmed: 9808047
doi: 10.1038/2983
Roman-Hernandez, G., Peterson, J. H. & Bernstein, H. D. Reconstitution of bacterial autotransporter assembly using purified components. Elife 3, e04234 (2014).
pubmed: 25182416
pmcid: 4174580
doi: 10.7554/eLife.04234
Brunder, W., Schmidt, H. & Karch, H. EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V. Mol. Microbiol 24, 767–778 (1997).
pubmed: 9194704
doi: 10.1046/j.1365-2958.1997.3871751.x
Pavlova, O., Peterson, J. H., Ieva, R. & Bernstein, H. D. Mechanistic link between β barrel assembly and the initiation of autotransporter secretion. Proc. Natl Acad. Sci. USA 110, E938–E947 (2013).
pubmed: 23431155
pmcid: 3593871
doi: 10.1073/pnas.1219076110
Hussain, S. & Bernstein, H. D. The Bam complex catalyzes efficient insertion of bacterial outer membrane proteins into membrane vesicles of variable lipid composition. J. Biol. Chem. 293, 2959–2973 (2018).
pubmed: 29311257
pmcid: 5827433
doi: 10.1074/jbc.RA117.000349
Owen, P., Meehan, M., de Loughry-Doherty, H. & Henderson, I. Phase-variable outer membrane proteins in Escherichia coli. FEMS Immunol. Med. Microbiol. 16, 63–76 (1996).
pubmed: 8988388
doi: 10.1111/j.1574-695X.1996.tb00124.x
Ageorges, V. et al. Genome-wide analysis of antigen 43 (Ag43) variants: new insights in their diversity, distribution and prevalence in bacteria. Int. J. Mol. Sci. 24, 5500 (2023).
pubmed: 36982580
pmcid: 10058404
doi: 10.3390/ijms24065500
van den Berg, B., Black, P. N., Clemons, W. M. & Rapoport, T. A. Crystal structure of the long-chain fatty acid transporter FadL. Science 304, 1506–1509 (2004).
pubmed: 15178802
doi: 10.1126/science.1097524
Freudl, R. et al. An outer membrane protein (OmpA) of Escherichia coli K-12 undergoes a conformational change during export. J. Biol. Chem. 261, 11355–11361 (1986).
pubmed: 2426271
doi: 10.1016/S0021-9258(18)67391-0
Forsström, B. et al. Dissecting antibodies with regards to linear and conformational epitopes. PLoS One 10, e0121673 (2015).
pubmed: 25816293
pmcid: 4376703
doi: 10.1371/journal.pone.0121673
Iadanza, M. G. et al. Distortion of the bilayer and dynamics of the BAM complex in lipid nanodiscs. Commun. Biol. 3, 766 (2020).
pubmed: 33318620
pmcid: 7736308
doi: 10.1038/s42003-020-01419-w
Rath, P. et al. High-throughput screening of BAM inhibitors in native membrane environment. Nat. Commun. 14, 5648 (2023).
pubmed: 37704632
pmcid: 10499997
doi: 10.1038/s41467-023-41445-w
Dautin, N., Barnard, T. J., Anderson, D. E. & Bernstein, H. D. Cleavage of a bacterial autotransporter by an evolutionarily convergent autocatalytic mechanism. EMBO J. 26, 1942–1952 (2007).
pubmed: 17347646
pmcid: 1847664
doi: 10.1038/sj.emboj.7601638
Charbonneau, M.-È., Janvore, J. & Mourez, M. Autoprocessing of the Escherichia coli AIDA-I Autotransporter. J. Biol. Chem. 284, 17340–17351 (2009).
pubmed: 19398552
pmcid: 2719369
doi: 10.1074/jbc.M109.010108
Hussain, S., Peterson, J. H. & Bernstein, H. D. Bam complex-mediated assembly of bacterial outer membrane proteins synthesized in an in vitro translation system. Sci. Rep. 10, 4557 (2020).
pubmed: 32165713
pmcid: 7067875
doi: 10.1038/s41598-020-61431-2
Hagan, C. L., Kim, S. & Kahne, D. Reconstitution of outer membrane protein assembly from purified components. Science 328, 890–892 (2010).
pubmed: 20378773
pmcid: 2873164
doi: 10.1126/science.1188919
Lundquist, K., Bakelar, J., Noinaj, N. & Gumbart, J. C. C-terminal kink formation is required for lateral gating in BamA. Proc. Natl Acad. Sci. USA 115, E7942–E7949 (2018).
pubmed: 30087180
pmcid: 6112699
doi: 10.1073/pnas.1722530115
Noinaj, N. et al. Structural insight into the biogenesis of β-barrel membrane proteins. Nature 501, 385–390 (2013).
pubmed: 23995689
pmcid: 3779476
doi: 10.1038/nature12521
Guérin, J. et al. Dynamic interplay of membrane-proximal POTRA domain and conserved loop L6 in Omp85 transporter FhaC. Mol. Microbiol. 98, 490–501 (2015).
pubmed: 26192332
doi: 10.1111/mmi.13137
Rigel, N. W., Ricci, D. P. & Silhavy, T. J. Conformation-specific labeling of BamA and suppressor analysis suggest a cyclic mechanism for β-barrel assembly in Escherichia coli. Proc. Natl Acad. Sci. 110, 5151–5156 (2013).
pubmed: 23479609
pmcid: 3612609
doi: 10.1073/pnas.1302662110
Heinz, E. & Lithgow, T. A comprehensive analysis of the Omp85/TpsB protein superfamily structural diversity, taxonomic occurrence, and evolution. Front. Microbiol. 5, 370 (2014).
