Calcium Signalling in Microglia.


Journal

Advances in neurobiology
ISSN: 2190-5215
Titre abrégé: Adv Neurobiol
Pays: United States
ID NLM: 101571545

Informations de publication

Date de publication:
2024
Historique:
medline: 31 8 2024
pubmed: 31 8 2024
entrez: 29 8 2024
Statut: ppublish

Résumé

Intracellular Ca

Identifiants

pubmed: 39207689
doi: 10.1007/978-3-031-55529-9_7
doi:

Substances chimiques

Calcium SY7Q814VUP
Membrane Glycoproteins 0
Receptors, Immunologic 0
Transient Receptor Potential Channels 0
TREM2 protein, human 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

123-133

Informations de copyright

© 2024. The Author(s), under exclusive license to Springer Nature Switzerland AG.

Références

Andreone BJ, Przybyla L, Llapashtica C, Rana A, Davis SS, van Lengerich B, Lin K, Shi J, Mei Y, Astarita G, Di Paolo G, Sandmann T, Monroe KM, Lewcock JW (2020) Alzheimer’s-associated PLCgamma2 is a signaling node required for both TREM2 function and the inflammatory response in human microglia. Nat Neurosci 23:927–938
pubmed: 32514138 doi: 10.1038/s41593-020-0650-6
Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB, Mulinyawe SB, Bohlen CJ, Adil A, Tucker A, Weissman IL, Chang EF, Li G, Grant GA, Hayden Gephart MG, Barres BA (2016) New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci USA 113:E1738–E1746
pubmed: 26884166 pmcid: 4812770 doi: 10.1073/pnas.1525528113
Bernier LP (2012) Purinergic regulation of inflammasome activation after central nervous system injury. J Gen Physiol 140:571–575
pubmed: 23109718 pmcid: 3483113 doi: 10.1085/jgp.201210875
Bernier LP, Ase AR, Boue-Grabot E, Seguela P (2012) P2X
pubmed: 22318986 doi: 10.1002/glia.22301
Beutner C, Linnartz-Gerlach B, Schmidt SV, Beyer M, Mallmann MR, Staratschek-Jox A, Schultze JL, Neumann H (2013) Unique transcriptome signature of mouse microglia. Glia 61:1429–1442
pubmed: 23832717 doi: 10.1002/glia.22524
Biber K, Neumann H, Inoue K, Boddeke HW (2007) Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 30:596–602
pubmed: 17950926 doi: 10.1016/j.tins.2007.08.007
Bootman MD, Collins TJ, Peppiatt CM, Prothero LS, MacKenzie L, De Smet P, Travers M, Tovey SC, Seo JT, Berridge MJ, Ciccolini F, Lipp P (2001) Calcium signalling – an overview. Semin Cell Dev Biol 12:3–10
pubmed: 11162741 doi: 10.1006/scdb.2000.0211
Brawek B, Garaschuk O (2013) Microglial calcium signaling in the adult, aged and diseased brain. Cell Calcium 53:159–169
pubmed: 23395344 doi: 10.1016/j.ceca.2012.12.003
Brawek B, Garaschuk O (2017) Monitoring in vivo function of cortical microglia. Cell Calcium 64:109–117
pubmed: 28359543 doi: 10.1016/j.ceca.2017.02.011
Brawek B, Schwendele B, Riester K, Kohsaka S, Lerdkrai C, Liang Y, Garaschuk O (2014) Impairment of in vivo calcium signaling in amyloid plaque-associated microglia. Acta Neuropathol 127:495–505
pubmed: 24407428 doi: 10.1007/s00401-013-1242-2
Brawek B, Skok M, Garaschuk O (2021) Changing functional signatures of microglia along the Axis of brain aging. Int J Mol Sci 22:1091
pubmed: 33499206 pmcid: 7865559 doi: 10.3390/ijms22031091
Brawek B, Liang Y, Savitska D, Li K, Fomin-Thunemann N, Kovalchuk Y, Zirdum E, Jakobsson J, Garaschuk O (2017) A new approach for ratiometric in vivo calcium imaging of microglia. Abstract Scientific Reports 7(1) https://doi.org/10.1038/s41598-017-05952-3
Budd GE (2015) Early animal evolution and the origins of nervous systems. Philos Trans R Soc Lond Ser B Biol Sci 370:20150037
