Computational investigations of potential inhibitors of monkeypox virus envelope protein E8 through molecular docking and molecular dynamics simulations.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
23 Aug 2024
Historique:
received: 26 10 2023
accepted: 16 08 2024
medline: 24 8 2024
pubmed: 24 8 2024
entrez: 23 8 2024
Statut: epublish

Résumé

The World Health Organization (WHO) has declared the monkeypox outbreak a public health emergency, as there is no specific therapeutics for monkeypox virus (MPXV) disease. This study focused on docking various commercial drugs and plant-derived compounds against the E8 envelope protein crucial for MPXV attachment and pathogenesis. The target protein structure was modeled based on the vaccinia virus D8L protein. Notably, maraviroc and punicalagin emerged as potential ligands, with punicalagin exhibiting higher binding affinity (- 9.1 kcal/mol) than maraviroc (- 7.8 kcal/mol). Validation through 100 ns molecular dynamics (MD) simulations demonstrated increased stability of the E8-punicalagin complex, with lower RMSD, RMSF, and Rg compared to maraviroc. Enhanced hydrogen bonding, lower solvent accessibility, and compact motions also attributed to higher binding affinity and stability of the complex. MM-PBSA calculations revealed van der Waals, electrostatic, and non-polar solvation as principal stabilizing energies. The binding energy decomposition per residue favored stable interactions between punicalagin and the protein's active site residues (Arg20, Phe56, Glu228, Tyr232) compared to maraviroc. Overall study suggests that punicalagin can act as a potent inhibitor against MPXV. Further research and experimental investigations are warranted to validate its efficacy and safety.

Identifiants

pubmed: 39179615
doi: 10.1038/s41598-024-70433-3
pii: 10.1038/s41598-024-70433-3
doi:

Substances chimiques

Viral Envelope Proteins 0
Maraviroc MD6P741W8A
Antiviral Agents 0
Hydrolyzable Tannins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

19585

Informations de copyright

© 2024. The Author(s).

Références

Ligon, B. L. Monkeypox: A review of the history and emergence in the western hemisphere. Semin. Pediatr. Infect. Dis. 15, 280–287. https://doi.org/10.1053/j.spid.2004.09.001 (2004).
doi: 10.1053/j.spid.2004.09.001 pubmed: 15494953 pmcid: 7129998
Reed, K. D. et al. The detection of monkeypox in humans in the western hemisphere from the departments of pathology. N. Engl. J. Med. 350, 1790–1791 (2004).
doi: 10.1056/NEJMoa032299
Gomez-Lucia, E. Monkeypox: Some keys to understand this emerging disease. Animals https://doi.org/10.3390/ani12172190 (2022).
doi: 10.3390/ani12172190 pubmed: 36077910 pmcid: 9454429
Seitz, R. Orthopox viruses: Infections in humans. Transfus. Med. Hemother. 37, 351–364. https://doi.org/10.1159/000322101 (2010).
doi: 10.1159/000322101 pubmed: 21483466 pmcid: 3048946
Antunes, F., Cordeiro, R. & Virgolino, A. Monkeypox: From a neglected tropical disease to a public health threat. Infect. Dis. Rep. 14, 772–783. https://doi.org/10.3390/idr14050079 (2022).
doi: 10.3390/idr14050079 pubmed: 36286200 pmcid: 9602669
Mcquiston JH et al. Morbidity and Mortality Weekly Report the CDC Domestic Mpox Response-United States, 2022-2023. https://ncbiinsights.ncbi.nlm.nih.gov/2022/05/26/monkeypox-virus-genome/ . Accessed 20 July 2023.
Kugelman, J. R. et al. Genomic variability of monkeypox virus among humans, Democratic Republic of the Congo. Emerg. Infect. Dis. 20, 232–239 (2014).
doi: 10.3201/eid2002.130118 pubmed: 24457084 pmcid: 3901482
Laliberte, J. P., Weisberg, A. S. & Moss, B. The membrane fusion step of vaccinia virus entry is cooperatively mediated by multiple viral proteins and host cell components. PLoS Pathog. 7, e1002446 (2011).
doi: 10.1371/journal.ppat.1002446 pubmed: 22194690 pmcid: 3240603
Chang, S.-J., Chang, Y.-X., Izmailyan, R., Tang, Y.-L. & Chang, W. Vaccinia virus A25 and A26 proteins are fusion suppressors for mature virions and determine strain-specific virus entry pathways into HeLa, CHO-K1, and L Cells. J. Virol. 84, 8422–8432 (2010).
doi: 10.1128/JVI.00599-10 pubmed: 20538855 pmcid: 2919003
Gong, Q., Wang, C., Chuai, X. & Chiu, S. Monkeypox virus: A re-emergent threat to humans. Virol. Sin. 37, 477–482. https://doi.org/10.1016/j.virs.2022.07.006 (2022).
doi: 10.1016/j.virs.2022.07.006 pubmed: 35820590 pmcid: 9437600
Lam, T. P. et al. Identification of diosmin and flavin adenine dinucleotide as repurposing treatments for monkeypox virus: A computational study. Int. J. Mol. Sci. 23, 11570 (2022).
doi: 10.3390/ijms231911570 pubmed: 36232872 pmcid: 9570275
Matho, M. H. et al. Structural and biochemical characterization of the vaccinia virus envelope protein d8 and its recognition by the antibody LA5. J. Virol. 86, 8050–8058 (2012).
doi: 10.1128/JVI.00836-12 pubmed: 22623786 pmcid: 3421696
Adler, H. et al. Clinical features and management of human monkeypox: A retrospective observational study in the UK. Lancet Infect. Dis. 22, 1153–1162 (2022).
doi: 10.1016/S1473-3099(22)00228-6 pubmed: 35623380 pmcid: 9300470
FDA. Smallpox Preparedness and Response Updates from FDA. (2022). https://www.fda.gov/emergency-preparedness-and-response/mcm-issues/fda-mpox-response .
Wainwright, C. L. et al. Future directions for the discovery of natural product-derived immunomodulating drugs: An IUPHAR positional review. Pharmacol. Res. https://doi.org/10.1016/j.phrs.2022.106076 (2022).
doi: 10.1016/j.phrs.2022.106076 pubmed: 35428550
Ciucx N, Peitsrh Urctrophuresis MC. SWISS-MODEL and the Swiss-PdbViewer: An Environment for Comparative Protein Modeling. IS vol. 21 http://www.cxpasy.ch/ . (1997). Accessed 12 July 2023.
Kim, S. et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 49, D1388–D1395 (2021).
doi: 10.1093/nar/gkaa971 pubmed: 33151290
O’boyle, N. M. et al. Open Babel: An open chemical toolbox. J. Cheminform. https://doi.org/10.1186/1758-2946-3-33 (2011).
doi: 10.1186/1758-2946-3-33 pubmed: 21999342 pmcid: 3205042
Hanwell, M. D. et al. SOFTWARE open access Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. https://doi.org/10.1186/1758-2946-4-17 (2012).
doi: 10.1186/1758-2946-4-17 pubmed: 22889332 pmcid: 3542060
Dallakyan, S. & Olson, A. J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 1263, 243–250 (2015).
doi: 10.1007/978-1-4939-2269-7_19 pubmed: 25618350
Harrison, R. K. Phase II and phase III failures: 2013–2015. Nat. Rev. Drug Discov. 15, 817–818 (2016).
doi: 10.1038/nrd.2016.184 pubmed: 27811931
Banerjee, P., Eckert, A. O., Schrey, A. K. & Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 46, W257–W263 (2018).
doi: 10.1093/nar/gky318 pubmed: 29718510 pmcid: 6031011
Karplus, M. & Petsko, G. A. Molecular dynamics simulations in biology. Nature 347, 631–639 (1990).
doi: 10.1038/347631a0 pubmed: 2215695
Karplus, M. & McCammon, J. A. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9, 646–652 (2002).
doi: 10.1038/nsb0902-646 pubmed: 12198485
Abraham, M. J. et al. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).
doi: 10.1016/j.softx.2015.06.001
Huang, W., Lin, Z. & Van Gunsteren, W. F. Validation of the GROMOS 54A7 force field with respect to β-peptide folding. J. Chem. Theory Comput. 7, 1237–1243 (2011).
doi: 10.1021/ct100747y pubmed: 26610119
Berendsen, H. J. C., Grigera, J. R. & Straatsma, T. P. The missing term in effective pair potentialst. J. Phys. Chem. 91, 6269–6271 (1987).
doi: 10.1021/j100308a038
Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).
doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
Turner PJ. XMGRACE, Version 5.1. 19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, Beaverton, OR 2. (2005).
Berendsen, H. J. C. & Hayward, S. Collective protein dynamics in relation to function. Curr. Opin. Struct. Biol. 10, 165–169 (2000).
doi: 10.1016/S0959-440X(00)00061-0 pubmed: 10753809
Amadei, A., Linssen, A. B. M. & Berendsen, H. J. C. Essential dynamics of proteins. Proteins Struct. Funct. Genet. 17, 412–425 (1993).
doi: 10.1002/prot.340170408 pubmed: 8108382
Hub, J. S. & De Groot, B. L. Detection of functional modes in protein dynamics. PLoS Comput. Biol. 5, e1000480 (2009).
doi: 10.1371/journal.pcbi.1000480 pubmed: 19714202 pmcid: 2721685
Haider, S., Parkinson, G. N. & Neidle, S. Molecular dynamics and principal components analysis of human telomeric quadruplex multimers. Biophys. J. 95, 296–311 (2008).
doi: 10.1529/biophysj.107.120501 pubmed: 18375510 pmcid: 2426654
Kumari, R., Kumar, R. & Lynn, A. G-mmpbsa -A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model 54, 1951–1962 (2014).
doi: 10.1021/ci500020m pubmed: 24850022
Aier, I., Varadwaj, P. K. & Raj, U. Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Sci. Rep. 6, 34984 (2016).
doi: 10.1038/srep34984 pubmed: 27713574 pmcid: 5054529
Benson, N. C. & Daggett, V. A comparison of multiscale methods for the analysis of molecular dynamics simulations. J. Phys. Chem. B 116, 8722–8731 (2012).
doi: 10.1021/jp302103t pubmed: 22494262 pmcid: 3406285
Lobanov, MYu., Bogatyreva, N. S. & Galzitskaya, O. V. Radius of gyration as an indicator of protein structure compactness. Mol. Biol. 42, 623–628 (2008).
doi: 10.1134/S0026893308040195
Bellissent-Funel, M. C. et al. Water determines the structure and dynamics of proteins. Chem. Rev. 116, 7673–7697. https://doi.org/10.1021/acs.chemrev.5b00664 (2016).
doi: 10.1021/acs.chemrev.5b00664 pubmed: 27186992 pmcid: 7116073
Wei, G., Xi, W., Nussinov, R. & Ma, B. Protein ensembles: How does nature harness thermodynamic fluctuations for life? The diverse functional roles of conformational ensembles in the cell. Chem. Rev. 116, 6516–6551. https://doi.org/10.1021/acs.chemrev.5b00562 (2016).
doi: 10.1021/acs.chemrev.5b00562 pubmed: 26807783 pmcid: 6407618
Xiang, Y. & White, A. Monkeypox virus emerges from the shadow of its more infamous cousin: Family biology matters. Emerg. Microbes Infect. 11, 1768–1777. https://doi.org/10.1080/22221751.2022.2095309 (2022).
doi: 10.1080/22221751.2022.2095309 pubmed: 35751396 pmcid: 9278444
Raies, A. B. & Bajic, V. B. In silico toxicology: Computational methods for the prediction of chemical toxicity. Wiley Interdiscip. Rev. Comput. Mol. Sci. https://doi.org/10.1002/wcms.1240 (2016).
doi: 10.1002/wcms.1240 pubmed: 27066112 pmcid: 4785608
Suručić, R. et al. Computational study of pomegranate peel extract polyphenols as potential inhibitors of SARS-CoV-2 virus internalization. Mol. Cell. Biochem. 476, 1179–1193 (2021).
doi: 10.1007/s11010-020-03981-7 pubmed: 33200379
Ichiye, T. & Karplus, M. Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins Struct. Funct. Genet. 11, 205–217 (1991).
doi: 10.1002/prot.340110305 pubmed: 1749773
Patgiri, A., Jochim, A. L. & Arora, P. S. A hydrogen bond surrogate approach for stabilization of short peptide sequences in α-helical conformation. Acc Chem. Res. 41, 1289–1300 (2008).
doi: 10.1021/ar700264k pubmed: 18630933 pmcid: 7189275
Zhang, D. & Lazim, R. Application of conventional molecular dynamics simulation in evaluating the stability of apomyoglobin in urea solution. Sci. Rep. https://doi.org/10.1038/srep44651 (2017).
doi: 10.1038/srep44651 pubmed: 29273789 pmcid: 5741771
Durham, E., Dorr, B., Woetzel, N., Staritzbichler, R. & Meiler, J. Solvent accessible surface area approximations for rapid and accurate protein structure prediction. J. Mol. Model. 15, 1093–1108 (2009).
doi: 10.1007/s00894-009-0454-9 pubmed: 19234730 pmcid: 2712621

Auteurs

Rohit Das (R)

Department of Microbiology, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, Sikkim, 737102, India.

Anil Bhattarai (A)

Department of Medical Biotechnology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, 5th Mile, Tadong, Gangtok, Sikkim, 737102, India. anilbhattarai9@gmail.com.

Rohit Karn (R)

Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

Buddhiman Tamang (B)

Department of Microbiology, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, Sikkim, 737102, India. bmtamang3@gmail.com.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Animals Swine Antiviral Agents Swine Diseases Coronavirus Infections
Humans Carcinoma, Hepatocellular Liver Neoplasms Aged United States

Classifications MeSH