G-quadruplexes as pivotal components of cis-regulatory elements in the human genome.
Cis-regulatory elements
CRE
G-quadruplex
G4
Genomic function
Non-coding elements
Journal
BMC biology
ISSN: 1741-7007
Titre abrégé: BMC Biol
Pays: England
ID NLM: 101190720
Informations de publication
Date de publication:
26 Aug 2024
26 Aug 2024
Historique:
received:
21
03
2024
accepted:
05
08
2024
medline:
26
8
2024
pubmed:
26
8
2024
entrez:
25
8
2024
Statut:
epublish
Résumé
Cis-regulatory elements (CREs) are crucial for regulating gene expression, and G-quadruplexes (G4s), as prototypal non-canonical DNA structures, may play a role in this regulation. However, the relationship between G4s and CREs, especially with non-promoter-like functional elements, requires further systematic investigation. We aimed to investigate the associations between G4s and human cCREs (candidate CREs) inferred from the Encyclopedia of DNA Elements (ENCODE) data. We found that G4s are prominently enriched in most types of cCREs, especially those with promoter-like signatures (PLS). The co-occurrence of CTCF signals with H3K4me3 or H3K27ac signals strengthens the association between cCREs and G4s. Genetic variants in G4s, particularly within their G-runs, exhibit higher regulatory potential and deleterious effects compared to cCREs. The G-runs within G4s near transcriptional start sites (TSSs) are more evolutionarily constrained compared to G-runs in cCREs, while those far from the TSS are relatively less conserved. The presence of G4s is often linked to a more favorable local chromatin environment for the activation and execution of regulatory function of cCREs, potentially attributable to the formation of G4 secondary structures. Finally, we discovered that G4-associated cCREs exhibit widespread activation in a variety of cancers. Our study suggests that G4s are integral components of human cis-regulatory elements, extending beyond their potential role in promoters. The G4 primary sequences are associated with the localization of CREs, while the G4 structures are linked to the activation of these elements. Therefore, we propose defining G4s as pivotal regulatory elements in the human genome.
Sections du résumé
BACKGROUND
BACKGROUND
Cis-regulatory elements (CREs) are crucial for regulating gene expression, and G-quadruplexes (G4s), as prototypal non-canonical DNA structures, may play a role in this regulation. However, the relationship between G4s and CREs, especially with non-promoter-like functional elements, requires further systematic investigation. We aimed to investigate the associations between G4s and human cCREs (candidate CREs) inferred from the Encyclopedia of DNA Elements (ENCODE) data.
RESULTS
RESULTS
We found that G4s are prominently enriched in most types of cCREs, especially those with promoter-like signatures (PLS). The co-occurrence of CTCF signals with H3K4me3 or H3K27ac signals strengthens the association between cCREs and G4s. Genetic variants in G4s, particularly within their G-runs, exhibit higher regulatory potential and deleterious effects compared to cCREs. The G-runs within G4s near transcriptional start sites (TSSs) are more evolutionarily constrained compared to G-runs in cCREs, while those far from the TSS are relatively less conserved. The presence of G4s is often linked to a more favorable local chromatin environment for the activation and execution of regulatory function of cCREs, potentially attributable to the formation of G4 secondary structures. Finally, we discovered that G4-associated cCREs exhibit widespread activation in a variety of cancers.
CONCLUSIONS
CONCLUSIONS
Our study suggests that G4s are integral components of human cis-regulatory elements, extending beyond their potential role in promoters. The G4 primary sequences are associated with the localization of CREs, while the G4 structures are linked to the activation of these elements. Therefore, we propose defining G4s as pivotal regulatory elements in the human genome.
Identifiants
pubmed: 39183303
doi: 10.1186/s12915-024-01971-5
pii: 10.1186/s12915-024-01971-5
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
177Subventions
Organisme : ANR G4Access
ID : ANR-20-CE12-0023
Organisme : Leading Technology Program of Jiangsu Province
ID : BK20222008
Organisme : National Natural Science Foundation of China
ID : 61972084
Organisme : China Scholarship Council
ID : 202106090125
Informations de copyright
© 2024. The Author(s).
Références
Lewis EB. A gene complex controlling segmentation in Drosophila. Nature. 1978;276(5688):565–70.
pubmed: 103000
doi: 10.1038/276565a0
Venters BJ, Pugh BF. How eukaryotic genes are transcribed. Crit Rev Biochem Mol Biol. 2009;44(2–3):117–41.
pubmed: 19514890
pmcid: 2718758
doi: 10.1080/10409230902858785
Preissl S, Gaulton KJ, Ren B. Characterizing cis-regulatory elements using single-cell epigenomics. Nat Rev Genet. 2023;24(1):21–43.
pubmed: 35840754
doi: 10.1038/s41576-022-00509-1
Kolovos P, Knoch TA, Grosveld FG, Cook PR, Papantonis A. Enhancers and silencers: an integrated and simple model for their function. Epigenet Chromatin. 2012;5(1):1.
doi: 10.1186/1756-8935-5-1
Li Y, Chen CY, Kaye AM, Wasserman WW. The identification of cis-regulatory elements: a review from a machine learning perspective. BioSyst. 2015;138:6–17.
doi: 10.1016/j.biosystems.2015.10.002
Varshney D, Spiegel J, Zyner K, Tannahill D, Balasubramanian S. The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol. 2020;21(8):459–74.
pubmed: 32313204
pmcid: 7115845
doi: 10.1038/s41580-020-0236-x
Spiegel J, Adhikari S, Balasubramanian S. The structure and function of DNA G-Quadruplexes. Trends Chem. 2020;2(2):123–36.
pubmed: 32923997
pmcid: 7472594
doi: 10.1016/j.trechm.2019.07.002
Bedrat A, Lacroix L, Mergny J-L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016;44(4):1746–59.
pubmed: 26792894
pmcid: 4770238
doi: 10.1093/nar/gkw006
Lago S, Nadai M, Cernilogar FM, Kazerani M, Domíniguez Moreno H, Schotta G, et al. Promoter G-quadruplexes and transcription factors cooperate to shape the cell type-specific transcriptome. Nat Commun. 2021;12(1):3885.
pubmed: 34162892
pmcid: 8222265
doi: 10.1038/s41467-021-24198-2
Huppert JL, Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005;33(9):2908–16.
pubmed: 15914667
pmcid: 1140081
doi: 10.1093/nar/gki609
Georgakopoulos-Soares I, Parada GE, Wong HY, Medhi R, Furlan G, Munita R, et al. Alternative splicing modulation by G-quadruplexes. Nat Commun. 2022;13(1):2404.
pubmed: 35504902
pmcid: 9065059
doi: 10.1038/s41467-022-30071-7
Hänsel-Hertsch R, Spiegel J, Marsico G, Tannahill D, Balasubramanian S. Genome-wide mapping of endogenous G-quadruplex DNA structures by chromatin immunoprecipitation and high-throughput sequencing. Nat Protoc. 2018;13(3):551–64.
pubmed: 29470465
doi: 10.1038/nprot.2017.150
Esnault C, Magat T, Zine El Aabidine A, Garcia-Oliver E, Cucchiarini A, Bouchouika S, et al. G4access identifies G-quadruplexes and their associations with open chromatin and imprinting control regions. Nat Genet. 2023;55(8):1359–69.
pubmed: 37400615
doi: 10.1038/s41588-023-01437-4
Kumari S, Bugaut A, Huppert JL, Balasubramanian S. An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat Chem Biol. 2007;3(4):218–21.
pubmed: 17322877
pmcid: 2206252
doi: 10.1038/nchembio864
Zhang R, Shu H, Wang Y, Tao T, Tu J, Wang C, et al. G-Quadruplex structures are key modulators of somatic structural variants in cancers. Cancer Res. 2023;83(8):1234–48.
pubmed: 36791413
pmcid: 10102852
doi: 10.1158/0008-5472.CAN-22-3089
Guiblet WM, Cremona MA, Harris RS, Chen D, Eckert KA, Chiaromonte F, et al. Non-B DNA: a major contributor to small- and large-scale variation in nucleotide substitution frequencies across the genome. Nucleic Acids Res. 2021;49(3):1497–516.
pubmed: 33450015
pmcid: 7897504
doi: 10.1093/nar/gkaa1269
Jansson LI, Hentschel J, Parks JW, Chang TR, Lu C, Baral R, et al. Telomere DNA G-quadruplex folding within actively extending human telomerase. Proc Natl Acad Sci. 2019;116(19):9350–9.
pubmed: 31019071
pmcid: 6510993
doi: 10.1073/pnas.1814777116
Prorok P, Artufel M, Aze A, Coulombe P, Peiffer I, Lacroix L, et al. Involvement of G-quadruplex regions in mammalian replication origin activity. Nat Commun. 2019;10(1):3274.
pubmed: 31332171
pmcid: 6646384
doi: 10.1038/s41467-019-11104-0
Abascal F, Acosta R, Addleman NJ, Adrian J, Afzal V, Ai R, et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature. 2020;583(7818):699–710.
doi: 10.1038/s41586-020-2493-4
Guiblet WM, DeGiorgio M, Cheng X, Chiaromonte F, Eckert KA, Huang Y-F, et al. Selection and thermostability suggest G-quadruplexes are novel functional elements of the human genome. Genome Res. 2021;31(7):1136–49.
pubmed: 34187812
pmcid: 8256861
doi: 10.1101/gr.269589.120
Hou Y, Li F, Zhang R, Li S, Liu H, Qin ZS, et al. Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure. Epigenetics. 2019;14(9):894–911.
pubmed: 31177910
pmcid: 6691997
doi: 10.1080/15592294.2019.1621140
Wulfridge P, Yan Q, Rell N, Doherty J, Jacobson S, Offley S, et al. G-quadruplexes associated with R-loops promote CTCF binding. Mol Cell. 2023;83(17):3064-79.e5.
pubmed: 37552993
doi: 10.1016/j.molcel.2023.07.009
Tikhonova P, Pavlova I, Isaakova E, Tsvetkov V, Bogomazova A, Vedekhina T, et al. DNA G-Quadruplexes contribute to CTCF recruitment. Int J Mol Sci. 2021;22(13):7090. https://doi.org/10.3390/ijms22137090 .
Dong S, Zhao N, Spragins E, Kagda MS, Li M, Assis P, et al. Annotating and prioritizing human non-coding variants with RegulomeDB vol 2. Nat Genet. 2023;55(5):724–6.
pubmed: 37173523
pmcid: 10989417
doi: 10.1038/s41588-023-01365-3
Huang Y-F, Gulko B, Siepel A. Fast, scalable prediction of deleterious noncoding variants from functional and population genomic data. Nat Genet. 2017;49(4):618–24.
pubmed: 28288115
pmcid: 5395419
doi: 10.1038/ng.3810
Chen S, Francioli LC, Goodrich JK, Collins RL, Kanai M, Wang Q, et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature. 2024;625(7993):92–100.
pubmed: 38057664
doi: 10.1038/s41586-023-06045-0
Sullivan PF, Meadows JRS, Gazal S, Phan BN, Li X, Genereux DP, et al. Leveraging base-pair mammalian constraint to understand genetic variation and human disease. Science. 2023;380(6643):eabn2937.
pubmed: 37104612
pmcid: 10259825
doi: 10.1126/science.abn2937
Fang S, Liu S, Yang D, Yang L, Hu C-D, Wan J. Decoding regulatory associations of G-quadruplex with epigenetic and transcriptomic functional components. Front Genet. 2022;13:957023.
pubmed: 36092921
pmcid: 9452811
doi: 10.3389/fgene.2022.957023
Korsakova A, Phan AT. Prediction of G4 formation in live cells with epigenetic data: a deep learning approach. NAR Genomics Bioinf. 2023;5(3):lqad071.
doi: 10.1093/nargab/lqad071
Grubert F, Srivas R, Spacek DV, Kasowski M, Ruiz-Velasco M, Sinnott-Armstrong N, et al. Landscape of cohesin-mediated chromatin loops in the human genome. Nature. 2020;583(7818):737–43.
pubmed: 32728247
pmcid: 7410831
doi: 10.1038/s41586-020-2151-x
Andrews G, Fan K, Pratt HE, Phalke N, Zoonomia Consortium§, Karlsson EK, et al. Mammalian evolution of human cis-regulatory elements and transcription factor binding sites. Science. 2023;380(6643):eabn7930.
pubmed: 37104580
doi: 10.1126/science.abn7930
Hammal F, de Langen P, Bergon A, Lopez F, Ballester B. ReMap 2022: a database of Human, Mouse, Drosophila and Arabidopsis regulatory regions from an integrative analysis of DNA-binding sequencing experiments. Nucleic Acids Res. 2022;50(D1):D316–25.
pubmed: 34751401
doi: 10.1093/nar/gkab996
Spiegel J, Cuesta SM, Adhikari S, Hänsel-Hertsch R, Tannahill D, Balasubramanian S. G-quadruplexes are transcription factor binding hubs in human chromatin. Genome Biol. 2021;22(1):117.
pubmed: 33892767
pmcid: 8063395
doi: 10.1186/s13059-021-02324-z
Da Ros S, Nicoletto G, Rigo R, Ceschi S, Zorzan E, Dacasto M, et al. G-Quadruplex Modulation of SP1 Functional Binding Sites at the KIT Proximal Promoter. Int J Mol Sci. 2021;22(1):329.
doi: 10.3390/ijms22010329
Raiber E-A, Kranaster R, Lam E, Nikan M, Balasubramanian S. A non-canonical DNA structure is a binding motif for the transcription factor SP1 in vitro. Nucleic Acids Res. 2011;40(4):1499–508.
pubmed: 22021377
pmcid: 3287196
doi: 10.1093/nar/gkr882
Li L, Williams P, Ren W, Wang MY, Gao Z, Miao W, et al. YY1 interacts with guanine quadruplexes to regulate DNA looping and gene expression. Nat Chem Biol. 2021;17(2):161–8.
pubmed: 33199912
doi: 10.1038/s41589-020-00695-1
Biffi G, Tannahill D, Miller J, Howat WJ, Balasubramanian S. Elevated Levels of G-Quadruplex Formation in Human Stomach and Liver Cancer Tissues. PLoS One. 2014;9(7): e102711.
pubmed: 25033211
pmcid: 4102534
doi: 10.1371/journal.pone.0102711
Peng G, Liu B, Zheng M, Zhang L, Li H, Liu M, et al. TSCRE: a comprehensive database for tumor-specific cis-regulatory elements. NAR Cancer. 2024;6(1):zcad063.
pubmed: 38213995
pmcid: 10782923
doi: 10.1093/narcan/zcad063
Huppert JL, Bugaut A, Kumari S, Balasubramanian S. G-quadruplexes: the beginning and end of UTRs. Nucleic Acids Res. 2008;36(19):6260–8.
pubmed: 18832370
pmcid: 2577360
doi: 10.1093/nar/gkn511
Harkness RW, Hennecker C, Grün JT, Blümler A, Heckel A, Schwalbe H, et al. Parallel reaction pathways accelerate folding of a guanine quadruplex. Nucleic Acids Res. 2021;49(3):1247–62.
pubmed: 33469659
pmcid: 7897495
doi: 10.1093/nar/gkaa1286
Li G, Su G, Wang Y, Wang W, Shi J, Li D, et al. Integrative genomic analyses of promoter G-quadruplexes reveal their selective constraint and association with gene activation. Commun Biol. 2023;6(1):625.
pubmed: 37301913
pmcid: 10257653
doi: 10.1038/s42003-023-05015-6
Hänsel-Hertsch R, Beraldi D, Lensing SV, Marsico G, Zyner K, Parry A, et al. G-quadruplex structures mark human regulatory chromatin. Nat Genet. 2016;48(10):1267–72.
pubmed: 27618450
doi: 10.1038/ng.3662
Mao S-Q, Ghanbarian AT, Spiegel J, Martínez Cuesta S, Beraldi D, Di Antonio M, et al. DNA G-quadruplex structures mold the DNA methylome. Nat Struct Mol Biol. 2018;25(10):951–7.
pubmed: 30275516
pmcid: 6173298
doi: 10.1038/s41594-018-0131-8
Zhu Y, Tazearslan C, Suh Y. Challenges and progress in interpretation of non-coding genetic variants associated with human disease. Exp Biol Med. 2017;242(13):1325–34.
doi: 10.1177/1535370217713750
Ellingford JM, Ahn JW, Bagnall RD, Baralle D, Barton S, Campbell C, et al. Recommendations for clinical interpretation of variants found in non-coding regions of the genome. Genome Med. 2022;14(1):73.
pubmed: 35850704
pmcid: 9295495
doi: 10.1186/s13073-022-01073-3
Gong J-y, Wen C-j, Tang M-l, Duan R-f, Chen J-n, Zhang J-y, et al. G-quadruplex structural variations in human genome associated with single-nucleotide variations and their impact on gene activity. Proceedings of the National Academy of Sciences. 2021;118(21):e2013230118.
doi: 10.1073/pnas.2013230118
McArthur E, Capra JA. Topologically associating domain boundaries that are stable across diverse cell types are evolutionarily constrained and enriched for heritability. Am J Hum Genet. 2021;108(2):269–83.
pubmed: 33545030
pmcid: 7895846
doi: 10.1016/j.ajhg.2021.01.001
Loyfer N, Magenheim J, Peretz A, Cann G, Bredno J, Klochendler A, et al. A DNA methylation atlas of normal human cell types. Nature. 2023;613(7943):355–64.
pubmed: 36599988
pmcid: 9811898
doi: 10.1038/s41586-022-05580-6
Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The Human Transcription Factors. Cell. 2018;172(4):650–65.
pubmed: 29425488
doi: 10.1016/j.cell.2018.01.029
Luo Z-H, Shi M-W, Zhang Y, Wang D-Y, Tong Y-B, Pan X-L, et al. CenhANCER: a comprehensive cancer enhancer database for primary tissues and cell lines. Database. 2023;2023:baad022.
pubmed: 37207350
pmcid: 10198702
doi: 10.1093/database/baad022
Demircioğlu D, Cukuroglu E, Kindermans M, Nandi T, Calabrese C, Fonseca NA, et al. A Pan-cancer Transcriptome Analysis Reveals Pervasive Regulation through Alternative Promoters. Cell. 2019;178(6):1465-77.e17.
pubmed: 31491388
doi: 10.1016/j.cell.2019.08.018
Zhang R, Wang Y, Wang C, Sun X, Mergny J-L. G-quadruplexes as pivotal components of cis-regulatory elements in the human genome. Zenodo. https://zenodo.org/doi/10.5281/zenodo.13147639 2024.