doi: 10.1098/rstb.2015.0037
Bundgaard M, Abbott NJ (2008) All vertebrates started out with a glial blood-brain barrier 4-500 million years ago. Glia 56:699–708
pubmed: 18338790 doi: 10.1002/glia.20642
Campagno KE, Mitchell CH (2021) The P2X
pubmed: 33790743 pmcid: 8005553 doi: 10.3389/fncel.2021.645244
Chiang CY, Veckman V, Limmer K, David M (2012) Phospholipase Cγ-2 and intracellular calcium are required for lipopolysaccharide-induced toll-like receptor 4 (TLR4) endocytosis and interferon regulatory factor 3 (IRF3) activation. J Biol Chem 287:3704–3709
pubmed: 22158869 doi: 10.1074/jbc.C111.328559
Cserep C, Posfai B, Denes A (2020) Shaping neuronal fate: functional heterogeneity of direct microglia-neuron interactions. Neuron 109(2):222–240
pubmed: 33271068 doi: 10.1016/j.neuron.2020.11.007
Di Virgilio F, Schmalzing G, Markwardt F (2018) The elusive P2X
pubmed: 29439897 doi: 10.1016/j.tcb.2018.01.005
Dubbelaar ML, Kracht L, Eggen BJL, Boddeke E (2018) The kaleidoscope of microglial phenotypes. Front Immunol 9:1753
pubmed: 30108586 pmcid: 6079257 doi: 10.3389/fimmu.2018.01753
Echeverry S, Rodriguez MJ, Torres YP (2016) Transient receptor potential channels in microglia: roles in physiology and disease. Neurotox Res 30:467–478
pubmed: 27260222 doi: 10.1007/s12640-016-9632-6
Eichhoff G, Brawek B, Garaschuk O (2011) Microglial calcium signal acts as a rapid sensor of single neuron damage in vivo. Biochim Biophys Acta 1813:1014–1024
pubmed: 21056596 doi: 10.1016/j.bbamcr.2010.10.018
Färber K, Kettenmann H (2006) Functional role of calcium signals for microglial function. Glia 54:656–665
pubmed: 17006894 doi: 10.1002/glia.20412
Ferrari D, Villalba M, Chiozzi P, Falzoni S, Ricciardi-Castagnoli P, Di Virgilio F (1996) Mouse microglial cells express a plasma membrane pore gated by extracellular ATP. J Immunol 156:1531–1539
pubmed: 8568257 doi: 10.4049/jimmunol.156.4.1531
Flurkey K, Currer JM, Harrison DE (2007) The mouse in aging research. In: Fox JG et al (eds) The mouse in biomedical research 2nd edition American College Laboratory Animal Medicine. Elsevier, Burlington, pp 637–672
doi: 10.1016/B978-012369454-6/50074-1
Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254
pubmed: 10911963 doi: 10.1111/j.1749-6632.2000.tb06651.x
Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S (2017) Inflammaging and ‘Garb-aging’. Trends Endocrinol Metab 28:199–212
pubmed: 27789101 doi: 10.1016/j.tem.2016.09.005
Franco L, Bodrato N, Moreschi I, Usai C, Bruzzone S, Scarf S, Zocchi E, De Flora A (2006) Cyclic ADP-ribose is a second messenger in the lipopolysaccharide-stimulated activation of murine N9 microglial cell line. J Neurochem 99:165–176
pubmed: 16987244 doi: 10.1111/j.1471-4159.2006.04031.x
Galatro TF, Holtman IR, Lerario AM, Vainchtein ID, Brouwer N, Sola PR, Veras MM, Pereira TF, Leite REP, Moller T, Wes PD, Sogayar MC, Laman JD, den Dunnen W, Pasqualucci CA, Oba-Shinjo SM, Boddeke E, Marie SKN, Eggen BJL (2017) Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nat Neurosci 20:1162–1171
pubmed: 28671693 doi: 10.1038/nn.4597
Garaschuk O (2017) Age-related changes in microglial physiology: the role for healthy brain ageing and neurodegenerative disorders. e-Neuroforum 23:A182–A191
doi: 10.1515/nf-2016-A057
Garaschuk O (2021) The role of NLRP3 inflammasome for microglial response to peripheral inflammation. Neural Regen Res 16:294–295
pubmed: 32859781 doi: 10.4103/1673-5374.290889
Garaschuk O, Verkhratsky A (2019a) Microglia: the neural cells of nonneural origin. Methods Mol Biol 2034:3–11
pubmed: 31392673 doi: 10.1007/978-1-4939-9658-2_1
Garaschuk O, Verkhratsky A (2019b) Physiology of microglia. Methods Mol Biol 2034:27–40
pubmed: 31392675 doi: 10.1007/978-1-4939-9658-2_3
Garaschuk O, Semchyshyn HM, Lushchak VI (2018) Healthy brain aging: interplay between reactive species, inflammation and energy supply. Ageing Res Rev 43:26–45
pubmed: 29452266 doi: 10.1016/j.arr.2018.02.003
Geirsdottir L, David E, Keren-Shaul H, Weiner A, Bohlen SC, Neuber J, Balic A, Giladi A, Sheban F, Dutertre CA, Pfeifle C, Peri F, Raffo-Romero A, Vizioli J, Matiasek K, Scheiwe C, Meckel S, Matz-Rensing K, van der Meer F, Thormodsson FR, Stadelmann C, Zilkha N, Kimchi T, Ginhoux F, Ulitsky I, Erny D, Amit I, Prinz M (2019) Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell 179:1609–1622, e1616
pubmed: 31835035 doi: 10.1016/j.cell.2019.11.010
Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, Stender JD, Chun HB, Garner H, Geissmann F, Glass CK (2014) Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159:1327–1340
pubmed: 25480297 pmcid: 4364385 doi: 10.1016/j.cell.2014.11.023
Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Younkin S, Hazrati L, Collinge J, Pocock J, Lashley T, Williams J, Lambert JC, Amouyel P, Goate A, Rademakers R, Morgan K, Powell J, St George-Hyslop P, Singleton A, Hardy J (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127
pubmed: 23150934 doi: 10.1056/NEJMoa1211851
Gutkind JS (1998) The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem 273:1839–1842
pubmed: 9442012 doi: 10.1074/jbc.273.4.1839
Haas S, Brockhaus J, Verkhratsky A, Kettenmann H (1996) ATP-induced membrane currents in ameboid microglia acutely isolated from mouse brain slices. Neuroscience 75:257–261
pubmed: 8923539 doi: 10.1016/0306-4522(96)00270-9
Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK, El Khoury J (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16:1896–1905
pubmed: 24162652 pmcid: 3840123 doi: 10.1038/nn.3554
Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, Rujescu D, Hampel H, Giegling I, Andreassen OA, Engedal K, Ulstein I, Djurovic S, Ibrahim-Verbaas C, Hofman A, Ikram MA, van Duijn CM, Thorsteinsdottir U, Kong A, Stefansson K (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116
pubmed: 23150908 doi: 10.1056/NEJMoa1211103
Kaneko S, Kawakami S, Hara Y, Wakamori M, Itoh E, Minami T, Takada Y, Kume T, Katsuki H, Mori Y, Akaike A (2006) A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J Pharmacol Sci 101:66–76
pubmed: 16651700 doi: 10.1254/jphs.FP0060128
Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553
pubmed: 21527731 doi: 10.1152/physrev.00011.2010
Kim SR, Kim SU, Oh U, Jin BK (2006) Transient receptor potential vanilloid subtype 1 mediates microglial cell death in vivo and in vitro via Ca2+-mediated mitochondrial damage and cytochrome c release. J Immunol 177:4322–4329
pubmed: 16982866 doi: 10.4049/jimmunol.177.7.4322
Kraft R (2015) STIM and ORAI proteins in the nervous system. Channels (Austin) 9:245–252
pubmed: 26218135 doi: 10.1080/19336950.2015.1071747
Kyrargyri V, Madry C, Rifat A, Arancibia-Carcamo IL, Jones SP, Chan VTT, Xu Y, Robaye B, Attwell D (2020) P2Y
pubmed: 31520551 doi: 10.1002/glia.23719
Laprell L, Schulze C, Brehme ML, Oertner TG (2021) The role of microglia membrane potential in chemotaxis. J Neuroinflammation 18:21
pubmed: 33423699 pmcid: 7798195 doi: 10.1186/s12974-020-02048-0
Lim D, Semyanov A, Genazzani A, Verkhratsky A (2021) Calcium signaling in neuroglia. Int Rev Cell Mol Biol 362:1–53
pubmed: 34253292 doi: 10.1016/bs.ircmb.2021.01.003
Lin SS, Tang Y, Illes P, Verkhratsky A (2020) The safeguarding microglia: central role for P2Y
Liu YU, Ying Y, Li Y, Eyo UB, Chen T, Zheng J, Umpierre AD, Zhu J, Bosco DB, Dong H, Wu LJ (2019) Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat Neurosci 22:1771–1781
pubmed: 31636449 pmcid: 6858573 doi: 10.1038/s41593-019-0511-3
Lushchak VI, Duszenko M, Gospodaryov DV, Garaschuk O (2021) Oxidative stress and energy metabolism in the brain: midlife as a turning point. Antioxidants (Basel) 10:1715
pubmed: 34829586 doi: 10.3390/antiox10111715
Madry C, Attwell D (2015) Receptors, ion channels, and signaling mechanisms underlying microglial dynamics. J Biol Chem 290:12443–12450
pubmed: 25855789 pmcid: 4432265 doi: 10.1074/jbc.R115.637157
Madry C, Kyrargyri V, Arancibia-Carcamo IL, Jolivet R, Kohsaka S, Bryan RM, Attwell D (2018) Microglial ramification, surveillance, and interleukin-1beta release are regulated by the two-pore domain K(+) channel THIK-1. Neuron 97(299–312):e296
Magno L, Bunney TD, Mead E, Svensson F, Bictash MN (2021) TREM2/PLCgamma2 signalling in immune cells: function, structural insight, and potential therapeutic modulation. Mol Neurodegener 16:22
pubmed: 33823896 pmcid: 8022522 doi: 10.1186/s13024-021-00436-5
Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B, Haney MS, Pluvinage JV, Mathur V, Hahn O, Morgens DW, Kim J, Tevini J, Felder TK, Wolinski H, Bertozzi CR, Bassik MC, Aigner L, Wyss-Coray T (2020) Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat Neurosci 23:194–208
pubmed: 31959936 pmcid: 7595134 doi: 10.1038/s41593-019-0566-1
Masuda T, Sankowski R, Staszewski O, Bottcher C, Amann L, Sagar, Scheiwe C, Nessler S, Kunz P, van Loo G, Coenen VA, Reinacher PC, Michel A, Sure U, Gold R, Grun D, Priller J, Stadelmann C, Prinz M (2019) Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566:388–392
pubmed: 30760929 doi: 10.1038/s41586-019-0924-x
Milior G, Morin-Brureau M, Chali F, Le Duigou C, Savary E, Huberfeld G, Rouach N, Pallud J, Capelle L, Navarro V, Mathon B, Clemenceau S, Miles R (2020) Distinct P2Y receptors mediate extension and retraction of microglial processes in epileptic and peritumoral human tissue. J Neurosci 40:1373–1388
pubmed: 31896671 pmcid: 7044731 doi: 10.1523/JNEUROSCI.0218-19.2019
Miyake T, Shirakawa H, Kusano A, Sakimoto S, Konno M, Nakagawa T, Mori Y, Kaneko S (2014) TRPM2 contributes to LPS/IFNgamma-induced production of nitric oxide via the p38/JNK pathway in microglia. Biochem Biophys Res Commun 444:212–217
pubmed: 24462864 doi: 10.1016/j.bbrc.2014.01.022
Miyake T, Shirakawa H, Nakagawa T, Kaneko S (2015) Activation of mitochondrial transient receptor potential vanilloid 1 channel contributes to microglial migration. Glia 63:1870–1882
pubmed: 26010461 doi: 10.1002/glia.22854
Monif M, Reid CA, Powell KL, Smart ML, Williams DA (2009) The P2X
pubmed: 19321774 pmcid: 6665035 doi: 10.1523/JNEUROSCI.5512-08.2009
Moroz LL (2021) Multiple origins of neurons from secretory cells. Front Cell Dev Biol 9:669087
pubmed: 34307354 pmcid: 8293673 doi: 10.3389/fcell.2021.669087
Nesin V, Tsiokas L (2014) TRPC1. In: Barrett J et al (eds) Mammalian transient receptor potential (TRP) cation channels, vol 1. Springer, Berlin, pp 403–426
Nilius B, Appendino G (2013) Spices: the savory and beneficial science of pungency. Rev Physiol Biochem Pharmacol 164:1–76
pubmed: 23605179 doi: 10.1007/112_2013_11
Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12:218
pubmed: 21401968 pmcid: 3129667 doi: 10.1186/gb-2011-12-3-218
Olmedillas Del Moral M, Asavapanumas N, Uzcategui NL, Garaschuk O (2019) Healthy brain aging modifies microglial calcium signaling in vivo. Int J Mol Sci 20:589
pubmed: 30704036 pmcid: 6386999 doi: 10.3390/ijms20030589
Olmedillas Del Moral M, Frohlich N, Figarella K, Mojtahedi N, Garaschuk O (2020) Effect of caloric restriction on the in vivo functional properties of aging microglia. Front Immunol 11:750
pubmed: 32411143 pmcid: 7198715 doi: 10.3389/fimmu.2020.00750
Owsianik G, Talavera K, Voets T, Nilius B (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685–717
pubmed: 16460288 doi: 10.1146/annurev.physiol.68.040204.101406
Pan K, Garaschuk O (2022) The role of intracellular calcium stores-mediated calcium signals for in vivo sensor and effector functions of microglia. J Physiol 601(19)):4203–4215
pubmed: 35315518
Paolicelli RC, Sierra A, Stevens B, Tremblay ME, Aguzzi A, Ajami B, Amit I, Audinat E, Bechmann I, Bennett M, Bennett F, Bessis A, Biber K, Bilbo S, Blurton-Jones M, Boddeke E, Brites D, Brone B, Brown GC, Butovsky O, Carson MJ, Castellano B, Colonna M, Cowley SA, Cunningham C, Davalos D, De Jager PL, de Strooper B, Denes A, Eggen BJL, Eyo U, Galea E, Garel S, Ginhoux F, Glass CK, Gokce O, Gomez-Nicola D, Gonzalez B, Gordon S, Graeber MB, Greenhalgh AD, Gressens P, Greter M, Gutmann DH, Haass C, Heneka MT, Heppner FL, Hong S, Hume DA, Jung S, Kettenmann H, Kipnis J, Koyama R, Lemke G, Lynch M, Majewska A, Malcangio M, Malm T, Mancuso R, Masuda T, Matteoli M, McColl BW, Miron VE, Molofsky AV, Monje M, Mracsko E, Nadjar A, Neher JJ, Neniskyte U, Neumann H, Noda M, Peng B, Peri F, Perry VH, Popovich PG, Pridans C, Priller J, Prinz M, Ragozzino D, Ransohoff RM, Salter MW, Schaefer A, Schafer DP, Schwartz M, Simons M, Smith CJ, Streit WJ, Tay TL, Tsai LH, Verkhratsky A, von Bernhardi R, Wake H, Wittamer V, Wolf SA, Wu LJ, Wyss-Coray T (2022) Microglia states and nomenclature: a field at its crossroads. Neuron 110:3458–3483
pubmed: 36327895 pmcid: 9999291 doi: 10.1016/j.neuron.2022.10.020
Pivoriunas A, Verkhratsky A (2021) Astrocyte-endotheliocyte Axis in the regulation of the blood-brain barrier. Neurochem Res 46:2538–2550
pubmed: 33961207 doi: 10.1007/s11064-021-03338-6
Plattner H, Verkhratsky A (2018) The remembrance of the things past: conserved signalling pathways link protozoa to mammalian nervous system. Cell Calcium 73:25–39
pubmed: 29880195 doi: 10.1016/j.ceca.2018.04.001
Pluvinage JV, Haney MS, Smith BAH, Sun J, Iram T, Bonanno L, Li L, Lee DP, Morgens DW, Yang AC, Shuken SR, Gate D, Scott M, Khatri P, Luo J, Bertozzi CR, Bassik MC, Wyss-Coray T (2019) CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature 568:187–192
pubmed: 30944478 pmcid: 6574119 doi: 10.1038/s41586-019-1088-4
Riester K, Brawek B, Savitska D, Frohlich N, Zirdum E, Mojtahedi N, Heneka MT, Garaschuk O (2020) In vivo characterization of functional states of cortical microglia during peripheral inflammation. Brain Behav Immun 87:243–255
pubmed: 31837418 doi: 10.1016/j.bbi.2019.12.007
Rose CR, Verkhratsky A (2016) Principles of sodium homeostasis and sodium signalling in astroglia. Glia 64:1611–1627
pubmed: 26919326 doi: 10.1002/glia.22964
Roth G (2015) Convergent evolution of complex brains and high intelligence. Philos Trans R Soc Lond Ser B Biol Sci 370:20150049
doi: 10.1098/rstb.2015.0049
Schwendele B, Brawek B, Hermes M, Garaschuk O (2012) High resolution in vivo imaging of microglia using a versatile non genetically-encoded marker. Eur J Immunol 42:2193–2196
pubmed: 22622946 doi: 10.1002/eji.201242436
Stowell RD, Sipe GO, Dawes RP, Batchelor HN, Lordy KA, Whitelaw BS, Stoessel MB, Bidlack JM, Brown E, Sur M, Majewska AK (2019) Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. Nat Neurosci 22:1782–1792
pubmed: 31636451 pmcid: 6875777 doi: 10.1038/s41593-019-0514-0
Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT (2012) PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 249:158–175
pubmed: 22889221 pmcid: 3662247 doi: 10.1111/j.1600-065X.2012.01146.x
Toescu EC, Moller T, Kettenmann H, Verkhratsky A (1998) Long-term activation of capacitative Ca
pubmed: 9692728 doi: 10.1016/S0306-4522(98)00123-7
Tvrdik P, Kalani MYS (2017) In vivo imaging of microglial calcium signaling in brain inflammation and injury. Int J Mol Sci 18:2366
pubmed: 29117112 pmcid: 5713335 doi: 10.3390/ijms18112366
Ulland TK, Colonna M (2018) TREM2 – a key player in microglial biology and Alzheimer disease. Nat Rev Neurol 14:667–675
pubmed: 30266932 doi: 10.1038/s41582-018-0072-1
Umpierre AD, Bystrom LL, Ying Y, Liu YU, Worrell G, Wu LJ (2020) Microglial calcium signaling is attuned to neuronal activity in awake mice. elife 9:e56502
pubmed: 32716294 pmcid: 7402678 doi: 10.7554/eLife.56502
Verkhratsky A, Butt AM (2013) Glial physiology and pathophysiology. Wiley-Blackwell, Chichester
doi: 10.1002/9781118402061
Verkhratsky A, Nedergaard M (2016) The homeostatic astroglia emerges from evolutionary specialization of neural cells. Philos Trans R Soc Lond Ser B Biol Sci 371:20150428
doi: 10.1098/rstb.2015.0428
Verkhratsky A, Nedergaard M (2018) Physiology of Astroglia. Physiol Rev 98:239–389
pubmed: 29351512 doi: 10.1152/physrev.00042.2016
Verkhratsky A, Parpura V (2014) Store-operated calcium entry in neuroglia. Neurosci Bull 30:125–133
pubmed: 23677809 doi: 10.1007/s12264-013-1343-x
Verkhratsky A, Untiet V, Rose CR (2020) Ionic signalling in astroglia beyond calcium. J Physiol 598:1655–1670
pubmed: 30734296 doi: 10.1113/JP277478
Verkhratsky A, Arranz AM, Ciuba K, Pekowska A (2022) Evolution of neuroglia. Ann N Y Acad Sci, in press 1518:120
pubmed: 36285711 doi: 10.1111/nyas.14917
Wagenaar DA (2015) A classic model animal in the 21st century: recent lessons from the leech nervous system. J Exp Biol 218:3353–3359
pubmed: 26538172 doi: 10.1242/jeb.113860

Auteurs

Olga Garaschuk (O)

Institute of Physiology, Department Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany. olga.garaschuk@uni-tuebingen.de.

Alexei Verkhratsky (A)

Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK. alexej.verkhratsky@manchester.ac.uk.
Department of Neurosciences, University of the Basque Country, Leioa, Spain. alexej.verkhratsky@manchester.ac.uk.
Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania. alexej.verkhratsky@manchester.ac.uk.
IKERBASQUE, Basque Foundation for Science, Bilbao, Spain. alexej.verkhratsky@manchester.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH