Validity and reliability of a finger training tool for assessing metacarpal phalangeal joint ranges of motion in asymptomatic participants.
Manual goniometer
Minimal detectable difference
Range of motion
Therapeutic device
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 Aug 2024
29 Aug 2024
Historique:
received:
15
03
2024
accepted:
23
08
2024
medline:
31
8
2024
pubmed:
31
8
2024
entrez:
29
8
2024
Statut:
epublish
Résumé
This pilot study aims to evaluate concurrent validity using the goniometer as a reference tool and test-retest reliability of flexion of metacarpal phalangeal joint (MCP) measurements taken from a finger training device (air-guitar system) in healthy participants. There were ten self -reported asymptomatic participants recruited to test the devices. The measurements of all metacarpophangeal joints of the dominant hands were conducted using a finger goniometer and the air-guitar system. Two measuring sessions were conducted on the same day. The concurrent validity of the air-guitar indicated by strong concordance correlation coefficient (0.62-0.90) with the goniometer and mean difference (approximately 1°) between the two instruments are well below the limit of 5°. The test-retest reliability of MCP measurements from the air-guitar glove (0.82-0.99) was acceptable as a clinically meaningful measurement tool as the intraclass correlation coefficients were higher than 0.7. The standard error of measurement and minimal detectable change of the air-guitar are similar to those of the goniometer. The air-guitar tracking features, when used as a home-based therapy tool, may assist in monitoring change of MCP flexion over a time course with good reliability and strongly associated with the measurements from the goniometer.
Identifiants
pubmed: 39209933
doi: 10.1038/s41598-024-71094-y
pii: 10.1038/s41598-024-71094-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
20113Subventions
Organisme : Faculty of medicine research fund, Chiang Mai University
ID : 356/2022
Informations de copyright
© 2024. The Author(s).
Références
Dahaghin, S. et al. Prevalence and determinants of one month hand pain and hand related disability in the elderly (Rotterdam study). Ann. Rheum. Dis. 64(1), 99–104 (2005).
pubmed: 15608306
pmcid: 1755169
doi: 10.1136/ard.2003.017087
Vasiliadis, A. V. et al. Hand disorders demographics in rural areas: A 15-year analysis of demographic characteristics overtime in a stable population. Acta Orthop. Traumatol. Turc. 54(6), 604–608 (2020).
pubmed: 33423992
pmcid: 7815228
doi: 10.5152/j.aott.2020.19184
Akyea, R. K. et al. Sex, age, and socioeconomic differences in nonfatal stroke incidence and subsequent major adverse outcomes. Stroke 52(2), 396–405 (2021).
pubmed: 33493066
pmcid: 7834661
doi: 10.1161/STROKEAHA.120.031659
Lawrence, E. S. et al. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke 32(6), 1279–1284 (2001).
pubmed: 11387487
doi: 10.1161/01.STR.32.6.1279
Cramer, S. C. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann. Neurol. 63(3), 272–287 (2008).
pubmed: 18383072
doi: 10.1002/ana.21393
Langhorne, P., Bernhardt, J. & Kwakkel, G. Stroke rehabilitation. Lancet 377(9778), 1693–1702 (2011).
pubmed: 21571152
doi: 10.1016/S0140-6736(11)60325-5
Hughes, A. M. et al. Translation of evidence-based assistive technologies into stroke rehabilitation: Users’ perceptions of the barriers and opportunities. BMC Health Serv. Res. 14, 124 (2014).
pubmed: 24620739
pmcid: 4007558
doi: 10.1186/1472-6963-14-124
Heller, A. et al. Arm function after stroke: Measurement and recovery over the first three months. J. Neurol. Neurosurg. Psychiatry 50(6), 714–719 (1987).
pubmed: 3612152
pmcid: 1032076
doi: 10.1136/jnnp.50.6.714
Sawaki, L. Use-dependent plasticity of the human motor cortex in health and disease. IEEE Eng. Med. Biol. Mag. 24(1), 36–39 (2005).
pubmed: 15709534
doi: 10.1109/MEMB.2005.1384098
de Sousa, D. G., Harvey, L. A., Dorsch, S. & Glinsky, J. V. Interventions involving repetitive practice improve strength after stroke: A systematic review. J. Physiother. 64(4), 210–221 (2018).
pubmed: 30245180
doi: 10.1016/j.jphys.2018.08.004
van der Lee, J. H. et al. Exercise therapy for arm function in stroke patients: A systematic review of randomized controlled trials. Clin. Rehabil. 15(1), 20–31 (2001).
pubmed: 11237158
doi: 10.1191/026921501677557755
MediTouchUSA. HandTutor Bellevue, WA: Bellevue, WA. https://www.meditouchusa.com/handtutor (2023).
Technologies R. EsoGlove Pro Singapore: Singapore. https://www.roceso.com/esoglove-pro/ .
Idrogenet. Gloreha Grab your life Italy: Lumezzane(Brescia). https://www.gloreha.com/ (2023).
Hughes. Management of cerebral palsy in children: A guide for allied health professionals. (2018).
Co SIT. Sybero hand New Area, Shianghai, China: Siyi Intelligent Technology Co. https://www.syrebo.com/ (2023).
Friedman, N., Chan, V., Zondervan, D., Bachman, M. & Reinkensmeyer, D. J. MusicGlove: Motivating and quantifying hand movement rehabilitation by using functional grips to play music. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2011, 2359–2363 (2011).
pubmed: 22254815
Hayashi, H., Shimizu, H., Okumura, S. & Miwa, K. Necessary metacarpophalangeal joints range of motion to maintain hand function. Hong Kong J. Occup. Therapy 24(2), 51–55 (2014).
doi: 10.1016/j.hkjot.2014.10.001
Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A. & Leonhardt, S. A survey on robotic devices for upper limb rehabilitation. J. NeuroEng. Rehab. 11(1), 3 (2014).
doi: 10.1186/1743-0003-11-3
Baltzer, H. L. & Moran, S. L. The biomechanical impact of digital loss and fusion following trauma: Setting the patient up for success. Hand Clin. 32(4), 443–463 (2016).
pubmed: 27712747
doi: 10.1016/j.hcl.2016.07.003
Bonett, D. G. Sample size requirements for estimating intraclass correlations with desired precision. Stat. Med. 21(9), 1331–1335 (2002).
pubmed: 12111881
doi: 10.1002/sim.1108
Therapists Asoh, MacDermid, J., Solomon, G., Valdes, K. Clinical Assessment Recommendations: American Society of Hand Therapists (2015).
Lawrence, I. K. L. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45(1), 255–268 (1989).
doi: 10.2307/2532051
Reissner, L. et al. Minimal detectable difference of the finger and wrist range of motion: Comparison of goniometry and 3D motion analysis. J. Orthop. Surg. Res. 14(1), 173 (2019).
pubmed: 31182129
pmcid: 6558857
doi: 10.1186/s13018-019-1177-y
Chan, Y. H. Biostatistics 103: Qualitative data-tests of independence. Singap. Med. J. 44(10), 498–503 (2003).
Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 18(3), 91–93 (2018).
pubmed: 30191186
pmcid: 6107969
doi: 10.1016/j.tjem.2018.08.001
Bland, J. M. & Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327(8476), 307–310 (1986).
doi: 10.1016/S0140-6736(86)90837-8
Bland, J. M. & Altman, D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Int. J. Nurs. Stud. 47(8), 931–936 (2010).
doi: 10.1016/j.ijnurstu.2009.10.001
Bland, J. M. & Altman, D. G. Comparing methods of measurement: Why plotting difference against standard method is misleading. Lancet 346(8982), 1085–1087 (1995).
pubmed: 7564793
doi: 10.1016/S0140-6736(95)91748-9
Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. (Zagreb) 25(2), 141–151 (2015).
pubmed: 26110027
doi: 10.11613/BM.2015.015
Koo, T. K. & Li, M. Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15(2), 155–163 (2016).
pubmed: 27330520
pmcid: 4913118
doi: 10.1016/j.jcm.2016.02.012
Streiner, D. L., Norman, G. R. & Cairney, J. Health Measurement Scales: A Practical Guide to Their Development and Use (Oxford University Press, Oxford, 2015).
doi: 10.1093/med/9780199685219.001.0001
Clarkson, H.M. Musculoskeletal assessment: Joint motion and muscle testing: Wolters Kluwer/Lippincott Williams & Wilkins Health (2013).
Haley, S. M. & Fragala-Pinkham, M. A. Interpreting change scores of tests and measures used in physical therapy. Phys. Ther. 86(5), 735–743 (2006).
pubmed: 16649896
doi: 10.1093/ptj/86.5.735
McBride, G. A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient. NIWA client report: HAM2005-062. 2005;45:307–310.
Armstrong, A. D., MacDermid, J. C., Chinchalkar, S., Stevens, R. S. & King, G. J. Reliability of range-of-motion measurement in the elbow and forearm. J. Shoulder Elb. Surg. 7(6), 573–580 (1998).
doi: 10.1016/S1058-2746(98)90003-9
Lewis, E., Fors, L. & Tharion, W. J. Interrater and intrarater reliability of finger goniometric measurements. Am. J. Occup. Ther. 64(4), 555–561 (2010).
pubmed: 20825126
doi: 10.5014/ajot.2010.09028
Surgeons, A. Joint Motion: Method of Measuring and Recording (Churchill Livingstone, 1965).
Bain, G. I., Polites, N., Higgs, B. G., Heptinstall, R. J. & McGrath, A. M. The functional range of motion of the finger joints. J. Hand Surg. Eur. 40(4), 406–411 (2015).
doi: 10.1177/1753193414533754