Mitochondria transfer-based therapies reduce the morbidity and mortality of Leigh syndrome.


Journal

Nature metabolism
ISSN: 2522-5812
Titre abrégé: Nat Metab
Pays: Germany
ID NLM: 101736592

Informations de publication

Date de publication:
02 Sep 2024
Historique:
received: 21 08 2023
accepted: 08 08 2024
medline: 3 9 2024
pubmed: 3 9 2024
entrez: 2 9 2024
Statut: aheadofprint

Résumé

Mitochondria transfer is a recently described phenomenon in which donor cells deliver mitochondria to acceptor cells

Identifiants

pubmed: 39223312
doi: 10.1038/s42255-024-01125-5
pii: 10.1038/s42255-024-01125-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Burroughs Wellcome Fund (BWF)
ID : CAMS #1019648
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
ID : 1R01NS134932
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
ID : 5U54-NS078059-12
Organisme : MEXT | Japan Science and Technology Agency (JST)
ID : JPMJSP #2138
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : 20K17379
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : 22K16322
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : 21K08415
Organisme : American Heart Association (American Heart Association, Inc.)
ID : 24PRE1189775
Organisme : American Heart Association (American Heart Association, Inc.)
ID : 24POST1244220

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Al Amir Dache, Z. & Thierry, A. R. Mitochondria-derived cell-to-cell communication. Cell Rep. 42, 112728 (2023).
doi: 10.1016/j.celrep.2023.112728 pubmed: 37440408
Zhu, M. et al. Mitochondria released by apoptotic cell death initiate innate immune responses. Immunohorizons 2, 384–397 (2018).
doi: 10.4049/immunohorizons.1800063 pubmed: 30847435
Borcherding, N. & Brestoff, J. R. The power and potential of mitochondria transfer. Nature 623, 283–291 (2023).
doi: 10.1038/s41586-023-06537-z pubmed: 37938702
Borcherding, N. et al. Dietary lipids inhibit mitochondria transfer to macrophages to divert adipocyte-derived mitochondria into blood. Cell Metab. 34, 1499–1513.e8 (2022).
doi: 10.1016/j.cmet.2022.08.010 pubmed: 36070756 pmcid: 9547954
Spees, J. L., Olson, S. D., Whitney, M. J. & Prockop, D. J. Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl Acad. Sci. USA 103, 1283–1288 (2006).
doi: 10.1073/pnas.0510511103 pubmed: 16432190 pmcid: 1345715
Kim, M. J., Hwang, J. W., Yun, C.-K., Lee, Y. & Choi, Y.-S. Delivery of exogenous mitochondria via centrifugation enhances cellular metabolic function. Sci. Rep. 8, 3330 (2018).
doi: 10.1038/s41598-018-21539-y pubmed: 29463809 pmcid: 5820364
Caicedo, A. et al. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci. Rep. 5, 9073 (2015).
doi: 10.1038/srep09073 pubmed: 25766410 pmcid: 4358056
Jacoby, E. et al. Mitochondrial augmentation of hematopoietic stem cells in children with single large-scale mitochondrial DNA deletion syndromes. Sci. Transl. Med. 14, eabo3724 (2022).
doi: 10.1126/scitranslmed.abo3724 pubmed: 36542693
Jacoby, E. et al. Mitochondrial augmentation of CD34
doi: 10.1038/s41536-021-00167-7 pubmed: 34561447 pmcid: 8463667
Masuzawa, A. et al. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 304, H966–H982 (2013).
doi: 10.1152/ajpheart.00883.2012 pubmed: 23355340 pmcid: 3625892
McCully, J. D. et al. Injection of isolated mitochondria during early reperfusion for cardioprotection. Am. J. Physiol. Heart Circ. Physiol. 296, H94–H105 (2009).
doi: 10.1152/ajpheart.00567.2008 pubmed: 18978192
Emani, S. M., Piekarski, B. L., Harrild, D., Nido, P. J. D. & McCully, J. D. Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury. J. Thorac. Cardiovasc. Surg. 154, 286–289 (2017).
doi: 10.1016/j.jtcvs.2017.02.018 pubmed: 28283239
Hayakawa, K. et al. Protective effects of endothelial progenitor cell-derived extracellular mitochondria in brain endothelium. Stem Cells 36, 1404–1410 (2018).
doi: 10.1002/stem.2856 pubmed: 29781122
Hayakawa, K. et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535, 551–555 (2016).
doi: 10.1038/nature18928 pubmed: 27466127 pmcid: 4968589
Norat, P. et al. Intraarterial transplantation of mitochondria after ischemic stroke reduces cerebral infarction. Stroke Vasc. Interv. Neurol. 3, e000644 (2023).
pubmed: 37545759 pmcid: 10399028
Lin, R. Z. et al. Mitochondrial transfer mediates endothelial cell engraftment through mitophagy. Nature 629, 660–668 (2024).
doi: 10.1038/s41586-024-07340-0 pubmed: 38693258
Diodato, D. et al. 258th ENMC international workshop Leigh syndrome spectrum: genetic causes, natural history and preparing for clinical trials 25–27 March 2022, Hoofddorp, Amsterdam, The Netherlands. Neuromuscul. Disord. https://doi.org/10.1016/j.nmd.2023.06.002 (2023).
doi: 10.1016/j.nmd.2023.06.002 pubmed: 37541860
Sofou, K. et al. A multicenter study on Leigh syndrome: disease course and predictors of survival. Orphanet J. Rare Dis. 9, 52 (2014).
doi: 10.1186/1750-1172-9-52 pubmed: 24731534 pmcid: 4021638
McCormick, E. M. et al. Expert panel curation of 113 primary mitochondrial disease genes for the Leigh syndrome spectrum. Ann. Neurol. 94, 696–712 (2023).
doi: 10.1002/ana.26716 pubmed: 37255483
Kruse, S. E. et al. Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. Cell Metab. 7, 312–320 (2008).
doi: 10.1016/j.cmet.2008.02.004 pubmed: 18396137 pmcid: 2593686
Pham, A. H., McCaffery, J. M. & Chan, D. C. Mouse lines with photo-activatable mitochondria to study mitochondrial dynamics. Genesis 50, 833–843 (2012).
doi: 10.1002/dvg.22050 pubmed: 22821887 pmcid: 3508687
Brestoff, J. R. et al. Intercellular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity. Cell Metab. 33, 270–282.e8 (2021).
doi: 10.1016/j.cmet.2020.11.008 pubmed: 33278339
Boudreau, L. H. et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood 124, 2173–2183 (2014).
doi: 10.1182/blood-2014-05-573543 pubmed: 25082876 pmcid: 4260364
Dache, Z. A. A. et al. Blood contains circulating cell-free respiratory competent mitochondria. FASEB J. 34, 3616–3630 (2020).
doi: 10.1096/fj.201901917RR
Crewe, C. et al. Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell Metab. 33, 1853–1868.e11 (2021).
doi: 10.1016/j.cmet.2021.08.002 pubmed: 34418352 pmcid: 8429176
van der Vlist, M. et al. Macrophages transfer mitochondria to sensory neurons to resolve inflammatory pain. Neuron 110, 613–626.e9 (2022).
doi: 10.1016/j.neuron.2021.11.020 pubmed: 34921782
Machado, T. S. et al. Real-time PCR quantification of heteroplasmy in a mouse model with mitochondrial DNA of C57BL/6 and NZB/BINJ strains. PLoS ONE 10, e0133650 (2015).
doi: 10.1371/journal.pone.0133650 pubmed: 26274500 pmcid: 4537288
Court, A. C. et al. Mitochondrial transfer from MSCs to T cells induces T
doi: 10.15252/embr.201948052 pubmed: 31984629 pmcid: 7001501
Luz-Crawford, P. et al. Mesenchymal stem cell repression of T
doi: 10.1186/s13287-019-1307-9 pubmed: 31370879 pmcid: 6676586
Wu, B. et al. Mitochondrial aspartate regulates TNF biogenesis and autoimmune tissue inflammation. Nat. Immunol. 22, 1551–1562 (2021).
doi: 10.1038/s41590-021-01065-2 pubmed: 34811544 pmcid: 8756813
Peruzzotti-Jametti, L. et al. Neural stem cells traffic functional mitochondria via extracellular vesicles. PLoS Biol. 19, e3001166 (2021).
doi: 10.1371/journal.pbio.3001166 pubmed: 33826607 pmcid: 8055036
Stokes, J. C. et al. Leukocytes mediate disease pathogenesis in the Ndufs4(KO) mouse model of Leigh syndrome. JCI Insight https://doi.org/10.1172/jci.insight.156522 (2022).
Jin, Z., Wei, W., Yang, M., Du, Y. & Wan, Y. Mitochondrial complex I activity suppresses inflammation and enhances bone resorption by shifting macrophage-osteoclast polarization. Cell Metab. 20, 483–498 (2014).
doi: 10.1016/j.cmet.2014.07.011 pubmed: 25130399 pmcid: 4156549
Yu, A. K. et al. Mitochondrial complex I deficiency leads to inflammation and retinal ganglion cell death in the Ndufs4 mouse. Hum. Mol. Genet. 24, 2848–2860 (2015).
doi: 10.1093/hmg/ddv045 pubmed: 25652399 pmcid: 4406296
Yoon, Y. G., Haug, C. L. & Koob, M. D. Interspecies mitochondrial fusion between mouse and human mitochondria is rapid and efficient. Mitochondrion 7, 223–229 (2007).
doi: 10.1016/j.mito.2006.11.022 pubmed: 17251069
Jain, I. H. et al. Leigh Syndrome Mouse Model Can Be Rescued by Interventions that Normalize Brain Hyperoxia, but Not HIF Activation. Cell Metab. 30, 824–832.e3 (2019).
doi: 10.1016/j.cmet.2019.07.006 pubmed: 31402314 pmcid: 6903907
McElroy, G. S. et al. NAD
doi: 10.1016/j.cmet.2020.06.003 pubmed: 32574562 pmcid: 7415718
Lee, C. F., Caudal, A., Abell, L., Nagana Gowda, G. A. & Tian, R. Targeting NAD
doi: 10.1038/s41598-019-39419-4 pubmed: 30816177 pmcid: 6395802
Ball, M., Thorburn, D. R. & Rahman, S. in GeneReviews (eds Adam, M. P. et al.) 1993–2024 (Univ. Washington, 2003).
Daemen, S., Chan, M. M. & Schilling, J. D. Comprehensive analysis of liver macrophage composition by flow cytometry and immunofluorescence in murine NASH. STAR Protoc. 2, 100511 (2021).
doi: 10.1016/j.xpro.2021.100511 pubmed: 33997821 pmcid: 8102804

Auteurs

Ritsuko Nakai (R)

Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Japan.
Department of Hematology, Osaka International Cancer Institute, Osaka, Japan.
Department of Hematology, Sakai City Medical Center, Sakai, Japan.

Stella Varnum (S)

Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.

Rachael L Field (RL)

Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.

Henyun Shi (H)

Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Japan.
Department of Hematology, Osaka International Cancer Institute, Osaka, Japan.

Rocky Giwa (R)

Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.

Wentong Jia (W)

Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.

Samantha J Krysa (SJ)

Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.

Eva F Cohen (EF)

Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.

Nicholas Borcherding (N)

Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.

Russell P Saneto (RP)

Neuroscience Institute, Center for Integrated Brain Research, Seattle Children's Hospital, University of Washington, Seattle, WA, USA.

Hisashi Ohta (H)

LUCA Science, Tokyo, Japan.

Takafumi Yokota (T)

Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Japan. yokotat@oici.jp.
Department of Hematology, Osaka International Cancer Institute, Osaka, Japan. yokotat@oici.jp.

Jonathan R Brestoff (JR)

Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA. brestoff@wustl.edu.

Classifications MeSH