G-quadruplexes as pivotal components of cis-regulatory elements in the human genome.


Journal

BMC biology
ISSN: 1741-7007
Titre abrégé: BMC Biol
Pays: England
ID NLM: 101190720

Informations de publication

Date de publication:
26 Aug 2024
Historique:
received: 21 03 2024
accepted: 05 08 2024
medline: 26 8 2024
pubmed: 26 8 2024
entrez: 25 8 2024
Statut: epublish

Résumé

Cis-regulatory elements (CREs) are crucial for regulating gene expression, and G-quadruplexes (G4s), as prototypal non-canonical DNA structures, may play a role in this regulation. However, the relationship between G4s and CREs, especially with non-promoter-like functional elements, requires further systematic investigation. We aimed to investigate the associations between G4s and human cCREs (candidate CREs) inferred from the Encyclopedia of DNA Elements (ENCODE) data. We found that G4s are prominently enriched in most types of cCREs, especially those with promoter-like signatures (PLS). The co-occurrence of CTCF signals with H3K4me3 or H3K27ac signals strengthens the association between cCREs and G4s. Genetic variants in G4s, particularly within their G-runs, exhibit higher regulatory potential and deleterious effects compared to cCREs. The G-runs within G4s near transcriptional start sites (TSSs) are more evolutionarily constrained compared to G-runs in cCREs, while those far from the TSS are relatively less conserved. The presence of G4s is often linked to a more favorable local chromatin environment for the activation and execution of regulatory function of cCREs, potentially attributable to the formation of G4 secondary structures. Finally, we discovered that G4-associated cCREs exhibit widespread activation in a variety of cancers. Our study suggests that G4s are integral components of human cis-regulatory elements, extending beyond their potential role in promoters. The G4 primary sequences are associated with the localization of CREs, while the G4 structures are linked to the activation of these elements. Therefore, we propose defining G4s as pivotal regulatory elements in the human genome.

Sections du résumé

BACKGROUND BACKGROUND
Cis-regulatory elements (CREs) are crucial for regulating gene expression, and G-quadruplexes (G4s), as prototypal non-canonical DNA structures, may play a role in this regulation. However, the relationship between G4s and CREs, especially with non-promoter-like functional elements, requires further systematic investigation. We aimed to investigate the associations between G4s and human cCREs (candidate CREs) inferred from the Encyclopedia of DNA Elements (ENCODE) data.
RESULTS RESULTS
We found that G4s are prominently enriched in most types of cCREs, especially those with promoter-like signatures (PLS). The co-occurrence of CTCF signals with H3K4me3 or H3K27ac signals strengthens the association between cCREs and G4s. Genetic variants in G4s, particularly within their G-runs, exhibit higher regulatory potential and deleterious effects compared to cCREs. The G-runs within G4s near transcriptional start sites (TSSs) are more evolutionarily constrained compared to G-runs in cCREs, while those far from the TSS are relatively less conserved. The presence of G4s is often linked to a more favorable local chromatin environment for the activation and execution of regulatory function of cCREs, potentially attributable to the formation of G4 secondary structures. Finally, we discovered that G4-associated cCREs exhibit widespread activation in a variety of cancers.
CONCLUSIONS CONCLUSIONS
Our study suggests that G4s are integral components of human cis-regulatory elements, extending beyond their potential role in promoters. The G4 primary sequences are associated with the localization of CREs, while the G4 structures are linked to the activation of these elements. Therefore, we propose defining G4s as pivotal regulatory elements in the human genome.

Identifiants

pubmed: 39183303
doi: 10.1186/s12915-024-01971-5
pii: 10.1186/s12915-024-01971-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

177

Subventions

Organisme : ANR G4Access
ID : ANR-20-CE12-0023
Organisme : Leading Technology Program of Jiangsu Province
ID : BK20222008
Organisme : National Natural Science Foundation of China
ID : 61972084
Organisme : China Scholarship Council
ID : 202106090125

Informations de copyright

© 2024. The Author(s).

Références

Lewis EB. A gene complex controlling segmentation in Drosophila. Nature. 1978;276(5688):565–70.
pubmed: 103000 doi: 10.1038/276565a0
Venters BJ, Pugh BF. How eukaryotic genes are transcribed. Crit Rev Biochem Mol Biol. 2009;44(2–3):117–41.
pubmed: 19514890 pmcid: 2718758 doi: 10.1080/10409230902858785
Preissl S, Gaulton KJ, Ren B. Characterizing cis-regulatory elements using single-cell epigenomics. Nat Rev Genet. 2023;24(1):21–43.
pubmed: 35840754 doi: 10.1038/s41576-022-00509-1
Kolovos P, Knoch TA, Grosveld FG, Cook PR, Papantonis A. Enhancers and silencers: an integrated and simple model for their function. Epigenet Chromatin. 2012;5(1):1.
doi: 10.1186/1756-8935-5-1
Li Y, Chen CY, Kaye AM, Wasserman WW. The identification of cis-regulatory elements: a review from a machine learning perspective. BioSyst. 2015;138:6–17.
doi: 10.1016/j.biosystems.2015.10.002
Varshney D, Spiegel J, Zyner K, Tannahill D, Balasubramanian S. The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol. 2020;21(8):459–74.
pubmed: 32313204 pmcid: 7115845 doi: 10.1038/s41580-020-0236-x
Spiegel J, Adhikari S, Balasubramanian S. The structure and function of DNA G-Quadruplexes. Trends Chem. 2020;2(2):123–36.
pubmed: 32923997 pmcid: 7472594 doi: 10.1016/j.trechm.2019.07.002
Bedrat A, Lacroix L, Mergny J-L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016;44(4):1746–59.
pubmed: 26792894 pmcid: 4770238 doi: 10.1093/nar/gkw006
Lago S, Nadai M, Cernilogar FM, Kazerani M, Domíniguez Moreno H, Schotta G, et al. Promoter G-quadruplexes and transcription factors cooperate to shape the cell type-specific transcriptome. Nat Commun. 2021;12(1):3885.
pubmed: 34162892 pmcid: 8222265 doi: 10.1038/s41467-021-24198-2
Huppert JL, Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005;33(9):2908–16.
pubmed: 15914667 pmcid: 1140081 doi: 10.1093/nar/gki609
Georgakopoulos-Soares I, Parada GE, Wong HY, Medhi R, Furlan G, Munita R, et al. Alternative splicing modulation by G-quadruplexes. Nat Commun. 2022;13(1):2404.
pubmed: 35504902 pmcid: 9065059 doi: 10.1038/s41467-022-30071-7
Hänsel-Hertsch R, Spiegel J, Marsico G, Tannahill D, Balasubramanian S. Genome-wide mapping of endogenous G-quadruplex DNA structures by chromatin immunoprecipitation and high-throughput sequencing. Nat Protoc. 2018;13(3):551–64.
pubmed: 29470465 doi: 10.1038/nprot.2017.150
Esnault C, Magat T, Zine El Aabidine A, Garcia-Oliver E, Cucchiarini A, Bouchouika S, et al. G4access identifies G-quadruplexes and their associations with open chromatin and imprinting control regions. Nat Genet. 2023;55(8):1359–69.
pubmed: 37400615 doi: 10.1038/s41588-023-01437-4
Kumari S, Bugaut A, Huppert JL, Balasubramanian S. An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat Chem Biol. 2007;3(4):218–21.
pubmed: 17322877 pmcid: 2206252 doi: 10.1038/nchembio864
Zhang R, Shu H, Wang Y, Tao T, Tu J, Wang C, et al. G-Quadruplex structures are key modulators of somatic structural variants in cancers. Cancer Res. 2023;83(8):1234–48.
pubmed: 36791413 pmcid: 10102852 doi: 10.1158/0008-5472.CAN-22-3089
Guiblet WM, Cremona MA, Harris RS, Chen D, Eckert KA, Chiaromonte F, et al. Non-B DNA: a major contributor to small- and large-scale variation in nucleotide substitution frequencies across the genome. Nucleic Acids Res. 2021;49(3):1497–516.
pubmed: 33450015 pmcid: 7897504 doi: 10.1093/nar/gkaa1269
Jansson LI, Hentschel J, Parks JW, Chang TR, Lu C, Baral R, et al. Telomere DNA G-quadruplex folding within actively extending human telomerase. Proc Natl Acad Sci. 2019;116(19):9350–9.
pubmed: 31019071 pmcid: 6510993 doi: 10.1073/pnas.1814777116
Prorok P, Artufel M, Aze A, Coulombe P, Peiffer I, Lacroix L, et al. Involvement of G-quadruplex regions in mammalian replication origin activity. Nat Commun. 2019;10(1):3274.
pubmed: 31332171 pmcid: 6646384 doi: 10.1038/s41467-019-11104-0
Abascal F, Acosta R, Addleman NJ, Adrian J, Afzal V, Ai R, et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature. 2020;583(7818):699–710.
doi: 10.1038/s41586-020-2493-4
Guiblet WM, DeGiorgio M, Cheng X, Chiaromonte F, Eckert KA, Huang Y-F, et al. Selection and thermostability suggest G-quadruplexes are novel functional elements of the human genome. Genome Res. 2021;31(7):1136–49.
pubmed: 34187812 pmcid: 8256861 doi: 10.1101/gr.269589.120
Hou Y, Li F, Zhang R, Li S, Liu H, Qin ZS, et al. Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure. Epigenetics. 2019;14(9):894–911.
pubmed: 31177910 pmcid: 6691997 doi: 10.1080/15592294.2019.1621140
Wulfridge P, Yan Q, Rell N, Doherty J, Jacobson S, Offley S, et al. G-quadruplexes associated with R-loops promote CTCF binding. Mol Cell. 2023;83(17):3064-79.e5.
pubmed: 37552993 doi: 10.1016/j.molcel.2023.07.009
Tikhonova P, Pavlova I, Isaakova E, Tsvetkov V, Bogomazova A, Vedekhina T, et al. DNA G-Quadruplexes contribute to CTCF recruitment. Int J Mol Sci. 2021;22(13):7090. https://doi.org/10.3390/ijms22137090 .
Dong S, Zhao N, Spragins E, Kagda MS, Li M, Assis P, et al. Annotating and prioritizing human non-coding variants with RegulomeDB vol 2. Nat Genet. 2023;55(5):724–6.
pubmed: 37173523 pmcid: 10989417 doi: 10.1038/s41588-023-01365-3
Huang Y-F, Gulko B, Siepel A. Fast, scalable prediction of deleterious noncoding variants from functional and population genomic data. Nat Genet. 2017;49(4):618–24.
pubmed: 28288115 pmcid: 5395419 doi: 10.1038/ng.3810
Chen S, Francioli LC, Goodrich JK, Collins RL, Kanai M, Wang Q, et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature. 2024;625(7993):92–100.
pubmed: 38057664 doi: 10.1038/s41586-023-06045-0
Sullivan PF, Meadows JRS, Gazal S, Phan BN, Li X, Genereux DP, et al. Leveraging base-pair mammalian constraint to understand genetic variation and human disease. Science. 2023;380(6643):eabn2937.
pubmed: 37104612 pmcid: 10259825 doi: 10.1126/science.abn2937
Fang S, Liu S, Yang D, Yang L, Hu C-D, Wan J. Decoding regulatory associations of G-quadruplex with epigenetic and transcriptomic functional components. Front Genet. 2022;13:957023.
pubmed: 36092921 pmcid: 9452811 doi: 10.3389/fgene.2022.957023
Korsakova A, Phan AT. Prediction of G4 formation in live cells with epigenetic data: a deep learning approach. NAR Genomics Bioinf. 2023;5(3):lqad071.
doi: 10.1093/nargab/lqad071
Grubert F, Srivas R, Spacek DV, Kasowski M, Ruiz-Velasco M, Sinnott-Armstrong N, et al. Landscape of cohesin-mediated chromatin loops in the human genome. Nature. 2020;583(7818):737–43.
pubmed: 32728247 pmcid: 7410831 doi: 10.1038/s41586-020-2151-x
Andrews G, Fan K, Pratt HE, Phalke N, Zoonomia Consortium§, Karlsson EK, et al. Mammalian evolution of human cis-regulatory elements and transcription factor binding sites. Science. 2023;380(6643):eabn7930.
pubmed: 37104580 doi: 10.1126/science.abn7930
Hammal F, de Langen P, Bergon A, Lopez F, Ballester B. ReMap 2022: a database of Human, Mouse, Drosophila and Arabidopsis regulatory regions from an integrative analysis of DNA-binding sequencing experiments. Nucleic Acids Res. 2022;50(D1):D316–25.
pubmed: 34751401 doi: 10.1093/nar/gkab996
Spiegel J, Cuesta SM, Adhikari S, Hänsel-Hertsch R, Tannahill D, Balasubramanian S. G-quadruplexes are transcription factor binding hubs in human chromatin. Genome Biol. 2021;22(1):117.
pubmed: 33892767 pmcid: 8063395 doi: 10.1186/s13059-021-02324-z
Da Ros S, Nicoletto G, Rigo R, Ceschi S, Zorzan E, Dacasto M, et al. G-Quadruplex Modulation of SP1 Functional Binding Sites at the KIT Proximal Promoter. Int J Mol Sci. 2021;22(1):329.
doi: 10.3390/ijms22010329
Raiber E-A, Kranaster R, Lam E, Nikan M, Balasubramanian S. A non-canonical DNA structure is a binding motif for the transcription factor SP1 in vitro. Nucleic Acids Res. 2011;40(4):1499–508.
pubmed: 22021377 pmcid: 3287196 doi: 10.1093/nar/gkr882
Li L, Williams P, Ren W, Wang MY, Gao Z, Miao W, et al. YY1 interacts with guanine quadruplexes to regulate DNA looping and gene expression. Nat Chem Biol. 2021;17(2):161–8.
pubmed: 33199912 doi: 10.1038/s41589-020-00695-1
Biffi G, Tannahill D, Miller J, Howat WJ, Balasubramanian S. Elevated Levels of G-Quadruplex Formation in Human Stomach and Liver Cancer Tissues. PLoS One. 2014;9(7): e102711.
pubmed: 25033211 pmcid: 4102534 doi: 10.1371/journal.pone.0102711
Peng G, Liu B, Zheng M, Zhang L, Li H, Liu M, et al. TSCRE: a comprehensive database for tumor-specific cis-regulatory elements. NAR Cancer. 2024;6(1):zcad063.
pubmed: 38213995 pmcid: 10782923 doi: 10.1093/narcan/zcad063
Huppert JL, Bugaut A, Kumari S, Balasubramanian S. G-quadruplexes: the beginning and end of UTRs. Nucleic Acids Res. 2008;36(19):6260–8.
pubmed: 18832370 pmcid: 2577360 doi: 10.1093/nar/gkn511
Harkness RW, Hennecker C, Grün JT, Blümler A, Heckel A, Schwalbe H, et al. Parallel reaction pathways accelerate folding of a guanine quadruplex. Nucleic Acids Res. 2021;49(3):1247–62.
pubmed: 33469659 pmcid: 7897495 doi: 10.1093/nar/gkaa1286
Li G, Su G, Wang Y, Wang W, Shi J, Li D, et al. Integrative genomic analyses of promoter G-quadruplexes reveal their selective constraint and association with gene activation. Commun Biol. 2023;6(1):625.
pubmed: 37301913 pmcid: 10257653 doi: 10.1038/s42003-023-05015-6
Hänsel-Hertsch R, Beraldi D, Lensing SV, Marsico G, Zyner K, Parry A, et al. G-quadruplex structures mark human regulatory chromatin. Nat Genet. 2016;48(10):1267–72.
pubmed: 27618450 doi: 10.1038/ng.3662
Mao S-Q, Ghanbarian AT, Spiegel J, Martínez Cuesta S, Beraldi D, Di Antonio M, et al. DNA G-quadruplex structures mold the DNA methylome. Nat Struct Mol Biol. 2018;25(10):951–7.
pubmed: 30275516 pmcid: 6173298 doi: 10.1038/s41594-018-0131-8
Zhu Y, Tazearslan C, Suh Y. Challenges and progress in interpretation of non-coding genetic variants associated with human disease. Exp Biol Med. 2017;242(13):1325–34.
doi: 10.1177/1535370217713750
Ellingford JM, Ahn JW, Bagnall RD, Baralle D, Barton S, Campbell C, et al. Recommendations for clinical interpretation of variants found in non-coding regions of the genome. Genome Med. 2022;14(1):73.
pubmed: 35850704 pmcid: 9295495 doi: 10.1186/s13073-022-01073-3
Gong J-y, Wen C-j, Tang M-l, Duan R-f, Chen J-n, Zhang J-y, et al. G-quadruplex structural variations in human genome associated with single-nucleotide variations and their impact on gene activity. Proceedings of the National Academy of Sciences. 2021;118(21):e2013230118.
doi: 10.1073/pnas.2013230118
McArthur E, Capra JA. Topologically associating domain boundaries that are stable across diverse cell types are evolutionarily constrained and enriched for heritability. Am J Hum Genet. 2021;108(2):269–83.
pubmed: 33545030 pmcid: 7895846 doi: 10.1016/j.ajhg.2021.01.001
Loyfer N, Magenheim J, Peretz A, Cann G, Bredno J, Klochendler A, et al. A DNA methylation atlas of normal human cell types. Nature. 2023;613(7943):355–64.
pubmed: 36599988 pmcid: 9811898 doi: 10.1038/s41586-022-05580-6
Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The Human Transcription Factors. Cell. 2018;172(4):650–65.
pubmed: 29425488 doi: 10.1016/j.cell.2018.01.029
Luo Z-H, Shi M-W, Zhang Y, Wang D-Y, Tong Y-B, Pan X-L, et al. CenhANCER: a comprehensive cancer enhancer database for primary tissues and cell lines. Database. 2023;2023:baad022.
pubmed: 37207350 pmcid: 10198702 doi: 10.1093/database/baad022
Demircioğlu D, Cukuroglu E, Kindermans M, Nandi T, Calabrese C, Fonseca NA, et al. A Pan-cancer Transcriptome Analysis Reveals Pervasive Regulation through Alternative Promoters. Cell. 2019;178(6):1465-77.e17.
pubmed: 31491388 doi: 10.1016/j.cell.2019.08.018
Zhang R, Wang Y, Wang C, Sun X, Mergny J-L. G-quadruplexes as pivotal components of cis-regulatory elements in the human genome. Zenodo. https://zenodo.org/doi/10.5281/zenodo.13147639 2024.

Auteurs

Rongxin Zhang (R)

Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120, Palaiseau, France.
State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.

Yuqi Wang (Y)

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.

Cheng Wang (C)

Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.

Xiao Sun (X)

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China. xsun@seu.edu.cn.

Jean-Louis Mergny (JL)

Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120, Palaiseau, France. jean-louis.mergny@polytechnique.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH