A common druggable signature of oncogenic c-Myc, mutant KRAS and mutant p53 reveals functional redundancy and competition among oncogenes in cancer.


Journal

Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092

Informations de publication

Date de publication:
31 Aug 2024
Historique:
received: 07 02 2024
accepted: 31 07 2024
revised: 31 07 2024
medline: 1 9 2024
pubmed: 1 9 2024
entrez: 31 8 2024
Statut: epublish

Résumé

The major driver oncogenes MYC, mutant KRAS, and mutant TP53 often coexist and cooperate to promote human neoplasia, which results in anticancer therapeutic opportunities within their downstream molecular programs. However, little research has been conducted on whether redundancy and competition among oncogenes affect their programs and ability to drive neoplasia. By CRISPR‒Cas9-mediated downregulation we evaluated the downstream proteomics and transcriptomics programs of MYC, mutant KRAS, and mutant TP53 in a panel of cell lines with either one or three of these oncogenes activated, in cancers of the lung, colon and pancreas. Using RNAi screening of the commonly activated molecular programs, we found a signature of three proteins - RUVBL1, HSPA9, and XPO1, which could be efficiently targeted by novel drug combinations in the studied cancer types. Interestingly, the signature was controlled by the oncoproteins in a redundant or competitive manner rather than by cooperation. Each oncoprotein individually upregulated the target genes, while upon oncogene co-expression each target was controlled preferably by a dominant oncoprotein which reduced the influence of the others. This interplay was mediated by redundant routes of target gene activation - as in the case of mutant KRAS signaling to c-Jun/GLI2 transcription factors bypassing c-Myc activation, and by competition - as in the case of mutant p53 and c-Myc competing for binding to target promoters. The global transcriptomics data from the cell lines and patient samples indicate that the redundancy and competition of oncogenic programs are broad phenomena, that may constitute even a majority of the genes dependent on oncoproteins, as shown for mutant p53 in colon and lung cancer cell lines. Nevertheless, we demonstrated that redundant oncogene programs harbor targets for efficient anticancer drug combinations, bypassing the limitations for direct oncoprotein inhibition.

Identifiants

pubmed: 39217152
doi: 10.1038/s41419-024-06965-3
pii: 10.1038/s41419-024-06965-3
doi:

Substances chimiques

Tumor Suppressor Protein p53 0
Proto-Oncogene Proteins p21(ras) EC 3.6.5.2
KRAS protein, human 0
Proto-Oncogene Proteins c-myc 0
HSPA9 protein, human 0
MYC protein, human 0
TP53 protein, human 0
HSP70 Heat-Shock Proteins 0
Mitochondrial Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

638

Subventions

Organisme : Narodowe Centrum Nauki (National Science Centre)
ID : 2017/26/E/NZ5/00663
Organisme : Servier (Laboratoires Servier)
ID : PTO/Servier oncology grant ed.2022/23
Organisme : Instytut Medycyny Doswiadczalnej i Klinicznej im. M. Mossakowskiego, Polskiej Akademii Nauk (Mossakowski Medical Research Centre, Polish Academy of Sciences)
ID : FBW-03/2021

Informations de copyright

© 2024. The Author(s).

Références

Consortium TITP-CAoWG. Pan-cancer analysis of whole genomes. Nature 2020;578:82–93.
doi: 10.1038/s41586-020-1969-6
Grzes M, Oron M, Staszczak Z, Jaiswar A, Nowak-Niezgoda M, Walerych D. A driver never works alone-interplay networks of mutant p53, MYC, RAS, and other universal oncogenic drivers in human cancer. Cancers. 2020;12:1532.
Levine AJ. The many faces of p53: something for everyone. J Mol Cell Biol. 2019;11:524–30.
pubmed: 30925588 pmcid: 6736316 doi: 10.1093/jmcb/mjz026
Bargonetti J, Prives C. Gain-of-function mutant p53: history and speculation. J Mol Cell Biol. 2019;11:605–9.
pubmed: 31283823 pmcid: 6735697 doi: 10.1093/jmcb/mjz067
Duffy MJ, Tang M, Rajaram S, O’Grady S, Crown J. Targeting mutant p53 for cancer treatment: moving closer to clinical use? Cancers. 2022;14:4499.
Xiao S, Shi F, Song H, Cui J, Zheng D, Zhang H, et al. Characterization of the generic mutant p53-rescue compounds in a broad range of assays. Cancer Cell. 2024;42:325–7.
pubmed: 38402608 doi: 10.1016/j.ccell.2024.01.008
Parikh K, Banna G, Liu SV, Friedlaender A, Desai A, Subbiah V, et al. Drugging KRAS: current perspectives and state-of-art review. J Hematol Oncol. 2022;15:152.
pubmed: 36284306 pmcid: 9597994 doi: 10.1186/s13045-022-01375-4
Wang H, Chi L, Yu F, Dai H, Gao C, Si X, et al. Annual review of KRAS inhibitors in 2022. Eur J Med Chem. 2023;249:115124.
pubmed: 36680986 doi: 10.1016/j.ejmech.2023.115124
Miyashita H, Kato S, Hong DS. KRAS G12C inhibitor combination therapies: current evidence and challenge. Front Oncol. 2024;14:1380584.
pubmed: 38756650 pmcid: 11097198 doi: 10.3389/fonc.2024.1380584
Wasko UN, Jiang J, Dalton TC, Curiel-Garcia A, Edwards AC, Wang Y, et al. Tumour-selective activity of RAS-GTP inhibition in pancreatic cancer. Nature 2024;629:927–36.
pubmed: 38588697 pmcid: 11111406 doi: 10.1038/s41586-024-07379-z
Donati G, Amati BMYC. and therapy resistance in cancer: risks and opportunities. Mol Oncol. 2022;16:3828–54.
pubmed: 36214609 pmcid: 9627787 doi: 10.1002/1878-0261.13319
Weber LI, Hartl M. Strategies to target the cancer driver MYC in tumor cells. Front Oncol. 2023;13:1142111.
pubmed: 36969025 pmcid: 10032378 doi: 10.3389/fonc.2023.1142111
Chang WH, Liu Y, Hammes EA, Bryant KL, Cerione RA, Antonyak MA. Oncogenic RAS promotes MYC protein stability by upregulating the expression of the inhibitor of apoptosis protein family member Survivin. J Biol Chem. 2023;299:102842.
pubmed: 36581205 doi: 10.1016/j.jbc.2022.102842
Liao P, Zeng SX, Zhou X, Chen T, Zhou F, Cao B, et al. Mutant p53 gains its function via c-Myc activation upon CDK4 phosphorylation at serine 249 and consequent PIN1 binding. Mol Cell. 2017;68:1134–46.e6.
pubmed: 29225033 pmcid: 6204219 doi: 10.1016/j.molcel.2017.11.006
Romeo MA, Gilardini Montani MS, Arena A, Benedetti R, D'Orazi G, Cirone M. c-Myc sustains pancreatic cancer cell survival and mutp53 stability through the mevalonate pathway. Biomedicines. 2022;10:2489.
pubmed: 36289751 pmcid: 9599358 doi: 10.3390/biomedicines10102489
Ganci F, Pulito C, Valsoni S, Sacconi A, Turco C, Vahabi M, et al. PI3K inhibitors curtail MYC-dependent mutant p53 gain-of-function in head and neck squamous cell carcinoma. Clin Cancer Res. 2020;26:2956–71.
pubmed: 31969334 doi: 10.1158/1078-0432.CCR-19-2485
Kim MP, Li X, Deng J, Zhang Y, Dai B, Allton KL, et al. Oncogenic KRAS recruits an expansive transcriptional network through mutant p53 to drive pancreatic cancer metastasis. Cancer Discov. 2021;11:2094–111.
pubmed: 33839689 pmcid: 8338884 doi: 10.1158/2159-8290.CD-20-1228
Escobar-Hoyos LF, Penson A, Kannan R, Cho H, Pan CH, Singh RK, et al. Altered RNA splicing by mutant p53 activates oncogenic RAS signaling in pancreatic cancer. Cancer Cell. 2020;38:198–211.e8.
pubmed: 32559497 pmcid: 8028848 doi: 10.1016/j.ccell.2020.05.010
Gaweda-Walerych K, Walerych D, Berdynski M, Buratti E, Zekanowski C. Parkin levels decrease in fibroblasts with Progranulin (PGRN) pathogenic variants and in a cellular model of PGRN deficiency. Front Mol Neurosci. 2021;14:676478.
pubmed: 34054428 pmcid: 8155584 doi: 10.3389/fnmol.2021.676478
van Waarde-Verhagen MA, Kampinga HH, Linskens MH. Continuous growth of telomerase-immortalised fibroblasts: how long do cells remain normal? Mech Ageing Dev. 2006;127:85–7.
pubmed: 16213574 doi: 10.1016/j.mad.2005.08.008
Wisniewski JR, Gaugaz FZ. Fast and sensitive total protein and Peptide assays for proteomic analysis. Anal Chem. 2015;87:4110–6.
pubmed: 25837572 doi: 10.1021/ac504689z
Wisniewski JR, Mann M. Consecutive proteolytic digestion in an enzyme reactor increases depth of proteomic and phosphoproteomic analysis. Anal Chem. 2012;84:2631–7.
pubmed: 22324799 doi: 10.1021/ac300006b
Walerych D, Lisek K, Sommaggio R, Piazza S, Ciani Y, Dalla E, et al. Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer. Nat Cell Biol. 2016;18:897–909.
pubmed: 27347849 doi: 10.1038/ncb3380
Wisniewski JR, Zettl K. Datasets: sensitivity and protein digestion course of proteomic filter aided sample preparation. Data Brief. 2019;26:104530.
pubmed: 31667293 pmcid: 6811893 doi: 10.1016/j.dib.2019.104530
Oron M, Grochowski M, Jaiswar A, Legierska J, Jastrzebski K, Nowak-Niezgoda M, et al. The molecular network of the proteasome machinery inhibition response is orchestrated by HSP70, revealing vulnerabilities in cancer cells. Cell Rep. 2022;40:111428.
pubmed: 36170818 doi: 10.1016/j.celrep.2022.111428
Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141:1762–72.
pubmed: 21889923 doi: 10.1053/j.gastro.2011.07.050
Boj SF, Hwang CI, Baker LA, Chio II, Engle DD, Corbo V, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160:324–38.
pubmed: 25557080 doi: 10.1016/j.cell.2014.12.021
Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. Emerging landscape of oncogenic signatures across human cancers. Nat Genet. 2013;45:1127–33.
pubmed: 24071851 pmcid: 4320046 doi: 10.1038/ng.2762
Imperial R, Ahmed Z, Toor OM, Erdogan C, Khaliq A, Case P, et al. Comparative proteogenomic analysis of right-sided colon cancer, left-sided colon cancer and rectal cancer reveals distinct mutational profiles. Mol Cancer. 2018;17:177.
pubmed: 30577807 pmcid: 6303985 doi: 10.1186/s12943-018-0923-9
Gillette MA, Satpathy S, Cao S, Dhanasekaran SM, Vasaikar SV, Krug K, et al. Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell 2020;182:200–25.e35.
pubmed: 32649874 pmcid: 7373300 doi: 10.1016/j.cell.2020.06.013
Cao L, Huang C, Cui Zhou D, Hu Y, Lih TM, Savage SR, et al. Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell 2021;184:5031–52.e26.
pubmed: 34534465 pmcid: 8654574 doi: 10.1016/j.cell.2021.08.023
Sakai E, Nakayama M, Oshima H, Kouyama Y, Niida A, Fujii S, et al. Combined mutation of Apc, Kras, and Tgfbr2 effectively drives metastasis of intestinal cancer. Cancer Res. 2018;78:1334–46.
pubmed: 29282223 doi: 10.1158/0008-5472.CAN-17-3303
Schofield HK, Zeller J, Espinoza C, Halbrook CJ, Del Vecchio A, Magnuson B, et al. Mutant p53R270H drives altered metabolism and increased invasion in pancreatic ductal adenocarcinoma. JCI Insight. 2018;3:e97422.
Assimon VA, Tang Y, Vargas JD, Lee GJ, Wu ZY, Lou K, et al. CB-6644 is a selective inhibitor of the RUVBL1/2 complex with anticancer activity. ACS Chem Biol. 2019;14:236–44.
pubmed: 30640450 doi: 10.1021/acschembio.8b00904
Wu PK, Hong SK, Starenki D, Oshima K, Shao H, Gestwicki JE, et al. Mortalin/HSPA9 targeting selectively induces KRAS tumor cell death by perturbing mitochondrial membrane permeability. Oncogene. 2020;39:4257–70.
pubmed: 32291414 pmcid: 7244387 doi: 10.1038/s41388-020-1285-5
Quintanal-Villalonga A, Taniguchi H, Hao Y, Chow A, Zhan YA, Chavan SS, et al. Inhibition of XPO1 sensitizes small cell lung cancer to first- and second-line chemotherapy. Cancer Res. 2022;82:472–83.
pubmed: 34815254 doi: 10.1158/0008-5472.CAN-21-2964
Ischenko I, Zhi J, Hayman MJ, Petrenko O. KRAS-dependent suppression of MYC enhances the sensitivity of cancer cells to cytotoxic agents. Oncotarget. 2017;8:17995–8009.
pubmed: 28152508 pmcid: 5392302 doi: 10.18632/oncotarget.14929
Austin RJ, Straube J, Halder R, Janardhanan Y, Bruedigam C, Witkowski M, et al. Oncogenic drivers dictate immune control of acute myeloid leukemia. Nat Commun. 2023;14:2155.
pubmed: 37059710 pmcid: 10104832 doi: 10.1038/s41467-023-37592-9
Sokolik C, Liu Y, Bauer D, McPherson J, Broeker M, Heimberg G, et al. Transcription factor competition allows embryonic stem cells to distinguish authentic signals from noise. Cell Syst. 2015;1:117–29.
pubmed: 26405695 pmcid: 4576702 doi: 10.1016/j.cels.2015.08.001
Annunziata I, van de Vlekkert D, Wolf E, Finkelstein D, Neale G, Machado E, et al. MYC competes with MiT/TFE in regulating lysosomal biogenesis and autophagy through an epigenetic rheostat. Nat Commun. 2019;10:3623.
pubmed: 31399583 pmcid: 6689058 doi: 10.1038/s41467-019-11568-0
Liu N, Xu S, Yao Q, Zhu Q, Kai Y, Hsu JY, et al. Transcription factor competition at the gamma-globin promoters controls hemoglobin switching. Nat Genet. 2021;53:511–20.
pubmed: 33649594 pmcid: 8038971 doi: 10.1038/s41588-021-00798-y
Kim MP, Lozano G. Mutant p53 partners in crime. Cell Death Differ. 2018;25:161–8.
pubmed: 29099488 doi: 10.1038/cdd.2017.185
Jiang D, Dumur CI, Massey HD, Ramakrishnan V, Subler MA, Windle JJ. Comparison of effects of p53 null and gain-of-function mutations on salivary tumors in MMTV-Hras transgenic mice. PLoS One. 2015;10:e0118029.
pubmed: 25695772 pmcid: 4335025 doi: 10.1371/journal.pone.0118029
Giacomelli AO, Yang X, Lintner RE, McFarland JM, Duby M, Kim J, et al. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat Genet. 2018;50:1381–7.
pubmed: 30224644 pmcid: 6168352 doi: 10.1038/s41588-018-0204-y
Boettcher S, Miller PG, Sharma R, McConkey M, Leventhal M, Krivtsov AV, et al. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science. 2019;365:599–604.
pubmed: 31395785 pmcid: 7327437 doi: 10.1126/science.aax3649
Wang Z, Burigotto M, Ghetti S, Vaillant F, Tan T, Capaldo BD, et al. Loss-of-function but not gain-of-function properties of mutant TP53 are critical for the proliferation, survival, and metastasis of a broad range of cancer cells. Cancer Discov. 2024;14:362–79.
pubmed: 37877779 doi: 10.1158/2159-8290.CD-23-0402
Zheng X, Wang H, Deng J, Yao M, Zou X, Zhang F, et al. Safety and efficacy of the pan-FGFR inhibitor erdafitinib in advanced urothelial carcinoma and other solid tumors: A systematic review and meta-analysis. Front Oncol. 2022;12:907377.
pubmed: 36776367 doi: 10.3389/fonc.2022.907377

Auteurs

Maria Grześ (M)

Mossakowski Medical Research Institute PAS, Warsaw, Poland.

Akanksha Jaiswar (A)

Mossakowski Medical Research Institute PAS, Warsaw, Poland.

Marcin Grochowski (M)

Mossakowski Medical Research Institute PAS, Warsaw, Poland.

Weronika Wojtyś (W)

Mossakowski Medical Research Institute PAS, Warsaw, Poland.

Wojciech Kaźmierczak (W)

Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.

Tomasz Olesiński (T)

Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.

Małgorzata Lenarcik (M)

Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.

Magdalena Nowak-Niezgoda (M)

National Medical Institute of the Ministry of the Interior and Administration, Warsaw, Poland.

Małgorzata Kołos (M)

National Medical Institute of the Ministry of the Interior and Administration, Warsaw, Poland.

Giulia Canarutto (G)

International Center for Genetic Engineering and Biotechnology, Trieste, Italy.

Silvano Piazza (S)

International Center for Genetic Engineering and Biotechnology, Trieste, Italy.

Jacek R Wiśniewski (JR)

Max Planck Institute of Biochemistry, Martinsried, Germany.

Dawid Walerych (D)

Mossakowski Medical Research Institute PAS, Warsaw, Poland. dwalerych@imdik.pan.pl.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH