Isolation, Purification of Phenolic Glycoside 1 from Moringa oleifera Seeds and Formulation of Its Liposome Delivery System.


Journal

AAPS PharmSciTech
ISSN: 1530-9932
Titre abrégé: AAPS PharmSciTech
Pays: United States
ID NLM: 100960111

Informations de publication

Date de publication:
22 Aug 2024
Historique:
received: 22 04 2024
accepted: 31 07 2024
medline: 23 8 2024
pubmed: 23 8 2024
entrez: 22 8 2024
Statut: epublish

Résumé

In this study, N, N '-bis {4- [(α-L- rhamnosyloxy) benzyl]} thiourea (PG-1), a phenolic glycoside compound was purified from Moringa seed. The PG-1 has attracted extensive attention due to its anti-cancer, antioxidant, anti-inflammatory and hypoglycemic properties. However, some of its physicochemical properties such as oral bioavailability has not been studied. Herein, a highly purified PG-1 was extracted and incorporated in multiple layered liposomes (PG-1-L) to avoid its burst release and enhance oral bioavailability. After appropriate characterization, it was discovered that the obtained PG-1-L was stable, homogeneous and well dispersed with the average particle size being 89.26 ± 0.23 nm. Importantly, the in vitro release and in vivo oral bioavailability of PG-1-L were significantly improved compared with PG-1. In addition, MTT results showed that compared with the free PG-1, PG-1-L displayed obvious inhibitory effect on the HepG2 cells, while the inhibitory effect on healthy non-malignant 3T6 and LO-2 cells was not significant, indicating that PG-1-L had high safety. In conclusion, PG-1-L can be used as a promising delivery system and an ideal novel approach to improve the oral bioavailability and anticancer activity of PG-1.

Identifiants

pubmed: 39174848
doi: 10.1208/s12249-024-02911-w
pii: 10.1208/s12249-024-02911-w
doi:

Substances chimiques

Liposomes 0
Glycosides 0
Phenols 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

196

Informations de copyright

© 2024. The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists.

Références

Hamza AA. Ameliorative effects of Moringa oleifera Lam seed extract on liver fibrosis in rats. Food Chem Toxicol. 2010;48(1):345–55. https://doi.org/10.1016/j.fct.2009.10.022 .
doi: 10.1016/j.fct.2009.10.022 pubmed: 19854235
Heimesaat Markus M, Araújo LCC, Aguiar JS, Napoleão TH, Mota FVB, Barros ALS, et al. Evaluation of cytotoxic and anti-inflammatory activities of extracts and lectins from Moringa oleifera seeds. PLoS ONE. 2013;8(12). https://doi.org/10.1371/journal.pone.0081973 .
Scheim DE. Cytotoxicity of unsaturated fatty acids in fresh human tumor explants: concentration thresholds and implications for clinical efficacy. Lipids Health Dis. 2009;8(1). https://doi.org/10.1186/1476-511x-8-54 .
Albuquerque Costa R, Sousa OVd, Hofer E, Mafezoli J, Barbosa FG, Vieira RHSdF. Thiocarbamates from Moringa oleifera seeds bioactive against virulent and multidrug-resistant vibrio species. BioMed Res Int. 2017;2017:1–6. https://doi.org/10.1155/2017/7963747 .
doi: 10.1155/2017/7963747
Wang F, Zhong H-H, Chen W-K, Liu Q-P, Li C-Y, Zheng Y-F, et al. Potential hypoglycaemic activity phenolic glycosides from Moringa oleifera seeds. Nat Prod Res. 2016;31(16):1869–74. https://doi.org/10.1080/14786419.2016.1263846 .
doi: 10.1080/14786419.2016.1263846 pubmed: 27966373
Govardhan Singh RS, Negi PS, Radha C. Phenolic composition, antioxidant and antimicrobial activities of free and bound phenolic extracts of Moringa oleifera seed flour. Journal of Functional Foods. 2013;5(4):1883–91. https://doi.org/10.1016/j.jff.2013.09.009 .
doi: 10.1016/j.jff.2013.09.009
Jung IL, Lee JH, Kang SC. A potential oral anticancer drug candidate, Moringa oleifera leaf extract, induces the apoptosis of human hepatocellular carcinoma cells. Oncol Lett. 2015;10(3):1597–604. https://doi.org/10.3892/ol.2015.3482 .
doi: 10.3892/ol.2015.3482 pubmed: 26622717 pmcid: 4533244
Mann AP, Verma A, Sethi G, Manavathi B, Wang H, Fok JY, et al. Overexpression of tissue transglutaminase leads to constitutive activation of nuclear factor-κB in cancer cells: delineation of a novel pathway. Can Res. 2006;66(17):8788–95. https://doi.org/10.1158/0008-5472.Can-06-1457 .
doi: 10.1158/0008-5472.Can-06-1457
Lu Y, Maria Vos RD, Zhang Y, Zhang M, Liu Y, Fu C, et al. The degradation kinetics and mechanism of moringin in aqueous solution and the cytotoxicity of degraded products. Food Chemistry. 2021;364. https://doi.org/10.1016/j.foodchem.2021.130424 .
Brunelli D, Tavecchio M, Falcioni C, Frapolli R, Erba E, Iori R, et al. The isothiocyanate produced from glucomoringin inhibits NF-kB and reduces myeloma growth in nude mice in vivo. Biochem Pharmacol. 2010;79(8):1141–8. https://doi.org/10.1016/j.bcp.2009.12.008 .
doi: 10.1016/j.bcp.2009.12.008 pubmed: 20006591
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492 .
doi: 10.3322/caac.21492 pubmed: 30207593
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660 .
doi: 10.3322/caac.21660 pubmed: 33538338
Edwards BK, Noone AM, Mariotto AB, Simard EP, Boscoe FP, Henley SJ, et al. Annual Report to the Nation on the status of cancer, 1975–2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer. Cancer. 2013;120(9):1290–314. https://doi.org/10.1002/cncr.28509 .
doi: 10.1002/cncr.28509 pubmed: 24343171
Rodrigues de Azevedo C, von Stosch M, Costa MS, Ramos AM, Cardoso MM, Danhier F, et al. Modeling of the burst release from PLGA micro- and nanoparticles as function of physicochemical parameters and formulation characteristics. Int J Pharm. 2017;532(1):229–40. https://doi.org/10.1016/j.ijpharm.2017.08.118 .
doi: 10.1016/j.ijpharm.2017.08.118 pubmed: 28867450
López-Pinto JM, González-Rodríguez ML, Rabasco AM. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. Int J Pharm. 2005;298(1):1–12. https://doi.org/10.1016/j.ijpharm.2005.02.021 .
doi: 10.1016/j.ijpharm.2005.02.021 pubmed: 15896932
Ying M, Shen Q, Liu Y, Yan Z, Wei X, Zhan C, et al. Stabilized Heptapeptide A7R for enhanced multifunctional liposome-based tumor-targeted drug delivery. ACS Appl Mater Interfaces. 2016;8(21):13232–41. https://doi.org/10.1021/acsami.6b01300 .
doi: 10.1021/acsami.6b01300 pubmed: 27195531
Wagner A, Vorauer-Uhl K, Kreismayr G, Katinger H. Enhanced protein loading into liposomes by the multiple crossflow injection technique. J Liposome Res. 2002;12(3):271–83. https://doi.org/10.1081/lpr-120014762 .
doi: 10.1081/lpr-120014762 pubmed: 12604031
Guo F, Lin M, Gu Y, Zhao X, Hu G. Preparation of PEG-modified proanthocyanidin liposome and its application in cosmetics. Eur Food Res Technol. 2014;240(5):1013–21. https://doi.org/10.1007/s00217-014-2405-7 .
doi: 10.1007/s00217-014-2405-7
Yalcin TE, Ilbasmis-Tamer S, Ibisoglu B, Özdemir A, Ark M, Takka S. Gemcitabine hydrochloride-loaded liposomes and nanoparticles: comparison of encapsulation efficiency, drug release, particle size, and cytotoxicity. Pharm Dev Technol. 2017;23(1):76–86. https://doi.org/10.1080/10837450.2017.1357733 .
doi: 10.1080/10837450.2017.1357733 pubmed: 28724327
Cipolla D, Wu H, Gonda I, Eastman S, Redelmeier T, Chan H-K. Modifying the release properties of liposomes toward personalized medicine. J Pharm Sci. 2014;103(6):1851–62. https://doi.org/10.1002/jps.23969 .
doi: 10.1002/jps.23969 pubmed: 24715635
Niu M, Lu Y, Hovgaard L, Guan P, Tan Y, Lian R, et al. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: The effect of cholate type, particle size and administered dose. Eur J Pharm Biopharm. 2012;81(2):265–72. https://doi.org/10.1016/j.ejpb.2012.02.009 .
doi: 10.1016/j.ejpb.2012.02.009 pubmed: 22369880
Li K, Liu Y, Zhang S, Xu Y, Jiang J, Yin F, et al. Folate receptor-targeted ultrasonic PFOB nanoparticles: Synthesis, characterization and application in tumor-targeted imaging. Int J Mol Med. 2017;39(6):1505–15. https://doi.org/10.3892/ijmm.2017.2975 .
doi: 10.3892/ijmm.2017.2975 pubmed: 28487935 pmcid: 5428942
Kowalska M, Broniatowski M, Mach M, Płachta Ł, Wydro P. Effect of lipopolymer (DSPE-PEG750) on phospholipid monolayers and bilayers differing in the structure of the polar head group. J Mol Liq. 2021;344. https://doi.org/10.1016/j.molliq.2021.117715 .
Jain S, Kumar D, Swarnakar NK, Thanki K. Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel. Biomaterials. 2012;33(28):6758–68. https://doi.org/10.1016/j.biomaterials.2012.05.026 .
doi: 10.1016/j.biomaterials.2012.05.026 pubmed: 22748771
Hazgui S, Bonnomet A, Nawrocki-Raby B, Milliot M, Terryn C, Cutrona J, et al. Epigallocatechin-3-gallate (EGCG) inhibits the migratory behavior of tumor bronchial epithelial cells. Respir Res. 2008;9(1). https://doi.org/10.1186/1465-9921-9-33 .
Wang HL, Liu SK, Qin YY, Chen YG. Hydroxycamptothecin stealth liposomes: containing TPGS as a novel PEGylated long-circulating coating material. Adv Mater Res. 2014;886:333–6. https://doi.org/10.4028/www.scientific.net/AMR.886.333 .
doi: 10.4028/www.scientific.net/AMR.886.333
Sun C, Li W, Ma P, Li Y, Zhu Y, Zhang H, et al. Development of TPGS/F127/F68 mixed polymeric micelles: Enhanced oral bioavailability and hepatoprotection of syringic acid against carbon tetrachloride-induced hepatotoxicity. Food Chem Toxicol. 2020;137. https://doi.org/10.1016/j.fct.2020.111126 .
Chaudhary R, Jain S, Muralidhar K, Gupta MN. Purification of bubaline luteinizing hormone by gel filtration chromatography in the presence of blue dextran. Process Biochem. 2006;41(3):562–6. https://doi.org/10.1016/j.procbio.2005.10.003 .
doi: 10.1016/j.procbio.2005.10.003
Zhang H, Wang Q, Sun C, Zhu Y, Yang Q, Wei Q, et al. Enhanced oral bioavailability, anti-tumor activity and hepatoprotective effect of 6-shogaol loaded in a type of novel micelles of polyethylene glycol and linoleic acid conjugate. Pharmaceutics. 2019;11(3). https://doi.org/10.3390/pharmaceutics11030107 .
Li X, Xia X, Zhang J, Adu-Frimpong M, Shen X, Yin W, et al. Preparation, physical characterization, pharmacokinetics and anti-hyperglycemic activity of esculetin-loaded mixed micelles. J Pharm Sci. 2023;112(1):148–57. https://doi.org/10.1016/j.xphs.2022.06.022 .
doi: 10.1016/j.xphs.2022.06.022 pubmed: 35780820
Cao X, Zhu Q, Wang Q-L, Adu-Frimpong M, Wei C-M, Weng W, et al. Improvement of oral bioavailability and anti-tumor effect of zingerone self-microemulsion drug delivery system. J Pharm Sci. 2021;110(7):2718–27. https://doi.org/10.1016/j.xphs.2021.01.037 .
doi: 10.1016/j.xphs.2021.01.037 pubmed: 33610568
Zhang J, Zhao X, Chen Q, Yin X, Xin X, Li K, et al. Systematic evaluation of multifunctional paclitaxel-loaded polymeric mixed micelles as a potential anticancer remedy to overcome multidrug resistance. Acta Biomater. 2017;50:381–95. https://doi.org/10.1016/j.actbio.2016.12.021 .
doi: 10.1016/j.actbio.2016.12.021 pubmed: 27956367
Xia X, Zhang J, Adu-Frimpong M, Li X, Shen X, He Q, et al. Hyperoside-loaded TPGs/mPEG-PDLLA self-assembled polymeric micelles: preparation, characterization and in vitro/in vivo evaluation. Pharm Dev Technol. 2022;27(7):829–41. https://doi.org/10.1080/10837450.2022.2122506 .
doi: 10.1080/10837450.2022.2122506 pubmed: 36073188
Wang X, Zeng Z, Tian Z, Sun J, Li Y, Fan X. Validation of spectrophotometric determination of chlorogenic acid in fermentation broth and fruits. Food Chem. 2019;278:170–7. https://doi.org/10.1016/j.foodchem.2018.11.041 .
doi: 10.1016/j.foodchem.2018.11.041 pubmed: 30583358
Barenholz Y. Relevancy of drug loading to liposomal formulation therapeutic efficacy. J Liposome Res. 2003;13(1):1–8. https://doi.org/10.1081/lpr-120017482 .
doi: 10.1081/lpr-120017482 pubmed: 12725720
Zhu Y, Peng W, Zhang J, Wang M, Firempong CK, Feng C, et al. Enhanced oral bioavailability of capsaicin in mixed polymeric micelles: Preparation, in vitro and in vivo evaluation. J Funct Foods. 2014;8:358–66. https://doi.org/10.1016/j.jff.2014.04.001 .
doi: 10.1016/j.jff.2014.04.001
Wang Y, Chen L, Adu-Frimpong M, Wei C, Weng W, Wang Q, et al. Preparation, in vivo and in vitro evaluation, and pharmacodynamic study of DMY-loaded self-microemulsifying drug delivery system. Eur J Lipid Sci Technol. 2021;123(6). https://doi.org/10.1002/ejlt.202000369 .
Zhai Y, Guo S, Liu C, Yang C, Dou J, Li L, et al. Preparation and in vitro evaluation of apigenin-loaded polymeric micelles. Colloids Surf A. 2013;429:24–30. https://doi.org/10.1016/j.colsurfa.2013.03.051 .
doi: 10.1016/j.colsurfa.2013.03.051
Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS, et al. Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front Bioeng Biotechnol. 2021;9. https://doi.org/10.3389/fbioe.2021.705886 .
McClements DJ, Rao J. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr. 2011;51(4):285–330. https://doi.org/10.1080/10408398.2011.559558 .
doi: 10.1080/10408398.2011.559558 pubmed: 21432697
Jeon JY, Hwang SY, Cho SH, Choo J, Lee EK. Effect of cholesterol content on affinity and stability of factor VIII and annexin V binding to a liposomal bilayer membrane. Chem Phys Lipid. 2010;163(4–5):335–40. https://doi.org/10.1016/j.chemphyslip.2010.01.005 .
doi: 10.1016/j.chemphyslip.2010.01.005
Wang Q, Wei Q, Yang Q, Cao X, Li Q, Shi F, et al. A novel formulation of [6]-gingerol: Proliposomes with enhanced oral bioavailability and antitumor effect. Int J Pharm. 2018;535(1–2):308–15. https://doi.org/10.1016/j.ijpharm.2017.11.006 .
doi: 10.1016/j.ijpharm.2017.11.006 pubmed: 29126908
Song K, Xin M, Yu H, Zheng Z, Li J, Li M, et al. Novel ultra-small micelles based on rebaudioside A: A potential nanoplatform for ocular drug delivery. Int J Pharm. 2018;552(1–2):265–76. https://doi.org/10.1016/j.ijpharm.2018.10.006 .
doi: 10.1016/j.ijpharm.2018.10.006 pubmed: 30291959
Li W, Yi S, Wang Z, Chen S, Xin S, Xie J, et al. Self-nanoemulsifying drug delivery system of persimmon leaf extract: Optimization and bioavailability studies. Int J Pharm. 2011;420(1):161–71. https://doi.org/10.1016/j.ijpharm.2011.08.024 .
doi: 10.1016/j.ijpharm.2011.08.024 pubmed: 21884770
Kumar P, Kumar R, Singh B, Malik R, Sharma G, Chitkara D, et al. Biocompatible phospholipid-based mixed micelles for tamoxifen delivery: promising evidences from in - vitro anticancer activity and dermatokinetic studies. AAPS PharmSciTech. 2016;18(6):2037–44. https://doi.org/10.1208/s12249-016-0681-1 .
doi: 10.1208/s12249-016-0681-1 pubmed: 27966177
Lee W, Park EJ, Min G, Choi J, Na DH, Bae J-S. Dual functioned pegylated phospholipid micelles containing cationic antimicrobial decapeptide for treating sepsis. Theranostics. 2017;7(15):3759–67. https://doi.org/10.7150/thno.20734 .
doi: 10.7150/thno.20734 pubmed: 29109774 pmcid: 5667346
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. Erratum: Corrigendum: The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;505(7482):248-. https://doi.org/10.1038/nature12813 .
doi: 10.1038/nature12813

Auteurs

Feng Shi (F)

Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.

Mingjie Gong (M)

Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.

Michael Adu-Frimpong (M)

Department of Biochemistry and Forensic Sciences, School Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), UK 0215-5321, Navrongo, Ghana.

Xia Jiang (X)

Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.

Xiaowen Wang (X)

Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.

Qinyang Hua (Q)

Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.

Tingyuan Li (T)

Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.

Jiaying Li (J)

Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.

Jiangnan Yu (J)

Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.

Elmurat Toreniyazov (E)

Tashkent State Agricultural University (Nukus Branch), Nukus, Uzbekistan.

Xia Cao (X)

Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China. caoxiaemail@163.com.

Qilong Wang (Q)

Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China. wql001wql001@163.com.

Ximing Xu (X)

Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China. xmxu@ujs.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH