Potential migration pathways of broadleaved trees across the receding boreal biome under future climate change.
broadleaved forest
climate adaptation
forestry
habitat suitability
range margins
range shift dynamics
species distribution models
species redistribution
Journal
Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746
Informations de publication
Date de publication:
Aug 2024
Aug 2024
Historique:
revised:
03
07
2024
received:
20
03
2024
accepted:
19
07
2024
medline:
27
8
2024
pubmed:
27
8
2024
entrez:
27
8
2024
Statut:
ppublish
Résumé
Climate change has triggered poleward expansions in the distributions of various taxonomic groups, including tree species. Given the ecological significance of trees as keystone species in forests and their socio-economic importance, projecting the potential future distributions of tree species is crucial for devising effective adaptation strategies for both biomass production and biodiversity conservation in future forest ecosystems. Here, we fitted physiographically informed habitat suitability models (HSMs) at 50-m resolution across Sweden (55-68° N) to estimate the potential northward expansion of seven broadleaved tree species within their leading-edge distributions in Europe under different future climate change scenarios and for different time periods. Overall, we observed that minimum temperature was the most crucial variable for comprehending the spatial distribution of broadleaved tree species at their cold limits. Our HSMs projected a complex range expansion pattern for 2100, with individualistic differences among species. However, a frequent and rather surprising pattern was a northward expansion along the east coast followed by narrow migration pathways along larger valleys towards edaphically suitable areas in the north-west, where most of the studied species were predicted to expand. The high-resolution maps generated in this study offer valuable insights for our understanding of range shift dynamics at the leading edge of southern tree species as they expand into the receding boreal biome. These maps suggest areas where broadleaved tree species could already be translocated to anticipate forest and biodiversity conservation adaptation efforts in the face of future climate change.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e17471Subventions
Organisme : Bolin Centre for Climate Research
Organisme : Carl Tryggers Stiftelse för Vetenskaplig Forskning
ID : CTS19: 148
Informations de copyright
© 2024 The Author(s). Global Change Biology published by John Wiley & Sons Ltd.
Références
Ågren, A. M., Larson, J., Paul, S. S., Laudon, H., & Lidberg, W. (2021). Use of multiple LIDAR‐derived digital terrain indices and machine learning for high‐resolution national‐scale soil moisture mapping of the Swedish forest landscape. Geoderma, 404, 115280. https://doi.org/10.1016/j.geoderma.2021.115280
Appelhans, T., Detsch, F., & Nauss, T. (2015). Remote: Empirical orthogonal teleconnections in R. Journal of Statistical Software, 65(10), 1–19. https://www.jstatsoft.org/article/view/v065i10
Ballabio, C., Lugato, E., Fernández‐Ugalde, O., Orgiazzi, A., Jones, A., Borrelli, P., Montanarella, L., & Panagos, P. (2019). Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression. Geoderma, 355(March), 113912. https://doi.org/10.1016/j.geoderma.2019.113912
Beauregard, F., & De Blois, S. (2014). Beyond a climate‐centric view of plant distribution: Edaphic variables add value to distribution models. PLoS One, 9(3), e92642. https://doi.org/10.1371/journal.pone.0092642
Bertrand, R., Lenoir, J., Piedallu, C., Riofrío‐Dillon, G., de Ruffray, P., Vidal, C., Pierrat, J.‐C., & Gégout, J.‐C. (2011). Changes in plant community composition lag behind climate warming in lowland forests. Nature, 479(7374), 517–520. https://doi.org/10.1038/nature10548
