Mitochondria transfer-based therapies reduce the morbidity and mortality of Leigh syndrome.
Journal
Nature metabolism
ISSN: 2522-5812
Titre abrégé: Nat Metab
Pays: Germany
ID NLM: 101736592
Informations de publication
Date de publication:
02 Sep 2024
02 Sep 2024
Historique:
received:
21
08
2023
accepted:
08
08
2024
medline:
3
9
2024
pubmed:
3
9
2024
entrez:
2
9
2024
Statut:
aheadofprint
Résumé
Mitochondria transfer is a recently described phenomenon in which donor cells deliver mitochondria to acceptor cells
Identifiants
pubmed: 39223312
doi: 10.1038/s42255-024-01125-5
pii: 10.1038/s42255-024-01125-5
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Burroughs Wellcome Fund (BWF)
ID : CAMS #1019648
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
ID : 1R01NS134932
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
ID : 5U54-NS078059-12
Organisme : MEXT | Japan Science and Technology Agency (JST)
ID : JPMJSP #2138
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : 20K17379
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : 22K16322
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : 21K08415
Organisme : American Heart Association (American Heart Association, Inc.)
ID : 24PRE1189775
Organisme : American Heart Association (American Heart Association, Inc.)
ID : 24POST1244220
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Al Amir Dache, Z. & Thierry, A. R. Mitochondria-derived cell-to-cell communication. Cell Rep. 42, 112728 (2023).
doi: 10.1016/j.celrep.2023.112728
pubmed: 37440408
Zhu, M. et al. Mitochondria released by apoptotic cell death initiate innate immune responses. Immunohorizons 2, 384–397 (2018).
doi: 10.4049/immunohorizons.1800063
pubmed: 30847435
Borcherding, N. & Brestoff, J. R. The power and potential of mitochondria transfer. Nature 623, 283–291 (2023).
doi: 10.1038/s41586-023-06537-z
pubmed: 37938702
Borcherding, N. et al. Dietary lipids inhibit mitochondria transfer to macrophages to divert adipocyte-derived mitochondria into blood. Cell Metab. 34, 1499–1513.e8 (2022).
doi: 10.1016/j.cmet.2022.08.010
pubmed: 36070756
pmcid: 9547954
Spees, J. L., Olson, S. D., Whitney, M. J. & Prockop, D. J. Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl Acad. Sci. USA 103, 1283–1288 (2006).
doi: 10.1073/pnas.0510511103
pubmed: 16432190
pmcid: 1345715
Kim, M. J., Hwang, J. W., Yun, C.-K., Lee, Y. & Choi, Y.-S. Delivery of exogenous mitochondria via centrifugation enhances cellular metabolic function. Sci. Rep. 8, 3330 (2018).
doi: 10.1038/s41598-018-21539-y
pubmed: 29463809
pmcid: 5820364
Caicedo, A. et al. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci. Rep. 5, 9073 (2015).
doi: 10.1038/srep09073
pubmed: 25766410
pmcid: 4358056
Jacoby, E. et al. Mitochondrial augmentation of hematopoietic stem cells in children with single large-scale mitochondrial DNA deletion syndromes. Sci. Transl. Med. 14, eabo3724 (2022).
doi: 10.1126/scitranslmed.abo3724
pubmed: 36542693
Jacoby, E. et al. Mitochondrial augmentation of CD34
doi: 10.1038/s41536-021-00167-7
pubmed: 34561447
pmcid: 8463667
Masuzawa, A. et al. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 304, H966–H982 (2013).
doi: 10.1152/ajpheart.00883.2012
pubmed: 23355340
pmcid: 3625892
McCully, J. D. et al. Injection of isolated mitochondria during early reperfusion for cardioprotection. Am. J. Physiol. Heart Circ. Physiol. 296, H94–H105 (2009).
doi: 10.1152/ajpheart.00567.2008
pubmed: 18978192
Emani, S. M., Piekarski, B. L., Harrild, D., Nido, P. J. D. & McCully, J. D. Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury. J. Thorac. Cardiovasc. Surg. 154, 286–289 (2017).
doi: 10.1016/j.jtcvs.2017.02.018
pubmed: 28283239
Hayakawa, K. et al. Protective effects of endothelial progenitor cell-derived extracellular mitochondria in brain endothelium. Stem Cells 36, 1404–1410 (2018).
doi: 10.1002/stem.2856
pubmed: 29781122
Hayakawa, K. et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535, 551–555 (2016).
doi: 10.1038/nature18928
pubmed: 27466127
pmcid: 4968589
Norat, P. et al. Intraarterial transplantation of mitochondria after ischemic stroke reduces cerebral infarction. Stroke Vasc. Interv. Neurol. 3, e000644 (2023).
pubmed: 37545759
pmcid: 10399028
Lin, R. Z. et al. Mitochondrial transfer mediates endothelial cell engraftment through mitophagy. Nature 629, 660–668 (2024).
doi: 10.1038/s41586-024-07340-0
pubmed: 38693258
Diodato, D. et al. 258th ENMC international workshop Leigh syndrome spectrum: genetic causes, natural history and preparing for clinical trials 25–27 March 2022, Hoofddorp, Amsterdam, The Netherlands. Neuromuscul. Disord. https://doi.org/10.1016/j.nmd.2023.06.002 (2023).
doi: 10.1016/j.nmd.2023.06.002
pubmed: 37541860
Sofou, K. et al. A multicenter study on Leigh syndrome: disease course and predictors of survival. Orphanet J. Rare Dis. 9, 52 (2014).
doi: 10.1186/1750-1172-9-52
pubmed: 24731534
pmcid: 4021638
McCormick, E. M. et al. Expert panel curation of 113 primary mitochondrial disease genes for the Leigh syndrome spectrum. Ann. Neurol. 94, 696–712 (2023).
doi: 10.1002/ana.26716
pubmed: 37255483
Kruse, S. E. et al. Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. Cell Metab. 7, 312–320 (2008).
doi: 10.1016/j.cmet.2008.02.004
pubmed: 18396137
pmcid: 2593686
Pham, A. H., McCaffery, J. M. & Chan, D. C. Mouse lines with photo-activatable mitochondria to study mitochondrial dynamics. Genesis 50, 833–843 (2012).
doi: 10.1002/dvg.22050
pubmed: 22821887
pmcid: 3508687
Brestoff, J. R. et al. Intercellular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity. Cell Metab. 33, 270–282.e8 (2021).
doi: 10.1016/j.cmet.2020.11.008
pubmed: 33278339
Boudreau, L. H. et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood 124, 2173–2183 (2014).
doi: 10.1182/blood-2014-05-573543
pubmed: 25082876
pmcid: 4260364
Dache, Z. A. A. et al. Blood contains circulating cell-free respiratory competent mitochondria. FASEB J. 34, 3616–3630 (2020).
doi: 10.1096/fj.201901917RR
Crewe, C. et al. Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell Metab. 33, 1853–1868.e11 (2021).
doi: 10.1016/j.cmet.2021.08.002
pubmed: 34418352
pmcid: 8429176
van der Vlist, M. et al. Macrophages transfer mitochondria to sensory neurons to resolve inflammatory pain. Neuron 110, 613–626.e9 (2022).
doi: 10.1016/j.neuron.2021.11.020
pubmed: 34921782
Machado, T. S. et al. Real-time PCR quantification of heteroplasmy in a mouse model with mitochondrial DNA of C57BL/6 and NZB/BINJ strains. PLoS ONE 10, e0133650 (2015).
doi: 10.1371/journal.pone.0133650
pubmed: 26274500
pmcid: 4537288
Court, A. C. et al. Mitochondrial transfer from MSCs to T cells induces T
doi: 10.15252/embr.201948052
pubmed: 31984629
pmcid: 7001501
Luz-Crawford, P. et al. Mesenchymal stem cell repression of T
doi: 10.1186/s13287-019-1307-9
pubmed: 31370879
pmcid: 6676586
Wu, B. et al. Mitochondrial aspartate regulates TNF biogenesis and autoimmune tissue inflammation. Nat. Immunol. 22, 1551–1562 (2021).
doi: 10.1038/s41590-021-01065-2
pubmed: 34811544
pmcid: 8756813
Peruzzotti-Jametti, L. et al. Neural stem cells traffic functional mitochondria via extracellular vesicles. PLoS Biol. 19, e3001166 (2021).
doi: 10.1371/journal.pbio.3001166
pubmed: 33826607
pmcid: 8055036
Stokes, J. C. et al. Leukocytes mediate disease pathogenesis in the Ndufs4(KO) mouse model of Leigh syndrome. JCI Insight https://doi.org/10.1172/jci.insight.156522 (2022).
Jin, Z., Wei, W., Yang, M., Du, Y. & Wan, Y. Mitochondrial complex I activity suppresses inflammation and enhances bone resorption by shifting macrophage-osteoclast polarization. Cell Metab. 20, 483–498 (2014).
doi: 10.1016/j.cmet.2014.07.011
pubmed: 25130399
pmcid: 4156549
Yu, A. K. et al. Mitochondrial complex I deficiency leads to inflammation and retinal ganglion cell death in the Ndufs4 mouse. Hum. Mol. Genet. 24, 2848–2860 (2015).
doi: 10.1093/hmg/ddv045
pubmed: 25652399
pmcid: 4406296
Yoon, Y. G., Haug, C. L. & Koob, M. D. Interspecies mitochondrial fusion between mouse and human mitochondria is rapid and efficient. Mitochondrion 7, 223–229 (2007).
doi: 10.1016/j.mito.2006.11.022
pubmed: 17251069
Jain, I. H. et al. Leigh Syndrome Mouse Model Can Be Rescued by Interventions that Normalize Brain Hyperoxia, but Not HIF Activation. Cell Metab. 30, 824–832.e3 (2019).
doi: 10.1016/j.cmet.2019.07.006
pubmed: 31402314
pmcid: 6903907
McElroy, G. S. et al. NAD
doi: 10.1016/j.cmet.2020.06.003
pubmed: 32574562
pmcid: 7415718
Lee, C. F., Caudal, A., Abell, L., Nagana Gowda, G. A. & Tian, R. Targeting NAD
doi: 10.1038/s41598-019-39419-4
pubmed: 30816177
pmcid: 6395802
Ball, M., Thorburn, D. R. & Rahman, S. in GeneReviews (eds Adam, M. P. et al.) 1993–2024 (Univ. Washington, 2003).
Daemen, S., Chan, M. M. & Schilling, J. D. Comprehensive analysis of liver macrophage composition by flow cytometry and immunofluorescence in murine NASH. STAR Protoc. 2, 100511 (2021).
doi: 10.1016/j.xpro.2021.100511
pubmed: 33997821
pmcid: 8102804