Peterson, J. H., Plummer, A. M., Fleming, K. G. & Bernstein, H. D. Selective pressure for rapid membrane integration constrains the sequence of bacterial outer membrane proteins. Mol. Microbiol 106, 777–792 (2017).
pubmed: 28941249
pmcid: 5705044
doi: 10.1111/mmi.13845
Kaur, H. et al. The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase. Nature 593, 125–129 (2021).
pubmed: 33854236
doi: 10.1038/s41586-021-03455-w
Haysom, S. F. et al. Darobactin B Stabilises a Lateral-Closed Conformation of the BAM Complex in E. coli Cells. Angew. Chem. Int. Ed. 62, e202218783 (2023).
doi: 10.1002/anie.202218783
Stubenrauch, C. et al. Effective assembly of fimbriae in Escherichia coli depends on the translocation assembly module nanomachine. Nat. Microbiol 1, 1–8 (2016).
doi: 10.1038/nmicrobiol.2016.64
Dunstan, R. A. et al. Assembly of the secretion pores GspD, Wza and CsgG into bacterial outer membranes does not require the Omp85 proteins BamA or TamA. Mol. Microbiol. 97, 616–629 (2015).
pubmed: 25976323
doi: 10.1111/mmi.13055
Takeda, H. et al. Mitochondrial sorting and assembly machinery operates by β-barrel switching. Nature 590, 163–169 (2021).
pubmed: 33408415
doi: 10.1038/s41586-020-03113-7
Bennion, D., Charlson, E. S., Coon, E. & Misra, R. Dissection of β-barrel outer membrane protein assembly pathways through characterizing BamA POTRA 1 mutants of Escherichia coli. Mol. Microbiol 77, 1153–1171 (2010).
pubmed: 20598079
pmcid: 2975826
doi: 10.1111/j.1365-2958.2010.07280.x
Hart, E. M., Gupta, M., Wühr, M. & Silhavy, T. J. The gain-of-function allele bamAE470K bypasses the essential requirement for BamD in β-barrel outer membrane protein assembly. Proc. Natl Acad. Sci. 117, 18737–18743 (2020).
pubmed: 32675245
pmcid: 7414184
doi: 10.1073/pnas.2007696117
Hart, E. M. & Silhavy, T. J. Functions of the BamBCDE Lipoproteins Revealed by Bypass Mutations in BamA. J. Bacteriol. 202, e00401–e00420 (2020).
pubmed: 32817097
pmcid: 7549358
doi: 10.1128/JB.00401-20
Grimm, J. et al. The inner membrane protein YhdP modulates the rate of anterograde phospholipid flow in Escherichia coli. Proc. Natl Acad. Sci. 117, 26907–26914 (2020).
pubmed: 33046656
pmcid: 7604412
doi: 10.1073/pnas.2015556117
Genevrois, S., Steeghs, L., Roholl, P., Letesson, J.-J. & van der Ley, P. The Omp85 protein of Neisseria meningitidis is required for lipid export to the outer membrane. EMBO J. 22, 1780–1789 (2003).
pubmed: 12682011
pmcid: 154466
doi: 10.1093/emboj/cdg174
Rai, A. K. et al. Differentiation of gram-negative intermembrane phospholipid transporter function by intrinsic substrate preference. PLoS Genet. 20, e1011335 (2024).
Szabady, R. L., Peterson, J. H., Skillman, K. M. & Bernstein, H. D. An unusual signal peptide facilitates late steps in the biogenesis of a bacterial autotransporter. Proc. Natl Acad. Sci. USA 102, 221–226 (2005).
pubmed: 15615856
doi: 10.1073/pnas.0406055102
Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).
pubmed: 19363495
doi: 10.1038/nmeth.1318
The Proteomics Protocols Handbook. (Humana Press, Totowa, NJ, 2005). https://doi.org/10.1385/1592598900 .
Pettersen, E. F. et al. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254
doi: 10.1002/jcc.20084
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr D. Biol. Crystallogr 66, 486–501 (2010).
pubmed: 20383002
pmcid: 2852313
doi: 10.1107/S0907444910007493
Williams, C. J. et al. MolProbity: More and better reference data for improved all‐atom structure validation. Protein Sci. 27, 293–315 (2018).
pubmed: 29067766
doi: 10.1002/pro.3330
Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
pubmed: 32881101
doi: 10.1002/pro.3943
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844
pmcid: 8371605
doi: 10.1038/s41586-021-03819-2
Varadi, M. et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).
pubmed: 34791371
doi: 10.1093/nar/gkab1061
Gao, M., Nakajima An, D., Parks, J. M. & Skolnick, J. AF2Complex predicts direct physical interactions in multimeric proteins with deep learning. Nat. Commun. 13, 1744 (2022).
pubmed: 35365655
pmcid: 8975832
doi: 10.1038/s41467-022-29394-2