Isolation, Purification of Phenolic Glycoside 1 from Moringa oleifera Seeds and Formulation of Its Liposome Delivery System.
Liposomes
Moringa oleifera
/ chemistry
Seeds
/ chemistry
Humans
Glycosides
/ chemistry
Animals
Hep G2 Cells
Biological Availability
Phenols
/ administration & dosage
Particle Size
Drug Delivery Systems
/ methods
Mice
Male
Rats
Administration, Oral
Chemistry, Pharmaceutical
/ methods
Rats, Sprague-Dawley
Anti-liver cancer
Liposomes
Moringa seed
Oral bioavailability
PG-1
Journal
AAPS PharmSciTech
ISSN: 1530-9932
Titre abrégé: AAPS PharmSciTech
Pays: United States
ID NLM: 100960111
Informations de publication
Date de publication:
22 Aug 2024
22 Aug 2024
Historique:
received:
22
04
2024
accepted:
31
07
2024
medline:
23
8
2024
pubmed:
23
8
2024
entrez:
22
8
2024
Statut:
epublish
Résumé
In this study, N, N '-bis {4- [(α-L- rhamnosyloxy) benzyl]} thiourea (PG-1), a phenolic glycoside compound was purified from Moringa seed. The PG-1 has attracted extensive attention due to its anti-cancer, antioxidant, anti-inflammatory and hypoglycemic properties. However, some of its physicochemical properties such as oral bioavailability has not been studied. Herein, a highly purified PG-1 was extracted and incorporated in multiple layered liposomes (PG-1-L) to avoid its burst release and enhance oral bioavailability. After appropriate characterization, it was discovered that the obtained PG-1-L was stable, homogeneous and well dispersed with the average particle size being 89.26 ± 0.23 nm. Importantly, the in vitro release and in vivo oral bioavailability of PG-1-L were significantly improved compared with PG-1. In addition, MTT results showed that compared with the free PG-1, PG-1-L displayed obvious inhibitory effect on the HepG2 cells, while the inhibitory effect on healthy non-malignant 3T6 and LO-2 cells was not significant, indicating that PG-1-L had high safety. In conclusion, PG-1-L can be used as a promising delivery system and an ideal novel approach to improve the oral bioavailability and anticancer activity of PG-1.
Identifiants
pubmed: 39174848
doi: 10.1208/s12249-024-02911-w
pii: 10.1208/s12249-024-02911-w
doi:
Substances chimiques
Liposomes
0
Glycosides
0
Phenols
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
196Informations de copyright
© 2024. The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists.
Références
Hamza AA. Ameliorative effects of Moringa oleifera Lam seed extract on liver fibrosis in rats. Food Chem Toxicol. 2010;48(1):345–55. https://doi.org/10.1016/j.fct.2009.10.022 .
doi: 10.1016/j.fct.2009.10.022
pubmed: 19854235
Heimesaat Markus M, Araújo LCC, Aguiar JS, Napoleão TH, Mota FVB, Barros ALS, et al. Evaluation of cytotoxic and anti-inflammatory activities of extracts and lectins from Moringa oleifera seeds. PLoS ONE. 2013;8(12). https://doi.org/10.1371/journal.pone.0081973 .
Scheim DE. Cytotoxicity of unsaturated fatty acids in fresh human tumor explants: concentration thresholds and implications for clinical efficacy. Lipids Health Dis. 2009;8(1). https://doi.org/10.1186/1476-511x-8-54 .
Albuquerque Costa R, Sousa OVd, Hofer E, Mafezoli J, Barbosa FG, Vieira RHSdF. Thiocarbamates from Moringa oleifera seeds bioactive against virulent and multidrug-resistant vibrio species. BioMed Res Int. 2017;2017:1–6. https://doi.org/10.1155/2017/7963747 .
doi: 10.1155/2017/7963747
Wang F, Zhong H-H, Chen W-K, Liu Q-P, Li C-Y, Zheng Y-F, et al. Potential hypoglycaemic activity phenolic glycosides from Moringa oleifera seeds. Nat Prod Res. 2016;31(16):1869–74. https://doi.org/10.1080/14786419.2016.1263846 .
doi: 10.1080/14786419.2016.1263846
pubmed: 27966373
Govardhan Singh RS, Negi PS, Radha C. Phenolic composition, antioxidant and antimicrobial activities of free and bound phenolic extracts of Moringa oleifera seed flour. Journal of Functional Foods. 2013;5(4):1883–91. https://doi.org/10.1016/j.jff.2013.09.009 .
doi: 10.1016/j.jff.2013.09.009
Jung IL, Lee JH, Kang SC. A potential oral anticancer drug candidate, Moringa oleifera leaf extract, induces the apoptosis of human hepatocellular carcinoma cells. Oncol Lett. 2015;10(3):1597–604. https://doi.org/10.3892/ol.2015.3482 .
doi: 10.3892/ol.2015.3482
pubmed: 26622717
pmcid: 4533244
Mann AP, Verma A, Sethi G, Manavathi B, Wang H, Fok JY, et al. Overexpression of tissue transglutaminase leads to constitutive activation of nuclear factor-κB in cancer cells: delineation of a novel pathway. Can Res. 2006;66(17):8788–95. https://doi.org/10.1158/0008-5472.Can-06-1457 .
doi: 10.1158/0008-5472.Can-06-1457
Lu Y, Maria Vos RD, Zhang Y, Zhang M, Liu Y, Fu C, et al. The degradation kinetics and mechanism of moringin in aqueous solution and the cytotoxicity of degraded products. Food Chemistry. 2021;364. https://doi.org/10.1016/j.foodchem.2021.130424 .
Brunelli D, Tavecchio M, Falcioni C, Frapolli R, Erba E, Iori R, et al. The isothiocyanate produced from glucomoringin inhibits NF-kB and reduces myeloma growth in nude mice in vivo. Biochem Pharmacol. 2010;79(8):1141–8. https://doi.org/10.1016/j.bcp.2009.12.008 .
doi: 10.1016/j.bcp.2009.12.008
pubmed: 20006591
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492 .
doi: 10.3322/caac.21492
pubmed: 30207593
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660 .
doi: 10.3322/caac.21660
pubmed: 33538338
Edwards BK, Noone AM, Mariotto AB, Simard EP, Boscoe FP, Henley SJ, et al. Annual Report to the Nation on the status of cancer, 1975–2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer. Cancer. 2013;120(9):1290–314. https://doi.org/10.1002/cncr.28509 .
doi: 10.1002/cncr.28509
pubmed: 24343171
Rodrigues de Azevedo C, von Stosch M, Costa MS, Ramos AM, Cardoso MM, Danhier F, et al. Modeling of the burst release from PLGA micro- and nanoparticles as function of physicochemical parameters and formulation characteristics. Int J Pharm. 2017;532(1):229–40. https://doi.org/10.1016/j.ijpharm.2017.08.118 .
doi: 10.1016/j.ijpharm.2017.08.118
pubmed: 28867450
López-Pinto JM, González-Rodríguez ML, Rabasco AM. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. Int J Pharm. 2005;298(1):1–12. https://doi.org/10.1016/j.ijpharm.2005.02.021 .
doi: 10.1016/j.ijpharm.2005.02.021
pubmed: 15896932
Ying M, Shen Q, Liu Y, Yan Z, Wei X, Zhan C, et al. Stabilized Heptapeptide A7R for enhanced multifunctional liposome-based tumor-targeted drug delivery. ACS Appl Mater Interfaces. 2016;8(21):13232–41. https://doi.org/10.1021/acsami.6b01300 .
doi: 10.1021/acsami.6b01300
pubmed: 27195531
Wagner A, Vorauer-Uhl K, Kreismayr G, Katinger H. Enhanced protein loading into liposomes by the multiple crossflow injection technique. J Liposome Res. 2002;12(3):271–83. https://doi.org/10.1081/lpr-120014762 .
doi: 10.1081/lpr-120014762
pubmed: 12604031
Guo F, Lin M, Gu Y, Zhao X, Hu G. Preparation of PEG-modified proanthocyanidin liposome and its application in cosmetics. Eur Food Res Technol. 2014;240(5):1013–21. https://doi.org/10.1007/s00217-014-2405-7 .
doi: 10.1007/s00217-014-2405-7
Yalcin TE, Ilbasmis-Tamer S, Ibisoglu B, Özdemir A, Ark M, Takka S. Gemcitabine hydrochloride-loaded liposomes and nanoparticles: comparison of encapsulation efficiency, drug release, particle size, and cytotoxicity. Pharm Dev Technol. 2017;23(1):76–86. https://doi.org/10.1080/10837450.2017.1357733 .
doi: 10.1080/10837450.2017.1357733
pubmed: 28724327
Cipolla D, Wu H, Gonda I, Eastman S, Redelmeier T, Chan H-K. Modifying the release properties of liposomes toward personalized medicine. J Pharm Sci. 2014;103(6):1851–62. https://doi.org/10.1002/jps.23969 .
doi: 10.1002/jps.23969
pubmed: 24715635
Niu M, Lu Y, Hovgaard L, Guan P, Tan Y, Lian R, et al. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: The effect of cholate type, particle size and administered dose. Eur J Pharm Biopharm. 2012;81(2):265–72. https://doi.org/10.1016/j.ejpb.2012.02.009 .
doi: 10.1016/j.ejpb.2012.02.009
pubmed: 22369880
Li K, Liu Y, Zhang S, Xu Y, Jiang J, Yin F, et al. Folate receptor-targeted ultrasonic PFOB nanoparticles: Synthesis, characterization and application in tumor-targeted imaging. Int J Mol Med. 2017;39(6):1505–15. https://doi.org/10.3892/ijmm.2017.2975 .
doi: 10.3892/ijmm.2017.2975
pubmed: 28487935
pmcid: 5428942
Kowalska M, Broniatowski M, Mach M, Płachta Ł, Wydro P. Effect of lipopolymer (DSPE-PEG750) on phospholipid monolayers and bilayers differing in the structure of the polar head group. J Mol Liq. 2021;344. https://doi.org/10.1016/j.molliq.2021.117715 .
Jain S, Kumar D, Swarnakar NK, Thanki K. Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel. Biomaterials. 2012;33(28):6758–68. https://doi.org/10.1016/j.biomaterials.2012.05.026 .
doi: 10.1016/j.biomaterials.2012.05.026
pubmed: 22748771
Hazgui S, Bonnomet A, Nawrocki-Raby B, Milliot M, Terryn C, Cutrona J, et al. Epigallocatechin-3-gallate (EGCG) inhibits the migratory behavior of tumor bronchial epithelial cells. Respir Res. 2008;9(1). https://doi.org/10.1186/1465-9921-9-33 .
Wang HL, Liu SK, Qin YY, Chen YG. Hydroxycamptothecin stealth liposomes: containing TPGS as a novel PEGylated long-circulating coating material. Adv Mater Res. 2014;886:333–6. https://doi.org/10.4028/www.scientific.net/AMR.886.333 .
doi: 10.4028/www.scientific.net/AMR.886.333
Sun C, Li W, Ma P, Li Y, Zhu Y, Zhang H, et al. Development of TPGS/F127/F68 mixed polymeric micelles: Enhanced oral bioavailability and hepatoprotection of syringic acid against carbon tetrachloride-induced hepatotoxicity. Food Chem Toxicol. 2020;137. https://doi.org/10.1016/j.fct.2020.111126 .
Chaudhary R, Jain S, Muralidhar K, Gupta MN. Purification of bubaline luteinizing hormone by gel filtration chromatography in the presence of blue dextran. Process Biochem. 2006;41(3):562–6. https://doi.org/10.1016/j.procbio.2005.10.003 .
doi: 10.1016/j.procbio.2005.10.003
Zhang H, Wang Q, Sun C, Zhu Y, Yang Q, Wei Q, et al. Enhanced oral bioavailability, anti-tumor activity and hepatoprotective effect of 6-shogaol loaded in a type of novel micelles of polyethylene glycol and linoleic acid conjugate. Pharmaceutics. 2019;11(3). https://doi.org/10.3390/pharmaceutics11030107 .
Li X, Xia X, Zhang J, Adu-Frimpong M, Shen X, Yin W, et al. Preparation, physical characterization, pharmacokinetics and anti-hyperglycemic activity of esculetin-loaded mixed micelles. J Pharm Sci. 2023;112(1):148–57. https://doi.org/10.1016/j.xphs.2022.06.022 .
doi: 10.1016/j.xphs.2022.06.022
pubmed: 35780820
Cao X, Zhu Q, Wang Q-L, Adu-Frimpong M, Wei C-M, Weng W, et al. Improvement of oral bioavailability and anti-tumor effect of zingerone self-microemulsion drug delivery system. J Pharm Sci. 2021;110(7):2718–27. https://doi.org/10.1016/j.xphs.2021.01.037 .
doi: 10.1016/j.xphs.2021.01.037
pubmed: 33610568
Zhang J, Zhao X, Chen Q, Yin X, Xin X, Li K, et al. Systematic evaluation of multifunctional paclitaxel-loaded polymeric mixed micelles as a potential anticancer remedy to overcome multidrug resistance. Acta Biomater. 2017;50:381–95. https://doi.org/10.1016/j.actbio.2016.12.021 .
doi: 10.1016/j.actbio.2016.12.021
pubmed: 27956367
Xia X, Zhang J, Adu-Frimpong M, Li X, Shen X, He Q, et al. Hyperoside-loaded TPGs/mPEG-PDLLA self-assembled polymeric micelles: preparation, characterization and in vitro/in vivo evaluation. Pharm Dev Technol. 2022;27(7):829–41. https://doi.org/10.1080/10837450.2022.2122506 .
doi: 10.1080/10837450.2022.2122506
pubmed: 36073188
Wang X, Zeng Z, Tian Z, Sun J, Li Y, Fan X. Validation of spectrophotometric determination of chlorogenic acid in fermentation broth and fruits. Food Chem. 2019;278:170–7. https://doi.org/10.1016/j.foodchem.2018.11.041 .
doi: 10.1016/j.foodchem.2018.11.041
pubmed: 30583358
Barenholz Y. Relevancy of drug loading to liposomal formulation therapeutic efficacy. J Liposome Res. 2003;13(1):1–8. https://doi.org/10.1081/lpr-120017482 .
doi: 10.1081/lpr-120017482
pubmed: 12725720
Zhu Y, Peng W, Zhang J, Wang M, Firempong CK, Feng C, et al. Enhanced oral bioavailability of capsaicin in mixed polymeric micelles: Preparation, in vitro and in vivo evaluation. J Funct Foods. 2014;8:358–66. https://doi.org/10.1016/j.jff.2014.04.001 .
doi: 10.1016/j.jff.2014.04.001
Wang Y, Chen L, Adu-Frimpong M, Wei C, Weng W, Wang Q, et al. Preparation, in vivo and in vitro evaluation, and pharmacodynamic study of DMY-loaded self-microemulsifying drug delivery system. Eur J Lipid Sci Technol. 2021;123(6). https://doi.org/10.1002/ejlt.202000369 .
Zhai Y, Guo S, Liu C, Yang C, Dou J, Li L, et al. Preparation and in vitro evaluation of apigenin-loaded polymeric micelles. Colloids Surf A. 2013;429:24–30. https://doi.org/10.1016/j.colsurfa.2013.03.051 .
doi: 10.1016/j.colsurfa.2013.03.051
Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS, et al. Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front Bioeng Biotechnol. 2021;9. https://doi.org/10.3389/fbioe.2021.705886 .
McClements DJ, Rao J. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr. 2011;51(4):285–330. https://doi.org/10.1080/10408398.2011.559558 .
doi: 10.1080/10408398.2011.559558
pubmed: 21432697
Jeon JY, Hwang SY, Cho SH, Choo J, Lee EK. Effect of cholesterol content on affinity and stability of factor VIII and annexin V binding to a liposomal bilayer membrane. Chem Phys Lipid. 2010;163(4–5):335–40. https://doi.org/10.1016/j.chemphyslip.2010.01.005 .
doi: 10.1016/j.chemphyslip.2010.01.005
Wang Q, Wei Q, Yang Q, Cao X, Li Q, Shi F, et al. A novel formulation of [6]-gingerol: Proliposomes with enhanced oral bioavailability and antitumor effect. Int J Pharm. 2018;535(1–2):308–15. https://doi.org/10.1016/j.ijpharm.2017.11.006 .
doi: 10.1016/j.ijpharm.2017.11.006
pubmed: 29126908
Song K, Xin M, Yu H, Zheng Z, Li J, Li M, et al. Novel ultra-small micelles based on rebaudioside A: A potential nanoplatform for ocular drug delivery. Int J Pharm. 2018;552(1–2):265–76. https://doi.org/10.1016/j.ijpharm.2018.10.006 .
doi: 10.1016/j.ijpharm.2018.10.006
pubmed: 30291959
Li W, Yi S, Wang Z, Chen S, Xin S, Xie J, et al. Self-nanoemulsifying drug delivery system of persimmon leaf extract: Optimization and bioavailability studies. Int J Pharm. 2011;420(1):161–71. https://doi.org/10.1016/j.ijpharm.2011.08.024 .
doi: 10.1016/j.ijpharm.2011.08.024
pubmed: 21884770
Kumar P, Kumar R, Singh B, Malik R, Sharma G, Chitkara D, et al. Biocompatible phospholipid-based mixed micelles for tamoxifen delivery: promising evidences from in - vitro anticancer activity and dermatokinetic studies. AAPS PharmSciTech. 2016;18(6):2037–44. https://doi.org/10.1208/s12249-016-0681-1 .
doi: 10.1208/s12249-016-0681-1
pubmed: 27966177
Lee W, Park EJ, Min G, Choi J, Na DH, Bae J-S. Dual functioned pegylated phospholipid micelles containing cationic antimicrobial decapeptide for treating sepsis. Theranostics. 2017;7(15):3759–67. https://doi.org/10.7150/thno.20734 .
doi: 10.7150/thno.20734
pubmed: 29109774
pmcid: 5667346
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. Erratum: Corrigendum: The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;505(7482):248-. https://doi.org/10.1038/nature12813 .
doi: 10.1038/nature12813