Blood coagulation in Prediabetes clusters-impact on all-cause mortality in individuals undergoing coronary angiography.
Humans
Prediabetic State
/ blood
Male
Middle Aged
Female
Blood Coagulation
Risk Assessment
Aged
Biomarkers
/ blood
Blood Coagulation Factors
/ metabolism
Cause of Death
Coronary Angiography
Prognosis
Coronary Artery Disease
/ mortality
Blood Glucose
/ metabolism
Risk Factors
Mediation Analysis
Predictive Value of Tests
Diabetes Mellitus, Type 2
/ mortality
Cluster
Coagulation
Mortality
Prediabetes
Journal
Cardiovascular diabetology
ISSN: 1475-2840
Titre abrégé: Cardiovasc Diabetol
Pays: England
ID NLM: 101147637
Informations de publication
Date de publication:
22 Aug 2024
22 Aug 2024
Historique:
received:
18
06
2024
accepted:
10
08
2024
medline:
23
8
2024
pubmed:
23
8
2024
entrez:
22
8
2024
Statut:
epublish
Résumé
Metabolic clusters can stratify subgroups of individuals at risk for type 2 diabetes mellitus and related complications. Since obesity and insulin resistance are closely linked to alterations in hemostasis, we investigated the association between plasmatic coagulation and metabolic clusters including the impact on survival. Utilizing data from the Ludwigshafen Risk and Cardiovascular Health (LURIC) study, we assigned 917 participants without diabetes to prediabetes clusters, using oGTT-derived glucose and insulin, high-density lipoprotein cholesterol, triglycerides, and anthropometric data. We performed a comprehensive analysis of plasmatic coagulation parameters and analyzed their associations with mortality using proportional hazards models. Mediation analysis was performed to assess the effect of coagulation factors on all-cause mortality in prediabetes clusters. Prediabetes clusters were assigned using published tools, and grouped into low-risk (clusters 1,2,4; n = 643) and high-risk (clusters 3,5,6; n = 274) clusters. Individuals in the high-risk clusters had a significantly increased risk of death (HR = 1.30; CI: 1.01 to 1.67) and showed significantly elevated levels of procoagulant factors (fibrinogen, FVII/VIII/IX), D-dimers, von-Willebrand factor, and PAI-1, compared to individuals in the low-risk clusters. In proportional hazards models adjusted for relevant confounders, elevated levels of fibrinogen, D-dimers, FVIII, and vWF were found to be associated with an increased risk of death. Multiple mediation analysis indicated that vWF significantly mediates the cluster-specific risk of death. High-risk prediabetes clusters are associated with prothrombotic changes in the coagulation system that likely contribute to the increased mortality in those individuals at cardiometabolic risk. The hypercoagulable state observed in the high-risk clusters indicates an increased risk for cardiovascular and thrombotic diseases that should be considered in future risk stratification and therapeutic strategies.
Sections du résumé
BACKGROUND
BACKGROUND
Metabolic clusters can stratify subgroups of individuals at risk for type 2 diabetes mellitus and related complications. Since obesity and insulin resistance are closely linked to alterations in hemostasis, we investigated the association between plasmatic coagulation and metabolic clusters including the impact on survival.
METHODS
METHODS
Utilizing data from the Ludwigshafen Risk and Cardiovascular Health (LURIC) study, we assigned 917 participants without diabetes to prediabetes clusters, using oGTT-derived glucose and insulin, high-density lipoprotein cholesterol, triglycerides, and anthropometric data. We performed a comprehensive analysis of plasmatic coagulation parameters and analyzed their associations with mortality using proportional hazards models. Mediation analysis was performed to assess the effect of coagulation factors on all-cause mortality in prediabetes clusters.
RESULTS
RESULTS
Prediabetes clusters were assigned using published tools, and grouped into low-risk (clusters 1,2,4; n = 643) and high-risk (clusters 3,5,6; n = 274) clusters. Individuals in the high-risk clusters had a significantly increased risk of death (HR = 1.30; CI: 1.01 to 1.67) and showed significantly elevated levels of procoagulant factors (fibrinogen, FVII/VIII/IX), D-dimers, von-Willebrand factor, and PAI-1, compared to individuals in the low-risk clusters. In proportional hazards models adjusted for relevant confounders, elevated levels of fibrinogen, D-dimers, FVIII, and vWF were found to be associated with an increased risk of death. Multiple mediation analysis indicated that vWF significantly mediates the cluster-specific risk of death.
CONCLUSIONS
CONCLUSIONS
High-risk prediabetes clusters are associated with prothrombotic changes in the coagulation system that likely contribute to the increased mortality in those individuals at cardiometabolic risk. The hypercoagulable state observed in the high-risk clusters indicates an increased risk for cardiovascular and thrombotic diseases that should be considered in future risk stratification and therapeutic strategies.
Identifiants
pubmed: 39175055
doi: 10.1186/s12933-024-02402-z
pii: 10.1186/s12933-024-02402-z
doi:
Substances chimiques
Biomarkers
0
Blood Coagulation Factors
0
Blood Glucose
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
306Informations de copyright
© 2024. The Author(s).
Références
Cai X, Zhang Y, Li M, Wu JH, Mai L, Li J, Yang Y, Hu Y, Huang Y. Association between prediabetes and risk of all cause mortality and cardiovascular disease: updated meta-analysis. BMJ. 2020. https://doi.org/10.1136/bmj.m2297 .
doi: 10.1136/bmj.m2297
pubmed: 32669282
pmcid: 7362233
Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012. https://doi.org/10.1016/S0140-6736(12)60283-9 .
doi: 10.1016/S0140-6736(12)60283-9
pubmed: 22683128
pmcid: 3891203
Vistisen D, Witte DR, Brunner EJ, Kivimaki M, Tabak A, Jorgensen ME, Faerch K. Risk of Cardiovascular Disease and Death in Individuals With Prediabetes Defined by Different Criteria: The Whitehall II Study. Diabetes Care. 2018;41(4):899–906.
doi: 10.2337/dc17-2530
pubmed: 29453200
pmcid: 6463620
Schlesinger S, Neuenschwander M, Barbaresko J, Lang A, Maalmi H, Rathmann W, Roden M, Herder C. Prediabetes and risk of mortality, diabetes-related complications and comorbidities: umbrella review of meta-analyses of prospective studies. Diabetologia. 2022;65(2):275–85.
doi: 10.1007/s00125-021-05592-3
pubmed: 34718834
Wagner R, Heni M, Tabak AG, Machann J, Schick F, Randrianarisoa E, Hrabe de Angelis M, Birkenfeld AL, Stefan N, Peter A, et al. Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes. Nat Med. 2021. https://doi.org/10.1038/s41591-020-1116-9 .
doi: 10.1038/s41591-020-1116-9
pubmed: 34663987
pmcid: 9356324
Prystupa K, Delgado GE, Moissl AP, Kleber ME, Birkenfeld AL, Heni M, Fritsche A, Marz W, Wagner R. Clusters of prediabetes and type 2 diabetes stratify all-cause mortality in a cohort of participants undergoing invasive coronary d iagnostics. Cardiovasc Diabetol. 2023. https://doi.org/10.1186/s12933-023-01923-3 .
doi: 10.1186/s12933-023-01923-3
pubmed: 37592260
pmcid: 10436494
Loeffen R, Spronk HM, ten Cate H. The impact of blood coagulability on atherosclerosis and cardiovascular disease. J Thromb Haemost. 2012;10(7):1207–16.
doi: 10.1111/j.1538-7836.2012.04782.x
pubmed: 22578148
Horber S, Lehmann R, Stefan N, Machann J, Birkenfeld AL, Wagner R, Heni M, Haring HU, Fritsche A, Peter A. Hemostatic alterations linked to body fat distribution, fatty liver, and insulin resistance. Mol Metab. 2021. https://doi.org/10.1016/j.molmet.2021.101262 .
doi: 10.1016/j.molmet.2021.101262
pubmed: 34082137
pmcid: 8165974
Morange PE, Alessi MC. Thrombosis in central obesity and metabolic syndrome: mechanisms and epidemiology. Thromb Haemost. 2013;110(4):669–80.
doi: 10.1160/TH13-01-0075
pubmed: 23765199
Vilahur G, Ben-Aicha S, Badimon L. New insights into the role of adipose tissue in thrombosis. Cardiovasc Res. 2017;113(9):1046–54.
doi: 10.1093/cvr/cvx086
pubmed: 28472252
Horvei LD, Grimnes G, Hindberg K, Mathiesen EB, Njolstad I, Wilsgaard T, Brox J, Braekkan SK, Hansen JB. C-reactive protein, obesity, and the risk of arterial and venous thrombosis. J Thromb Haemost. 2016;14(8):1561–71.
doi: 10.1111/jth.13369
pubmed: 27208592
Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, Commerford P, Lang CC, Rumboldt Z, Onen CL, Lisheng L, et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet. 2005. https://doi.org/10.1016/S0140-6736(05)67663-5 .
doi: 10.1016/S0140-6736(05)67663-5
pubmed: 16338449
van der Toorn FA, de Mutsert R, Lijfering WM, Rosendaal FR, van Hylckama Vlieg A. Glucose metabolism affects coagulation factors: The NEO study. J Thromb Haemost. 2019;17(11):1886–97.
doi: 10.1111/jth.14573
pubmed: 31325222
Gumede N, Khathi A. The role of fibrinolysis in the development of prediabetes-associated coronary heart disease: a focus on the plasminogen activator inhibitor??1 and its potential use as a pred ictive marker in diet-induced prediabetes. Front Nutr. 2023. https://doi.org/10.3389/fnut.2023.1256427
doi: 10.3389/fnut.2023.1256427
pubmed: 38024366
pmcid: 10652797
Frankel DS, Meigs JB, Massaro JM, Wilson PW, O’Donnell CJ, D’Agostino RB, Tofler GH. Von Willebrand factor, type 2 diabetes mellitus, and risk of cardiovascular disease the framingham offspring study. Circulation. 2008. https://doi.org/10.1161/CIRCULATIONAHA.108.792986 .
doi: 10.1161/CIRCULATIONAHA.108.792986
pubmed: 19075103
pmcid: 2746947
Olie RH, van der Meijden PEJ, Ten Cate H. The coagulation system in atherothrombosis: Implications for new therapeutic strategies. Res Pract Thromb Haemost 2018, 2(2).
Yap ES, Lijfering WM, Rosendaal FR, Cannegieter SC. Coagulation factors II, V, VII, IX, X and XI and mortality - a cohort study. Res Pract Thromb Haemost. 2023. https://doi.org/10.1016/j.rpth.2023.102193 .
doi: 10.1016/j.rpth.2023.102193
pubmed: 38077823
pmcid: 10704489
Olson NC, Cushman M, Judd SE, Kissela BM, Safford MM, Howard G, Zakai NA. Associations of coagulation factors IX and XI levels with incident coronary heart disease and ischemic stroke: the REGARDS study. J Thromb Haemost. 2017;15(6):1086–94.
doi: 10.1111/jth.13698
pubmed: 28393470
pmcid: 9797027
Yamagishi K, Aleksic N, Hannan PJ, Folsom AR, Inverstigators AS. Coagulation factors II, V, IX, X, XI, and XII, plasminogen, and alpha-2 antiplasmin and risk of coronary heart disease. J Atheroscler Thromb. 2010;17(4):402–9.
doi: 10.5551/jat.3673
pubmed: 20379055
Yap ES, Timp JF, Flinterman LE, van Hylckama Vlieg A, Rosendaal FR, Cannegieter SC, Lijfering WM. Elevated levels of factor VIII and subsequent risk of all-cause mortality: results from the MEGA follow-up study. J Thromb Haemost. 2015;13(10):1833–42.
doi: 10.1111/jth.13071
pubmed: 26264493
Winkelmann BR, Marz W, Boehm BO, Zotz R, Hager J, Hellstern P, Senges J, Group LS. Rationale and design of the LURIC study–a resource for functional genomics, pharmacogenomics and long-term prognosis of cardiovascular disease. Pharmacogenomics 2001, 2(1 Suppl 1).
Junker R, Heinrich J, Schulte H, van de Loo J, Assmann G. Coagulation factor VII and the risk of coronary heart disease in healthy men. Arterioscler Thromb Vasc Biol. 1997;17(8):1539–44.
doi: 10.1161/01.ATV.17.8.1539
pubmed: 9301633
Olson NC, Raffield LM, Lange LA, Lange EM, Longstreth WT Jr., Chauhan G, Debette S, Seshadri S, Reiner AP, Tracy RP. Associations of activated coagulation factor VII and factor VIIa-antithrombin levels with genome-wide polymorphisms and cardiovascular disease risk. J Thromb Haemost. 2018;16(1):19–30.
doi: 10.1111/jth.13899
pubmed: 29112333
Raffield LM, Lu AT, Szeto MD, Little A, Grinde KE, Shaw J, Auer PL, Cushman M, Horvath S, Irvin MR, et al. Coagulation factor VIII: Relationship to cardiovascular disease risk and whole genome sequence and epigenome-wide analysis in African Americans. J Thromb Haemost. 2020;18(6):1335–47.
doi: 10.1111/jth.14741
pubmed: 31985870
pmcid: 7274883
Kamphuisen PW, Eikenboom JC, Bertina RM. Elevated factor VIII levels and the risk of thrombosis. Arterioscler Thromb Vasc Biol. 2001;21(5):731–8.
doi: 10.1161/01.ATV.21.5.731
pubmed: 11348867
Tracy RP, Arnold AM, Ettinger W, Fried L, Meilahn E, Savage P. The relationship of fibrinogen and factors VII and VIII to incident cardiovascular disease and death in the elderly: results from the cardiovascular health study. Arterioscler Thromb Vasc Biol. 1999;19(7):1776–83.
doi: 10.1161/01.ATV.19.7.1776
pubmed: 10397698
Spiel AO, Gilbert JC, Jilma B. von Willebrand factor in cardiovascular disease: focus on acute coronary syndromes. Circulation. 2008. https://doi.org/10.1161/CIRCULATIONAHA.107.722827 .
doi: 10.1161/CIRCULATIONAHA.107.722827
pubmed: 18347221
Sabater-Lleal M, Huffman JE, de Vries PS, Marten J, Mastrangelo MA, Song C, Pankratz N, Ward-Caviness CK, Yanek LR, Trompet S, et al. Genome-Wide Association Transethnic Meta-Analyses Identifies Novel Associations Regulating Coagulation Factor VIII and von Willebrand Factor Plasma Levels. Circulation. 2019;139(5):620–35.
doi: 10.1161/CIRCULATIONAHA.118.034532
pubmed: 30586737
pmcid: 6438386
Pipe SW, Montgomery RR, Pratt KP, Lenting PJ, Lillicrap D. Life in the shadow of a dominant partner: the FVIII-VWF association and its clinical implications for hemophilia A. Blood. 2016;128(16):2007–16.
doi: 10.1182/blood-2016-04-713289
pubmed: 27587878
pmcid: 5073181
Terraube V, O’Donnell JS, Jenkins PV. Factor VIII and von Willebrand factor interaction: biological, clinical and therapeutic importance. Haemophilia. 2010;16(1):3–13.
