Clonal succession after prolonged antiretroviral therapy rejuvenates CD8


Journal

Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354

Informations de publication

Date de publication:
23 Aug 2024
Historique:
received: 02 06 2023
accepted: 15 07 2024
medline: 24 8 2024
pubmed: 24 8 2024
entrez: 23 8 2024
Statut: aheadofprint

Résumé

Human immunodeficiency virus 1 (HIV-1) infection is characterized by a dynamic and persistent state of viral replication that overwhelms the host immune system in the absence of antiretroviral therapy (ART). The impact of prolonged treatment on the antiviral efficacy of HIV-1-specific CD8

Identifiants

pubmed: 39179934
doi: 10.1038/s41590-024-01931-9
pii: 10.1038/s41590-024-01931-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Agence Nationale de Recherches sur le Sida et les Hépatites Virales (National Agency for AIDS Research)
ID : 2016-A00400-51
Organisme : Université de Bordeaux (University of Bordeaux)
ID : Senior IdEx Chair
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : 14CE16002901
Organisme : Wellcome Trust (Wellcome)
ID : 100326/Z/12/Z
Organisme : Japan Agency for Medical Research and Development (AMED)
ID : JP22fk0410052

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Finzi, D. et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 1295–1300 (1997).
pubmed: 9360927 doi: 10.1126/science.278.5341.1295
Wong, J. K. et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278, 1291–1295 (1997).
pubmed: 9360926 doi: 10.1126/science.278.5341.1291
Hamer, D. H. Can HIV be cured? Mechanisms of HIV persistence and strategies to combat it. Curr. HIV Res. 2, 99–111 (2004).
pubmed: 15078175 doi: 10.2174/1570162043484915
Appay, V., Douek, D. C. & Price, D. A. CD8
pubmed: 18535580 doi: 10.1038/nm.f.1774
Saez-Cirion, A., Pancino, G., Sinet, M., Venet, A. & Lambotte, O. HIV controllers: how do they tame the virus? Trends Immunol. 28, 532–540 (2007).
pubmed: 17981085 doi: 10.1016/j.it.2007.09.002
Betts, M. R. et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8
pubmed: 16467198 pmcid: 1895811 doi: 10.1182/blood-2005-12-4818
Almeida, J. R. et al. Superior control of HIV-1 replication by CD8
pubmed: 17893201 pmcid: 2118466 doi: 10.1084/jem.20070784
Migueles, S. A. et al. Lytic granule loading of CD8
pubmed: 19062316 pmcid: 2622434 doi: 10.1016/j.immuni.2008.10.010
Saez-Cirion, A. et al. HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype. Proc. Natl Acad. Sci. USA 104, 6776–6781 (2007).
pubmed: 17428922 pmcid: 1851664 doi: 10.1073/pnas.0611244104
Almeida, J. R. et al. Antigen sensitivity is a major determinant of CD8
pubmed: 19389882 pmcid: 2710928 doi: 10.1182/blood-2009-02-206557
Hersperger, A. R. et al. Perforin expression directly ex vivo by HIV-specific CD8 T-cells is a correlate of HIV elite control. PLoS Pathog. 6, e1000917 (2010).
pubmed: 20523897 pmcid: 2877741 doi: 10.1371/journal.ppat.1000917
Duvall, M. G. et al. Polyfunctional T cell responses are a hallmark of HIV-2 infection. Eur. J. Immunol. 38, 350–363 (2008).
pubmed: 18200635 pmcid: 2362391 doi: 10.1002/eji.200737768
Leligdowicz, A. et al. Highly avid, oligoclonal, early-differentiated antigen-specific CD8
pubmed: 20411566 doi: 10.1002/eji.200940295
Angin, M. et al. Preservation of lymphopoietic potential and virus suppressive capacity by CD8
pubmed: 27566819 doi: 10.4049/jimmunol.1600693
Day, C. L. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350–354 (2006).
pubmed: 16921384 doi: 10.1038/nature05115
Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).
pubmed: 21739672 doi: 10.1038/ni.2035
Buggert, M. et al. T-bet and Eomes are differentially linked to the exhausted phenotype of CD8
pubmed: 25032686 pmcid: 4102564 doi: 10.1371/journal.ppat.1004251
Papagno, L. et al. Immune activation and CD8
pubmed: 14966528 pmcid: 340937 doi: 10.1371/journal.pbio.0020020
Appay, V. & Sauce, D. Assessing immune aging in HIV-infected patients. Virulence 8, 529–538 (2017).
pubmed: 27310730 doi: 10.1080/21505594.2016.1195536
Oxenius, A. et al. Early highly active antiretroviral therapy for acute HIV-1 infection preserves immune function of CD8
pubmed: 10737796 pmcid: 16248 doi: 10.1073/pnas.97.7.3382
Takata, H. et al. Long-term antiretroviral therapy initiated in acute HIV infection prevents residual dysfunction of HIV-specific CD8
pubmed: 36088683 pmcid: 9471490 doi: 10.1016/j.ebiom.2022.104253
Chouquet, C. et al. Correlation between breadth of memory HIV-specific cytotoxic T cells, viral load and disease progression in HIV infection. AIDS 16, 2399–2407 (2002).
pubmed: 12461413 doi: 10.1097/00002030-200212060-00004
Haas, G. et al. Cytotoxic T-cell responses to HIV-1 reverse transcriptase, integrase and protease. AIDS 12, 1427–1436 (1998).
pubmed: 9727563 doi: 10.1097/00002030-199812000-00004
Kousignian, I. et al. Markov modelling of changes in HIV-specific cytotoxic T-lymphocyte responses with time in untreated HIV-1 infected patients. Stat. Med. 22, 1675–1690 (2003).
pubmed: 12720304 doi: 10.1002/sim.1404
Fali, T. et al. New insights into lymphocyte differentiation and aging from telomere length and telomerase activity measurements. J. Immunol. 202, 1962–1969 (2019).
pubmed: 30737273 doi: 10.4049/jimmunol.1801475
Nguyen, S. et al. Elite control of HIV is associated with distinct functional and transcriptional signatures in lymphoid tissue CD8
pubmed: 31852798 pmcid: 7265335 doi: 10.1126/scitranslmed.aax4077
Quigley, M. et al. Transcriptional analysis of HIV-specific CD8
pubmed: 20890291 pmcid: 3326577 doi: 10.1038/nm.2232
Migueles, S. A. et al. HIV-specific CD8
pubmed: 12368910 doi: 10.1038/ni845
Migueles, S. A. et al. Antigenic restimulation of virus-specific memory CD8
doi: 10.1128/JVI.01595-20
Deng, K. et al. Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature 517, 381–385 (2015).
pubmed: 25561180 pmcid: 4406054 doi: 10.1038/nature14053
Bozorgmehr, N. et al. Expanded antigen-experienced CD160
pubmed: 33931471 pmcid: 8098955 doi: 10.1136/jitc-2020-002189
Acharya, N. et al. Endogenous glucocorticoid signaling regulates CD8
pubmed: 32937153 pmcid: 7682805 doi: 10.1016/j.immuni.2020.08.005
Hung, M. H. et al. Tumor methionine metabolism drives T-cell exhaustion in hepatocellular carcinoma. Nat. Commun. 12, 1455 (2021).
pubmed: 33674593 pmcid: 7935900 doi: 10.1038/s41467-021-21804-1
Rutishauser, R. L. et al. TCF-1 regulates HIV-specific CD8
pubmed: 33351785 pmcid: 7934879 doi: 10.1172/jci.insight.136648
Passaes, C. et al. Optimal maturation of the SIV-specific CD8
pubmed: 32966788 doi: 10.1016/j.celrep.2020.108174
Takata, H. et al. An active HIV reservoir during ART is associated with maintenance of HIV-specific CD8
pubmed: 37708852 pmcid: 10564289 doi: 10.1016/j.chom.2023.08.012
Dube, M. et al. Spontaneous HIV expression during suppressive ART is associated with the magnitude and function of HIV-specific CD4
pubmed: 37708853 doi: 10.1016/j.chom.2023.08.006
Lissina, A., Chakrabarti, L. A., Takiguchi, M. & Appay, V. TCR clonotypes: molecular determinants of T-cell efficacy against HIV. Curr. Opin. Virol. 16, 77–85 (2016).
pubmed: 26874617 doi: 10.1016/j.coviro.2016.01.017
McCarthy, D. J., Campbell, K. R., Lun, A. T. & Wills, Q. F. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179–1186 (2017).
pubmed: 28088763 pmcid: 5408845 doi: 10.1093/bioinformatics/btw777
Lun, A. T., Bach, K. & Marioni, J. C. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 17, 75 (2016).
pubmed: 27122128 doi: 10.1186/s13059-016-0947-7
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Le Cao, K. A., Boitard, S. & Besse, P. Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinformatics 12, 253 (2011).
pubmed: 21693065 pmcid: 3133555 doi: 10.1186/1471-2105-12-253
Papuchon, J. et al. Resistance mutations and CTL epitopes in archived HIV-1 DNA of patients on antiviral treatment: toward a new concept of vaccine. PLoS ONE 8, e69029 (2013).
pubmed: 23874854 pmcid: 3706427 doi: 10.1371/journal.pone.0069029
Ueno, T., Fujiwara, M., Tomiyama, H., Onodera, M. & Takiguchi, M. Reconstitution of anti-HIV effector functions of primary human CD8 T lymphocytes by transfer of HIV-specific αβ TCR genes. Eur. J. Immunol. 34, 3379–3388 (2004).
pubmed: 15517606 doi: 10.1002/eji.200425568
Imataki, O. et al. IL-21 can supplement suboptimal Lck-independent MAPK activation in a STAT-3-dependent manner in human CD8
pubmed: 22238455 doi: 10.4049/jimmunol.1003446

Auteurs

Eoghann White (E)

ImmunoConcEpT, UMR 5164, Université de Bordeaux, CNRS, INSERM, Bordeaux, France.
Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, Paris, France.

Laura Papagno (L)

ImmunoConcEpT, UMR 5164, Université de Bordeaux, CNRS, INSERM, Bordeaux, France.

Assia Samri (A)

Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, Paris, France.

Kenji Sugata (K)

Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.

Boris Hejblum (B)

Bordeaux Population Health Research Centre, U1219, Université de Bordeaux, INSERM, Inria SISTM, Bordeaux, France.

Amy R Henry (AR)

Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Daniel C Rogan (DC)

Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Samuel Darko (S)

Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Patricia Recordon-Pinson (P)

Microbiologie Fondamentale et Pathogénicité, UMR 5234, Université de Bordeaux, CNRS, Bordeaux, France.

Yasmine Dudoit (Y)

Institut Pierre Louis d'Epidémiologie et de Sante Publique, AP-HP, Pitié-Salpêtrière Hospital, Department of Infectious Diseases, Sorbonne Université, INSERM, Paris, France.

Sian Llewellyn-Lacey (S)

Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.

Lisa A Chakrabarti (LA)

CIVIC Group, Virus and Immunity Unit, Institut Pasteur, CNRS UMR 3569, Université Paris Cité, Paris, France.

Florence Buseyne (F)

Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, CNRS UMR 3569, Université Paris Cité, Paris, France.

Stephen A Migueles (SA)

Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

David A Price (DA)

Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.
Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK.

Marie-Aline Andreola (MA)

Microbiologie Fondamentale et Pathogénicité, UMR 5234, Université de Bordeaux, CNRS, Bordeaux, France.

Yorifumi Satou (Y)

Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.

Rodolphe Thiebaut (R)

Bordeaux Population Health Research Centre, U1219, Université de Bordeaux, INSERM, Inria SISTM, Bordeaux, France.
CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France.

Christine Katlama (C)

Institut Pierre Louis d'Epidémiologie et de Sante Publique, AP-HP, Pitié-Salpêtrière Hospital, Department of Infectious Diseases, Sorbonne Université, INSERM, Paris, France.

Brigitte Autran (B)

Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, Paris, France.

Daniel C Douek (DC)

Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Victor Appay (V)

ImmunoConcEpT, UMR 5164, Université de Bordeaux, CNRS, INSERM, Bordeaux, France. victor.appay@immuconcept.org.

Classifications MeSH