Clonal succession after prolonged antiretroviral therapy rejuvenates CD8
Journal
Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354
Informations de publication
Date de publication:
23 Aug 2024
23 Aug 2024
Historique:
received:
02
06
2023
accepted:
15
07
2024
medline:
24
8
2024
pubmed:
24
8
2024
entrez:
23
8
2024
Statut:
aheadofprint
Résumé
Human immunodeficiency virus 1 (HIV-1) infection is characterized by a dynamic and persistent state of viral replication that overwhelms the host immune system in the absence of antiretroviral therapy (ART). The impact of prolonged treatment on the antiviral efficacy of HIV-1-specific CD8
Identifiants
pubmed: 39179934
doi: 10.1038/s41590-024-01931-9
pii: 10.1038/s41590-024-01931-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Agence Nationale de Recherches sur le Sida et les Hépatites Virales (National Agency for AIDS Research)
ID : 2016-A00400-51
Organisme : Université de Bordeaux (University of Bordeaux)
ID : Senior IdEx Chair
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : 14CE16002901
Organisme : Wellcome Trust (Wellcome)
ID : 100326/Z/12/Z
Organisme : Japan Agency for Medical Research and Development (AMED)
ID : JP22fk0410052
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Finzi, D. et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 1295–1300 (1997).
pubmed: 9360927
doi: 10.1126/science.278.5341.1295
Wong, J. K. et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278, 1291–1295 (1997).
pubmed: 9360926
doi: 10.1126/science.278.5341.1291
Hamer, D. H. Can HIV be cured? Mechanisms of HIV persistence and strategies to combat it. Curr. HIV Res. 2, 99–111 (2004).
pubmed: 15078175
doi: 10.2174/1570162043484915
Appay, V., Douek, D. C. & Price, D. A. CD8
pubmed: 18535580
doi: 10.1038/nm.f.1774
Saez-Cirion, A., Pancino, G., Sinet, M., Venet, A. & Lambotte, O. HIV controllers: how do they tame the virus? Trends Immunol. 28, 532–540 (2007).
pubmed: 17981085
doi: 10.1016/j.it.2007.09.002
Betts, M. R. et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8
pubmed: 16467198
pmcid: 1895811
doi: 10.1182/blood-2005-12-4818
Almeida, J. R. et al. Superior control of HIV-1 replication by CD8
pubmed: 17893201
pmcid: 2118466
doi: 10.1084/jem.20070784
Migueles, S. A. et al. Lytic granule loading of CD8
pubmed: 19062316
pmcid: 2622434
doi: 10.1016/j.immuni.2008.10.010
Saez-Cirion, A. et al. HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype. Proc. Natl Acad. Sci. USA 104, 6776–6781 (2007).
pubmed: 17428922
pmcid: 1851664
doi: 10.1073/pnas.0611244104
Almeida, J. R. et al. Antigen sensitivity is a major determinant of CD8
pubmed: 19389882
pmcid: 2710928
doi: 10.1182/blood-2009-02-206557
Hersperger, A. R. et al. Perforin expression directly ex vivo by HIV-specific CD8 T-cells is a correlate of HIV elite control. PLoS Pathog. 6, e1000917 (2010).
pubmed: 20523897
pmcid: 2877741
doi: 10.1371/journal.ppat.1000917
Duvall, M. G. et al. Polyfunctional T cell responses are a hallmark of HIV-2 infection. Eur. J. Immunol. 38, 350–363 (2008).
pubmed: 18200635
pmcid: 2362391
doi: 10.1002/eji.200737768
Leligdowicz, A. et al. Highly avid, oligoclonal, early-differentiated antigen-specific CD8
pubmed: 20411566
doi: 10.1002/eji.200940295
Angin, M. et al. Preservation of lymphopoietic potential and virus suppressive capacity by CD8
pubmed: 27566819
doi: 10.4049/jimmunol.1600693
Day, C. L. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350–354 (2006).
pubmed: 16921384
doi: 10.1038/nature05115
Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).
pubmed: 21739672
doi: 10.1038/ni.2035
Buggert, M. et al. T-bet and Eomes are differentially linked to the exhausted phenotype of CD8
pubmed: 25032686
pmcid: 4102564
doi: 10.1371/journal.ppat.1004251
Papagno, L. et al. Immune activation and CD8
pubmed: 14966528
pmcid: 340937
doi: 10.1371/journal.pbio.0020020
Appay, V. & Sauce, D. Assessing immune aging in HIV-infected patients. Virulence 8, 529–538 (2017).
pubmed: 27310730
doi: 10.1080/21505594.2016.1195536
Oxenius, A. et al. Early highly active antiretroviral therapy for acute HIV-1 infection preserves immune function of CD8
pubmed: 10737796
pmcid: 16248
doi: 10.1073/pnas.97.7.3382
Takata, H. et al. Long-term antiretroviral therapy initiated in acute HIV infection prevents residual dysfunction of HIV-specific CD8
pubmed: 36088683
pmcid: 9471490
doi: 10.1016/j.ebiom.2022.104253
Chouquet, C. et al. Correlation between breadth of memory HIV-specific cytotoxic T cells, viral load and disease progression in HIV infection. AIDS 16, 2399–2407 (2002).
pubmed: 12461413
doi: 10.1097/00002030-200212060-00004
Haas, G. et al. Cytotoxic T-cell responses to HIV-1 reverse transcriptase, integrase and protease. AIDS 12, 1427–1436 (1998).
pubmed: 9727563
doi: 10.1097/00002030-199812000-00004
Kousignian, I. et al. Markov modelling of changes in HIV-specific cytotoxic T-lymphocyte responses with time in untreated HIV-1 infected patients. Stat. Med. 22, 1675–1690 (2003).
pubmed: 12720304
doi: 10.1002/sim.1404
Fali, T. et al. New insights into lymphocyte differentiation and aging from telomere length and telomerase activity measurements. J. Immunol. 202, 1962–1969 (2019).
pubmed: 30737273
doi: 10.4049/jimmunol.1801475
Nguyen, S. et al. Elite control of HIV is associated with distinct functional and transcriptional signatures in lymphoid tissue CD8
pubmed: 31852798
pmcid: 7265335
doi: 10.1126/scitranslmed.aax4077
Quigley, M. et al. Transcriptional analysis of HIV-specific CD8
pubmed: 20890291
pmcid: 3326577
doi: 10.1038/nm.2232
Migueles, S. A. et al. HIV-specific CD8
pubmed: 12368910
doi: 10.1038/ni845
Migueles, S. A. et al. Antigenic restimulation of virus-specific memory CD8
doi: 10.1128/JVI.01595-20
Deng, K. et al. Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature 517, 381–385 (2015).
pubmed: 25561180
pmcid: 4406054
doi: 10.1038/nature14053
Bozorgmehr, N. et al. Expanded antigen-experienced CD160
pubmed: 33931471
pmcid: 8098955
doi: 10.1136/jitc-2020-002189
Acharya, N. et al. Endogenous glucocorticoid signaling regulates CD8
pubmed: 32937153
pmcid: 7682805
doi: 10.1016/j.immuni.2020.08.005
Hung, M. H. et al. Tumor methionine metabolism drives T-cell exhaustion in hepatocellular carcinoma. Nat. Commun. 12, 1455 (2021).
pubmed: 33674593
pmcid: 7935900
doi: 10.1038/s41467-021-21804-1
Rutishauser, R. L. et al. TCF-1 regulates HIV-specific CD8
pubmed: 33351785
pmcid: 7934879
doi: 10.1172/jci.insight.136648
Passaes, C. et al. Optimal maturation of the SIV-specific CD8
pubmed: 32966788
doi: 10.1016/j.celrep.2020.108174
Takata, H. et al. An active HIV reservoir during ART is associated with maintenance of HIV-specific CD8
pubmed: 37708852
pmcid: 10564289
doi: 10.1016/j.chom.2023.08.012
Dube, M. et al. Spontaneous HIV expression during suppressive ART is associated with the magnitude and function of HIV-specific CD4
pubmed: 37708853
doi: 10.1016/j.chom.2023.08.006
Lissina, A., Chakrabarti, L. A., Takiguchi, M. & Appay, V. TCR clonotypes: molecular determinants of T-cell efficacy against HIV. Curr. Opin. Virol. 16, 77–85 (2016).
pubmed: 26874617
doi: 10.1016/j.coviro.2016.01.017
McCarthy, D. J., Campbell, K. R., Lun, A. T. & Wills, Q. F. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179–1186 (2017).
pubmed: 28088763
pmcid: 5408845
doi: 10.1093/bioinformatics/btw777
Lun, A. T., Bach, K. & Marioni, J. C. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 17, 75 (2016).
pubmed: 27122128
doi: 10.1186/s13059-016-0947-7
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517
pmcid: 1239896
doi: 10.1073/pnas.0506580102
Le Cao, K. A., Boitard, S. & Besse, P. Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinformatics 12, 253 (2011).
pubmed: 21693065
pmcid: 3133555
doi: 10.1186/1471-2105-12-253
Papuchon, J. et al. Resistance mutations and CTL epitopes in archived HIV-1 DNA of patients on antiviral treatment: toward a new concept of vaccine. PLoS ONE 8, e69029 (2013).
pubmed: 23874854
pmcid: 3706427
doi: 10.1371/journal.pone.0069029
Ueno, T., Fujiwara, M., Tomiyama, H., Onodera, M. & Takiguchi, M. Reconstitution of anti-HIV effector functions of primary human CD8 T lymphocytes by transfer of HIV-specific αβ TCR genes. Eur. J. Immunol. 34, 3379–3388 (2004).
pubmed: 15517606
doi: 10.1002/eji.200425568
Imataki, O. et al. IL-21 can supplement suboptimal Lck-independent MAPK activation in a STAT-3-dependent manner in human CD8
pubmed: 22238455
doi: 10.4049/jimmunol.1003446