doi: 10.1111/j.1365-2516.2009.02005.x
pubmed: 19473409
Van Schie MC, Wieberdink RG, Koudstaal PJ, Hofman A, Ikram MA, Witteman JC, Breteler MM, Leebeek FW, De Maat MP. Genetic determinants of von Willebrand factor plasma levels and the risk of stroke: the Rotterdam Study. J Thromb Haemost. 2012;10(4):550–6.
doi: 10.1111/j.1538-7836.2012.04634.x
pubmed: 22257027
van Loon JE, Kavousi M, Leebeek FW, Felix JF, Hofman A, Witteman JC, de Maat MP. von Willebrand factor plasma levels, genetic variations and coronary heart disease in an older population. J Thromb Haemost. 2012;10(7):1262–9.
doi: 10.1111/j.1538-7836.2012.04771.x
pubmed: 22568520
Atiq F, van de Wouw J, Sorop O, Heinonen I, de Maat MPM, Merkus D, Duncker DJ, Leebeek FWG. Endothelial Dysfunction, Atherosclerosis, and Increase of von Willebrand Factor and Factor VIII: A Randomized Controlled Trial in Swine. Thromb Haemost. 2021;121(5):676–86.
doi: 10.1055/s-0040-1722185
pubmed: 33506473
Lamprou S, Koletsos N, Mintziori G, Anyfanti P, Trakatelli C, Kotsis V, Gkaliagkousi E, Triantafyllou A. Microvascular and Endothelial Dysfunction in Prediabetes. Life (Basel). 2023. https://doi.org/10.3390/life13030644 .
doi: 10.3390/life13030644
pubmed: 36983800
De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM. Endothelial dysfunction in diabetes. Br J Pharmacol. 2000;130(5):963–74.
doi: 10.1038/sj.bjp.0703393
pubmed: 10882379
pmcid: 1572156
Halcox JP, Donald AE, Ellins E, Witte DR, Shipley MJ, Brunner EJ, Marmot MG, Deanfield JE. Endothelial function predicts progression of carotid intima-media thickness. Circulation. 2009;119(7):1005–12.
doi: 10.1161/CIRCULATIONAHA.108.765701
pubmed: 19204308
Li X, Weber NC, Cohn DM, Hollmann MW, DeVries JH, Hermanides J, Preckel B. Effects of Hyperglycemia and Diabetes Mellitus on Coagulation and Hemostasis. J Clin Med. 2021. https://doi.org/10.3390/jcm10112419 .
doi: 10.3390/jcm10112419
pubmed: 34945246
pmcid: 8706734
Lemkes BA, Hermanides J, Devries JH, Holleman F, Meijers JC, Hoekstra JB. Hyperglycemia: a prothrombotic factor? J Thromb Haemost. 2010;8(8):1663–9.
doi: 10.1111/j.1538-7836.2010.03910.x
pubmed: 20492456
Gabriely I, Yang XM, Cases JA, Ma XH, Rossetti L, Barzilai N. Hyperglycemia induces PAI-1 gene expression in adipose tissue by activation of the hexosamine biosynthetic pathway. Atherosclerosis. 2002;160(1):115–22.
doi: 10.1016/S0021-9150(01)00574-3
pubmed: 11755928
Kelem A, Adane T, Shiferaw E. Insulin Resistance-Induced Platelet Hyperactivity and a Potential Biomarker Role of Platelet Parameters: A Narrative Review. Diabetes Metab Syndr Obes. 2023;18(16):2843–53.
doi: 10.2147/DMSO.S425469
Dawson S, Henney A. The status of PAI-1 as a risk factor for arterial and thrombotic disease: a review. Atherosclerosis. 1992;95(2–3):105–17.
doi: 10.1016/0021-9150(92)90014-8
pubmed: 1418086
Frischmuth T, Hindberg K, Aukrust P, Ueland T, Braekkan SK, Hansen JB, Morelli VM. Elevated plasma levels of plasminogen activator inhibitor-1 are associated with risk of future incident venous thromboembolism. J Thromb Haemost. 2022;20(7):1618–26.
doi: 10.1111/jth.15701
pubmed: 35289062
pmcid: 9314992
Tofler GH, Massaro J, O’Donnell CJ, Wilson PWF, Vasan RS, Sutherland PA, Meigs JB, Levy D. D’Agostino RB, Sr.: Plasminogen activator inhibitor and the risk of cardiovascular disease: The Framingham Heart Study. Thromb Res. 2016. https://doi.org/10.1016/j.thromres.2016.02.002 .
doi: 10.1016/j.thromres.2016.02.002
pubmed: 27447083
pmcid: 5722217
Collet JP, Montalescot G, Vicaut E, Ankri A, Walylo F, Lesty C, Choussat R, Beygui F, Borentain M, Vignolles N, et al. Acute release of plasminogen activator inhibitor-1 in ST-segment elevation myocardial infarction predicts mortality. Circulation. 2003. https://doi.org/10.1161/01.CIR.0000083471.33820.3C .
doi: 10.1161/01.CIR.0000083471.33820.3C
pubmed: 14517154
Tipoe TL, Wu WKK, Chung L, Gong M, Dong M, Liu T, Roever L, Ho J, Wong MCS, Chan MTV, et al. Plasminogen Activator Inhibitor 1 for Predicting Sepsis Severity and Mortality Outcomes: A Systematic Review and Meta-Analysis. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.01218 .
doi: 10.3389/fimmu.2018.01218
pubmed: 29967603
pmcid: 6015919
Mavri A, Alessi MC, Bastelica D, Geel-Georgelin O, Fina F, Sentocnik JT, Stegnar M, Juhan-Vague I. Subcutaneous abdominal, but not femoral fat expression of plasminogen activator inhibitor-1 (PAI-1) is related to plasma PAI-1 levels and insulin resistance and decreases after weight loss. Diabetologia. 2001;44(11):2025–31.
doi: 10.1007/s001250100007
pubmed: 11719834
Festa A, D’Agostino R Jr., Tracy RP, Haffner SM, Insulin Resistance Atherosclerosis S. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes. 2002;51(4):1131–7.
doi: 10.2337/diabetes.51.4.1131
pubmed: 11916936
Lonardo A, Sookoian S, Pirola CJ, Targher G. Non-alcoholic fatty liver disease and risk of cardiovascular disease. Metabolism. 2016. https://doi.org/10.1016/j.metabol.2015.09.017 .
doi: 10.1016/j.metabol.2015.09.017
pubmed: 26477269
Targher G, Byrne CD, Tilg H. NAFLD and increased risk of cardiovascular disease: clinical associations, pathophysiological mechanisms and pharmacological implications. Gut. 2020;69(9):1691–705.
doi: 10.1136/gutjnl-2020-320622
pubmed: 32321858
Horber S, Lehmann R, Fritsche L, Machann J, Birkenfeld AL, Haring HU, Stefan N, Heni M, Fritsche A, Peter A. Lifestyle Intervention Improves Prothrombotic Coagulation Profile in Individuals at High Risk for Type 2 Diabetes. J Clin Endocrinol Metab. 2021. https://doi.org/10.1210/clinem/dgab124 .
doi: 10.1210/clinem/dgab124
pubmed: 33659996
Westerbacka J, Yki-Jarvinen H, Turpeinen A, Rissanen A, Vehkavaara S, Syrjala M, Lassila R. Inhibition of platelet-collagen interaction: an in vivo action of insulin abolished by insulin resistance in obesity. Arterioscler Thromb Vasc Biol. 2002;22(1):167–72.
doi: 10.1161/hq0102.101546
pubmed: 11788478
Zara M, Guidetti GF, Camera M, Canobbio I, Amadio P, Torti M, Tremoli E, Barbieri SS. Biology and Role of Extracellular Vesicles (EVs) in the Pathogenesis of Thrombosis. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20112840 .
doi: 10.3390/ijms20112840
pubmed: 31248186
pmcid: 6627292