Bivand, R., & Rundel, C. (2023). rgeos: Interface to geometry engine—Open source (‘GEOS’). R package Version 0.6–4. https://CRAN.R‐project.org/package=rgeos
Boisvert‐Marsh, L., Périé, C., & de Blois, S. (2019). Divergent responses to climate change and disturbance drive recruitment patterns underlying latitudinal shifts of tree species. Journal of Ecology, 107(4), 1956–1969. https://doi.org/10.1111/1365‐2745.13149
Bolte, A., Ammer, C., Löf, M., Madsen, P., Nabuurs, G.‐J., Schall, P., Spathelf, P., & Rock, J. (2009). Adaptive forest management in central Europe: Climate change impacts, strategies and integrative concept. Scandinavian Journal of Forest Research, 24(6), 473–482. https://doi.org/10.1080/02827580903418224
Bonannella, C., Hengl, T., Heisig, J., Parente, L., Wright, M. N., Herold, M., & De Bruin, S. (2022). Forest tree species distribution for Europe 2000–2020: Mapping potential and realized distributions using spatiotemporal machine learning. PeerJ, 10, e13728. https://doi.org/10.7717/peerj.13728
Boyce, M. S., Vernier, P. R., Nielsen, S. E., & Schmiegelow, F. K. A. (2002). Evaluating resource selection functions. Ecological Modelling, 157(2), 281–300. https://doi.org/10.1016/S0304‐3800(02)00200‐4
Champagne, E., Royo, A. A., Tremblay, J.‐P., & Raymond, P. (2021). Tree assisted migration in a browsed landscape: Can we predict susceptibility to herbivores? Forest Ecology and Management, 498, 119576. https://doi.org/10.1016/j.foreco.2021.119576
Chauvier, Y., Descombes, P., Guéguen, M., Boulangeat, L., Thuiller, W., & Zimmermann, N. E. (2022). Resolution in species distribution models shapes spatial patterns of plant multifaceted diversity. Ecography, 2022(10), 1–13. https://doi.org/10.1111/ecog.05973
Christiansen, D. M., Iversen, L. L., Ehrlén, J., & Hylander, K. (2022). Changes in forest structure drive temperature preferences of boreal understorey plant communities. Journal of Ecology, 110(3), 631–643. https://doi.org/10.1111/1365‐2745.13825
Crimmins, T. M., Crimmins, M. A., & David Bertelsen, C. (2009). Flowering range changes across an elevation gradient in response to warming summer temperatures. Global Change Biology, 15(5), 1141–1152. https://doi.org/10.1111/j.1365‐2486.2008.01831.x
Di Marco, M., & Santini, L. (2015). Human pressures predict species' geographic range size better than biological traits. Global Change Biology, 21(6), 2169–2178. https://doi.org/10.1111/gcb.12834
Dobrowski, S. Z. (2011). A climatic basis for microrefugia: The influence of terrain on climate: A climatic basis for microrefugia. Global Change Biology, 17(2), 1022–1035. https://doi.org/10.1111/j.1365‐2486.2010.02263.x
Dobrowski, S. Z., Swanson, A. K., Abatzoglou, J. T., Holden, Z. A., Safford, H. D., Schwartz, M. K., & Gavin, D. G. (2015). Forest structure and species traits mediate projected recruitment declines in western US tree species: Tree recruitment patterns in the western US. Global Ecology and Biogeography, 24(8), 917–927. https://doi.org/10.1111/geb.12302
Draper, D., Marques, I., & Iriondo, J. M. (2019). Species distribution models with field validation, a key approach for successful selection of receptor sites in conservation translocations. Global Ecology and Conservation, 19, e00653. https://doi.org/10.1016/j.gecco.2019.e00653
Dyderski, M. K., Paź, S., Frelich, L. E., & Jagodziński, A. M. (2018). How much does climate change threaten European forest tree species distributions? Global Change Biology, 24(3), 1150–1163. https://doi.org/10.1111/gcb.13925
Fisichelli, N., Wright, A., Rice, K., Mau, A., Buschena, C., & Reich, P. B. (2014). First‐year seedlings and climate change: Species‐specific responses of 15 North American tree species. Oikos, 123(11), 1331–1340. https://doi.org/10.1111/oik.01349
Fransson, S. (1965). The borderland. In: The plant cover of Sweden. Acta Phytogeographica Suecica, 50, 167–175.
Fridman, J., Holm, S., Nilsson, M., Nilsson, P., Ringvall, A. H., & Ståhl, G. (2014). Adapting National Forest Inventories to changing requirements—The case of the Swedish National Forest Inventory at the turn of the 20th century. Silva Fennica, 48(3), 1–29. https://doi.org/10.14214/sf.1095
Fuchs, S., Leuschner, C., Mathias Link, R., & Schuldt, B. (2021). Hydraulic variability of three temperate broadleaf tree species along a water availability gradient in central Europe. New Phytologist, 231(4), 1387–1400. https://doi.org/10.1111/nph.17448
Gao, T., Hedblom, M., Emilsson, T., & Nielsen, A. B. (2014). The role of forest stand structure as biodiversity indicator. Forest Ecology and Management, 330, 82–93. https://doi.org/10.1016/j.foreco.2014.07.007
Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat suitability and distribution models: With applications in R (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781139028271
Haesen, S., Lenoir, J., Gril, E., De Frenne, P., Lembrechts, J. J., Kopecký, M., Macek, M., Man, M., Wild, J., & Van Meerbeek, K. (2023). Microclimate reveals the true thermal niche of forest plant species. Ecology Letters, 26, 2043–2055. https://doi.org/10.1111/ele.14312
Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C., & Guisan, A. (2006). Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling, 199(2), 142–152. https://doi.org/10.1016/j.ecolmodel.2006.05.017
Hylander, K., Greiser, C., Christiansen, D. M., & Koelemeijer, I. A. (2021). Climate adaptation of biodiversity conservation in managed forest landscapes. Conservation Biology, 36(3), e13847. https://doi.org/10.1111/cobi.13847
Janowiak, M. K., Swanston, C. W., Nagel, L. M., Brandt, L. A., Butler, P. R., Handler, S. D., Shannon, P. D., Iverson, L. R., Matthews, S. N., Prasad, A., & Peters, M. P. (2014). A practical approach for translating climate change adaptation principles into forest management actions. Journal of Forestry, 112(5), 424–433. https://doi.org/10.5849/jof.13‐094
Jump, A. S., Mátyás, C., & Peñuelas, J. (2009). The altitude‐for‐latitude disparity in the range retractions of woody species. Trends in Ecology & Evolution, 24(12), 694–701. https://doi.org/10.1016/j.tree.2009.06.007
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria‐Auza, R. W., Zimmermann, N. E., Linder, P., & Kessler, M. (2017). Climatologies at high resolution for the earth land surface areas CHELSA V1. 2: Technical specification. Scientific Data, 4(April), 170122. https://doi.org/10.1594/WDCC/CHELSA
Koralewski, T. E., Wang, H.‐H., Grant, W. E., & Byram, T. D. (2015). Plants on the move: Assisted migration of forest trees in the face of climate change. Forest Ecology and Management, 344, 30–37. https://doi.org/10.1016/j.foreco.2015.02.014
Körner, C. (2021). The cold range limit of trees. Trends in Ecology & Evolution, 36(11), 979–989. https://doi.org/10.1016/j.tree.2021.06.011
Kremer, A., Corre, V. L., Petit, R. J., & Ducousso, A. (2010). Historical and contemporary dynamics of adaptive differentiation in European oaks. In J. A. DeWoody, J. W. Bickham, C. H. Michler, K. M. Nichols, G. E. Rhodes, & K. E. Woeste (Eds.), Molecular approaches in natural resource conservation and management (1st ed., pp. 101–122). Cambridge University Press.
Lee‐Yaw, J., McCune, L., Pironon, S., & Sheth, S. (2022). Species distribution models rarely predict the biology of real populations. Ecography, 2022(6), 1–16. https://doi.org/10.1111/ecog.05877
Lembrechts, J. J., Nijs, I., & Lenoir, J. (2019). Incorporating microclimate into species distribution models. Ecography, 42(7), 1267–1279. https://doi.org/10.1111/ecog.03947
Lenoir, J., Bertrand, R., Comte, L., Bourgeaud, L., Hattab, T., Murienne, J., & Grenouillet, G. (2020). Species better track climate warming in the oceans than on land. Nature Ecology & Evolution, 4(8), 1044–1059. https://doi.org/10.1038/s41559‐020‐1198‐2
Lenoir, J., Gégout, J., Guisan, A., Vittoz, P., Wohlgemuth, T., Zimmermann, N. E., Dullinger, S., Pauli, H., Willner, W., & Svenning, J. (2010). Going against the flow: Potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography, 33(2), 295–303. https://doi.org/10.1111/j.1600‐0587.2010.06279.x
Lenoir, J., & Svenning, J.‐C. (2015). Climate‐related range shifts—A global multidimensional synthesis and new research directions. Ecography, 38(1), 15–28. https://doi.org/10.1111/ecog.00967
Lescop‐Sinclair, K., & Payette, S. (1995). Recent advance of the arctic treeline along the eastern coast of Hudson Bay. The Journal of Ecology, 83(6), 929. https://doi.org/10.2307/2261175
Lloyd, A. H., & Fastie, C. L. (2003). Recent changes in treeline forest distribution and structure in interior Alaska. Écoscience, 10(2), 176–185. https://doi.org/10.1080/11956860.2003.11682765
Lunt, I. D., Byrne, M., Hellmann, J. J., Mitchell, N. J., Garnett, S. T., Hayward, M. W., Martin, T. G., McDonald‐Maddden, E., Williams, S. E., & Zander, K. K. (2013). Using assisted colonisation to conserve biodiversity and restore ecosystem function under climate change. Biological Conservation, 157, 172–177. https://doi.org/10.1016/j.biocon.2012.08.034
Marscher, J. W., & Mo, E. (1990). Ångermanlands flora. SBT‐förlaget.
Mauri, A., Girardello, M., Strona, G., Beck, P. S. A., Forzieri, G., Caudullo, G., Manca, F., & Cescatti, A. (2022). EU‐Trees4F, a dataset on the future distribution of European tree species. Scientific Data, 9(1), 37. https://doi.org/10.1038/s41597‐022‐01128‐5
Meineri, E., & Hylander, K. (2017). Fine‐grain, large‐domain climate models based on climate station and comprehensive topographic information improve microrefugia detection. Ecography, 40(8), 1003–1013. https://doi.org/10.1111/ecog.02494
Mitchell, R. J., Bellamy, P. E., Ellis, C. J., Hewison, R. L., Hodgetts, N. G., Iason, G. R., Littlewood, N. A., Newey, S., Stockan, J. A., & Taylor, A. F. S. (2019). Collapsing foundations: The ecology of the British oak, implications of its decline and mitigation options. Biological Conservation, 233, 316–327. https://doi.org/10.1016/j.biocon.2019.03.04
Monleon, V. J., & Lintz, H. E. (2015). Evidence of tree species' range shifts in a complex landscape. PLoS One, 10(1), e0118069. https://doi.org/10.1371/journal.pone.0118069
Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling? Ecography, 37(2), 191–203. https://doi.org/10.1111/j.1600‐0587.2013.00205.x
Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., Börger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., Echeverria‐Londoño, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., … Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45–50.
Normand, S., Treier, U. A., Randin, C., Vittoz, P., Guisan, A., & Svenning, J.‐C. (2009). Importance of abiotic stress as a range‐limit determinant for European plants: Insights from species responses to climatic gradients. Global Ecology and Biogeography, 18(4), 437–449. https://doi.org/10.1111/j.1466‐8238.2009.00451.x
Palik, B. J., Clark, P. W., D'Amato, A. W., Swanston, C., & Nagel, L. (2022). Operationalizing forest‐assisted migration in the context of climate change adaptation: Examples from the eastern USA. Ecosphere, 13(10), e4260. https://doi.org/10.1002/ecs2.4260
Panagos, P., Meusburger, K., Ballabio, C., Borrelli, P., & Alewell, C. (2014). Soil erodibility in Europe: A high‐resolution dataset based on LUCAS. Science of the Total Environment, 479–480(1), 189–200. https://doi.org/10.1016/j.scitotenv.2014.02.010
Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37–42. https://doi.org/10.1038/nature01286
Pearson, R. (2006). Climate change and the migration capacity of species. Trends in Ecology & Evolution, 21(3), 111–113. https://doi.org/10.1016/j.tree.2005.11.022
Pecchi, M., Marchi, M., Burton, V., Giannetti, F., Moriondo, M., Bernetti, I., Bindi, M., & Chirici, G. (2019). Species distribution modelling to support forest management. A literature review. Ecological Modelling, 411, 108817. https://doi.org/10.1016/j.ecolmodel.2019.108817
Pedlar, J. H., & McKenney, D. W. (2017). Assessing the anticipated growth response of northern conifer populations to a warming climate. Scientific Reports, 7(1), 43881. https://doi.org/10.1038/srep43881
Pedlar, J. H., McKenney, D. W., Aubin, I., Beardmore, T., Beaulieu, J., Iverson, L., O'Neill, G. A., Winder, R. S., & Ste‐Marie, C. (2012). Placing forestry in the assisted migration debate. Bioscience, 62(9), 835–842. https://doi.org/10.1525/bio.2012.62.9.10
Piedallu, C., Gégout, J., Perez, V., & Lebourgeois, F. (2013). Soil water balance performs better than climatic water variables in tree species distribution modelling. Global Ecology and Biogeography, 22(4), 470–482. https://doi.org/10.1111/geb.12012
Poli, P., Guiller, A., & Lenoir, J. (2022). Coupling fossil records and traditional discrimination metrics to test how genetic information improves species distribution models of the European beech Fagus sylvatica. European Journal of Forest Research, 141(2), 253–265. https://doi.org/10.1007/s10342‐021‐01437‐1
Potter, K. A., Arthur Woods, H., & Pincebourde, S. (2013). Microclimatic challenges in global change biology. Global Change Biology, 19(10), 2932–2939. https://doi.org/10.1111/gcb.12257
Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera‐Arroita, G., Hauenstein, S., Lahoz‐Monfort, J. J., Schröder, B., Thuiller, W., Warton, D. I., Wintle, B. A., Hartig, F., & Dormann, C. F. (2017). Cross‐validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 40(8), 913–929. https://doi.org/10.1111/ecog.02881
Rubenstein, M. A., Weiskopf, S. R., Bertrand, R., Carter, S. L., Comte, L., Eaton, M. J., Johnson, C. G., Lenoir, J., Lynch, A. J., Miller, B. W., Morelli, T. L., Rodriguez, M. A., Terando, A., & Thompson, L. M. (2023). Climate change and the global redistribution of biodiversity: Substantial variation in empirical support for expected range shifts. Environmental Evidence, 12(1), 7. https://doi.org/10.1186/s13750‐023‐00296‐0
Santini, A., & Faccoli, M. (2015). Dutch elm disease and elm bark beetles: A century of association. iForest ‐ Biogeosciences and Forestry, 8(2), 126–134. https://doi.org/10.3832/ifor1231‐008
Scheffers, B. R., De Meester, L., Bridge, T. C. L., Hoffmann, A. A., Pandolfi, J. M., Corlett, R. T., Butchart, S. H. M., Pearce‐Kelly, P., Kovacs, K. M., Dudgeon, D., Pacifici, M., Rondinini, C., Foden, W. B., Martin, T. G., Mora, C., Bickford, D., & Watson, J. E. M. (2016). The broad footprint of climate change from genes to biomes to people. Science, 354(6313), aaf7671. https://doi.org/10.1126/science.aaf7671
Skovsgaard, J. P., Thomsen, I. M., Skovgaard, I. M., & Martinussen, T. (2010). Associations among symptoms of dieback in even‐aged stands of ash (Fraxinus excelsior L.). Forest Pathology, 40(1), 7–18. https://doi.org/10.1111/j.1439‐0329.2009.00599.x
Sobala, M., & Rahmonov, O. (2020). The human impact on changes in the forest range of the Silesian Beskids (Western Carpathians). Resources, 9(12), 141. https://doi.org/10.3390/resources9120141
Sturm, M., Racine, C., & Tape, K. (2001). Increasing shrub abundance in the Arctic. Nature, 411(6837), 546–547. https://doi.org/10.1038/35079180
Thomas, C. D. (2011). Translocation of species, climate change, and the end of trying to recreate past ecological communities. Trends in Ecology & Evolution, 26(5), 216–221. https://doi.org/10.1016/j.tree.2011.02.006
Valavi, R., Elith, J., Lahoz‐Monfort, J. J., & Guillera‐Arroita, G. (2019). block CV: An r package for generating spatially or environmentally separated folds for k‐fold cross‐validation of species distribution models. Methods in Ecology and Evolution, 10(2), 225–232. https://doi.org/10.1111/2041‐210X.13107
Vale, C. G., Tarroso, P., & Brito, J. C. (2014). Predicting species distribution at range margins: Testing the effects of study area extent, resolution and threshold selection in the Sahara‐Sahel transition zone. Diversity and Distributions, 20(1), 20–33. https://doi.org/10.1111/ddi.12115
Vessella, F., López‐Tirado, J., Simeone, M. C., Schirone, B., & Hidalgo, P. J. (2017). A tree species range in the face of climate change: Cork oak as a study case for the Mediterranean biome. European Journal of Forest Research, 136(3), 555–569. https://doi.org/10.1007/s10342‐017‐1055‐2
Vitasse, Y., Ursenbacher, S., Klein, G., Bohnenstengel, T., Chittaro, Y., Delestrade, A., Monnerat, C., Rebetez, M., Rixen, C., Strebel, N., Schmidt, B. R., Wipf, S., Wohlgemuth, T., Yoccoz, N. G., & Lenoir, J. (2021). Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. Biological Reviews, 96(5), 1816–1835. https://doi.org/10.1111/brv.12727
Vitt, P., Havens, K., Kramer, A. T., Sollenberger, D., & Yates, E. (2010). Assisted migration of plants: Changes in latitudes, changes in attitudes. Biological Conservation, 143(1), 18–27. https://doi.org/10.1016/j.biocon.2009.08.015
Wasof, S., Lenoir, J., Aarrestad, P. A., Alsos, I. G., Armbruster, W. S., Austrheim, G., Bakkestuen, V., Birks, H. J. B., Bråthen, K. A., Broennimann, O., Brunet, J., Bruun, H. H., Dahlberg, C. J., Diekmann, M., Dullinger, S., Dynesius, M., Ejrnæs, R., Gégout, J.‐C., Graae, B. J., … Decocq, G. (2015). Disjunct populations of European vascular plant species keep the same climatic niches. Global Ecology and Biogeography, 24, 1401–1412. https://doi.org/10.1111/geb.12375
Willis, K. J., Braun, M., Sümegi, P., & Tóth, A. (1997). Does soil change cause vegetation change or vice versa? A temporal perspective from Hungary. Ecology, 78(3), 740–750. https://doi.org/10.1890/0012‐9658(1997)078[0740:dsccvc]2.0.co;2
Winder, R., Nelson, E., & Beardmore, T. (2011). Ecological implications for assisted migration in Canadian forests. The Forestry Chronicle, 87(6), 731–744. https://doi.org/10.5558/tfc2011‐090
Zellweger, F., De Frenne, P., Lenoir, J., Vangansbeke, P., Verheyen, K., Bernhardt‐Römermann, M., Baeten, L., Hédl, R., Berki, I., Brunet, J., Van Calster, H., Chudomelová, M., Decocq, G., Dirnböck, T., Durak, T., Heinken, T., Jaroszewicz, B., Kopecký, M., Máliš, F., … Coomes, D. (2020). Forest microclimate dynamics drive plant responses to warming. Science, 368(6492), 772–775. https://doi.org/10.1126/science.aba6880