Multi-method dating reveals 200 ka of Middle Palaeolithic occupation at Maras rock shelter, Rhône Valley, France.
Bayesian modelling
Chronology
Electron spin resonance
Luminescence
Neanderthal
Radiocarbon
Uranium-series
ZooMS
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
03 09 2024
03 09 2024
Historique:
received:
13
05
2024
accepted:
05
08
2024
medline:
4
9
2024
pubmed:
4
9
2024
entrez:
3
9
2024
Statut:
epublish
Résumé
The emergence of the Middle Palaeolithic, and its variability over time and space are key questions in the field of prehistoric archaeology. Many sites have been documented in the south-eastern margins of the Massif central and the middle Rhône valley, a migration path that connects Northern Europe with the Mediterranean. Well-dated, long stratigraphic sequences are essential to understand Neanderthals dynamics and demise, and potential interactions with Homo sapiens in the area, such as the one displayed at the Maras rock shelter ("Abri du Maras"). The site is characterised by exceptional preservation of archaeological remains, including bones dated using radiocarbon (
Identifiants
pubmed: 39227658
doi: 10.1038/s41598-024-69380-w
pii: 10.1038/s41598-024-69380-w
doi:
Substances chimiques
Uranium
4OC371KSTK
Types de publication
Journal Article
Historical Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
20474Informations de copyright
© 2024. The Author(s).
Références
Michel, V. et al. Application of U/Th and
doi: 10.1371/journal.pone.0082394
pubmed: 24349273
pmcid: 3857827
Bahain, J.-J. et al. Reappraisal of the chronology of Orgnac 3 lower-to-middle paleolithic site (Ardèche, France), a regional key sequence for the Middle Pleistocene of southern France. J. Hum. Evol. 162, 103092. https://doi.org/10.1016/j.jhevol.2021.103092 (2022).
doi: 10.1016/j.jhevol.2021.103092
pubmed: 34839228
Masaoudi, H. Application des méthodes du déséquilibre des familles de l'uranium (
Valladas, H. et al. Radiometric dates for the middle palaeolithic sequence of Payre (Ardèche, France). Quat. Geochronol. 3, 377–389. https://doi.org/10.1016/j.quageo.2008.01.001 (2008).
doi: 10.1016/j.quageo.2008.01.001
Richard, M. et al. Timing of Neanderthal occupations in the southeastern margins of the Massif Central (France): A multi-method approach. Quatern. Sci. Rev. 273, 107241. https://doi.org/10.1016/j.quascirev.2021.107241 (2021).
doi: 10.1016/j.quascirev.2021.107241
Richard, M. et al. Contribution of ESR/U-series dating to the chronology of late Middle Palaeolithic sites in the middle Rhône valley, southeastern France. Quat. Geochronol. 30, 529–534. https://doi.org/10.1016/j.quageo.2015.06.002 (2015).
doi: 10.1016/j.quageo.2015.06.002
Slimak, L. et al. Modern human incursion into Neanderthal territories 54,000 years ago at Mandrin, France. Sci. Adv. 8, eabj9496. https://doi.org/10.1126/sciadv.abj9496 (2022).
doi: 10.1126/sciadv.abj9496
pubmed: 35138885
pmcid: 8827661
Quiles, A. et al. A high-precision chronological model for the decorated Upper Paleolithic cave of Chauvet-Pont d’Arc, Ardèche, France. Proc. Natl. Acad. Sci. 113, 4670–4675. https://doi.org/10.1073/pnas.1523158113 (2016).
doi: 10.1073/pnas.1523158113
pubmed: 27071106
pmcid: 4855545
Valladas, H. et al. Palaeolithic paintings: Evolution of prehistoric cave art. Nature 413, 479–479 (2001).
doi: 10.1038/35097160
pubmed: 11586348
Moncel, M.-H. & Michel, V. Première datation radiométrique par U-Th d'un niveau moustérien de l'Abri du Maras (Ardèche, France). Bulletin de la Société préhistorique française, 371–375 (2000).
Higham, T. et al. Testing models for the beginnings of the Aurignacian and the advent of figurative art and music: the radiocarbon chronology of Geißenklösterle. J. Hum. Evol. 62, 664–676. https://doi.org/10.1016/j.jhevol.2012.03.003 (2012).
doi: 10.1016/j.jhevol.2012.03.003
pubmed: 22575323
Fewlass, H. et al. A
doi: 10.1038/s41559-020-1136-3
pubmed: 32393865
Cortés-Sánchez, M. et al. An early Aurignacian arrival in southwestern Europe. Nat. Ecol. Evol. 3, 207–212. https://doi.org/10.1038/s41559-018-0753-6 (2019).
doi: 10.1038/s41559-018-0753-6
pubmed: 30664696
Mylopotamitaki, D. et al. Homo sapiens reached the higher latitudes of Europe by 45,000 years ago. Nature 626, 341–346. https://doi.org/10.1038/s41586-023-06923-7 (2024).
doi: 10.1038/s41586-023-06923-7
pubmed: 38297117
pmcid: 10849966
Combier, J. Le Paléolithique de l'Ardèche dans son cadre paléoclimatique. Publication de l’Institut de Préhistoire de l’Université de Bordeaux, 4, edn, (Delmas, 1967).
Moncel, M. H. et al. Fragmented reduction processes: Middle Palaeolithic technical behaviour in the Abri du Maras shelter, southeastern France. Quat. Int. 350, 180–204. https://doi.org/10.1016/j.quaint.2014.05.013 (2014).
doi: 10.1016/j.quaint.2014.05.013
Moncel, M.-H. et al. Evaluating the integrity of palaeoenvironmental and archaeological records in MIS 5 to 3 karst sequences from southeastern France. Quat. Int. 378, 22–39. https://doi.org/10.1016/j.quaint.2013.12.009 (2015).
doi: 10.1016/j.quaint.2013.12.009
Moncel, M.-H. et al. Late Neanderthals short-term and specialized occupations at the Abri du Maras (South-East France, level 4.1, MIS 3). Anthropol. Archaeol. Sci. 13, 45 (2021).
doi: 10.1007/s12520-021-01285-5
Debard, E. Le Quaternaire du Bas-Vivarais: dynamique sédimentaire, paléoclimatologie et chronologie d'après l'étude sédimentologique des remplissages d'avens, de porches de grottes et d'abris sous roche: comparaisons avec le Velay oriental PhD thesis thesis, Université Claude Bernard, Lyon 1, (1988).
Puaud, S., Nowak, M., Pont, S. & Moncel, M.-H. Minéraux volcaniques et alpins à l’abri du Maras (Ardèche, France): témoins de vents catabatiques dans la vallée du Rhône au Pléistocène supérieur. Comptes Rendus Palevol 14, 331–341. https://doi.org/10.1016/j.crpv.2015.02.007 (2015).
doi: 10.1016/j.crpv.2015.02.007
Miras, Y. et al. Neanderthal plant use and stone tool function investigated through non-pollen palynomorphs analyses and pollen washes in the Abri du Maras, South-East France. J. Archaeol. Sci. Rep. 33, 102569. https://doi.org/10.1016/j.jasrep.2020.102569 (2020).
doi: 10.1016/j.jasrep.2020.102569
Hardy, B. L. et al. Impossible Neanderthals? Making string, throwing projectiles and catching small game during Marine Isotope Stage 4 (Abri du Maras, France). Quat. Sci. Rev. 82, 23–40. https://doi.org/10.1016/j.quascirev.2013.09.028 (2013).
doi: 10.1016/j.quascirev.2013.09.028
Hardy, B. L. et al. Direct evidence of Neanderthal fibre technology and its cognitive and behavioral implications. Sci. Rep. 10, 4889. https://doi.org/10.1038/s41598-020-61839-w (2020).
doi: 10.1038/s41598-020-61839-w
pubmed: 32273518
pmcid: 7145842
Daujeard, C. et al. Neanderthal selective hunting of reindeer? The case study of Abri du Maras (south-eastern France). Archaeol. Anthropol. Sci. 11, 985–1011. https://doi.org/10.1007/s12520-017-0580-8 (2019).
doi: 10.1007/s12520-017-0580-8
Marín, J. et al. Neanderthal faunal exploitation and settlement dynamics at the Abri du Maras, level 5 (south-eastern France). Quat. Sci. Rev. 243, 106472. https://doi.org/10.1016/j.quascirev.2020.106472 (2020).
doi: 10.1016/j.quascirev.2020.106472
Vettese, D. et al. Neandertal long bone breakage process: Standardized or random patterns? The example of Abri du Maras (Southeastern France, MIS 3). J. Archaeol. Sci. Rep. 13, 151–163. https://doi.org/10.1016/j.jasrep.2017.03.029 (2017).
doi: 10.1016/j.jasrep.2017.03.029
Rae, A. M. & Ivanovich, M. Successful application of uranium series dating of fossil bone. Appl. Geochem. 1, 419–426. https://doi.org/10.1016/0883-2927(86)90026-0 (1986).
doi: 10.1016/0883-2927(86)90026-0
Grün, R. Direct dating of human fossils. Am. J. Phys. Anthropol. https://doi.org/10.1002/ajpa.20516 (2006).
doi: 10.1002/ajpa.20516
pubmed: 17103430
Grün, R., Schwarcz, H. P. & Chadam, J. ESR dating of tooth enamel: Coupled correction for U-uptake and U-series disequilibrium. Int. J. Radiat. Appl. Instrum. D Nucl. Tracks Radiat. Meas. 14, 237–241. https://doi.org/10.1016/1359-0189(88)90071-4 (1988).
doi: 10.1016/1359-0189(88)90071-4
St Pierre, E., Zhao, J.-X. & Reed, E. Expanding the utility of Uranium-series dating of speleothems for archaeological and palaeontological applications. J. Archaeol. Sci. 36, 1416–1423. https://doi.org/10.1016/j.jas.2009.02.004 (2009).
doi: 10.1016/j.jas.2009.02.004
Aitken, M. J. An Introduction to Optical Dating (Oxford Science Publications, 1998).
doi: 10.1093/oso/9780198540922.001.0001
van Klinken, G. J. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 26, 687–695. https://doi.org/10.1006/jasc.1998.0385 (1999).
doi: 10.1006/jasc.1998.0385
Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451. https://doi.org/10.1016/0305-4403(90)90007-R (1990).
doi: 10.1016/0305-4403(90)90007-R
Guiry, E. J. & Szpak, P. Improved quality control criteria for stable carbon and nitrogen isotope measurements of ancient bone collagen. J. Archaeol. Sci. 132, 105416. https://doi.org/10.1016/j.jas.2021.105416 (2021).
doi: 10.1016/j.jas.2021.105416
Schwarcz, H. P. & Nahal, H. Theoretical and observed C/N ratios in human bone collagen. J. Archaeol. Sci. 131, 105396. https://doi.org/10.1016/j.jas.2021.105396 (2021).
doi: 10.1016/j.jas.2021.105396
Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H. & Olley, J. M. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 41, 339–364 (1999).
doi: 10.1111/j.1475-4754.1999.tb00987.x
Richards, D. A. & Dorale, J. A. in Uranium-series geochemistry Vol. 52 (eds B. Bourdon, G.M. Henderson, C.C. Lundstrom, & S.P. Turner) 407–460 (Reviews in Mineralogy & Geochemistry, 2003).
Grün, R., Eggins, S., Kinsley, L., Moseley, H. & Sambridge, M. Laser ablation U-series analysis of fossil bones and teeth. Palaeogeography, Palaeoclimatology, Palaeoecology 416, 150–167. https://doi.org/10.1016/j.palaeo.2014.07.023 (2014).
doi: 10.1016/j.palaeo.2014.07.023
Crégut‑Bonnoure, E., Boulbes, N., Daujeard, C., Fernandez, P. & Valensi, P. Nouvelles données sur la grande faune de l’Eémien dans le Sud-Est de la France. Quaternaire. Revue de l'Association française pour l'étude du Quaternaire 21, 227–248 (2010).
Szmidt, C. C., Moncel, M.-H. & Daujeard, C. New data on the Late Mousterian in Mediterranean France: First radiocarbon (AMS) dates at Saint-Marcel Cave (Ardèche). Comptes Rendus Palevol 9, 185–199. https://doi.org/10.1016/j.crpv.2010.05.002 (2010).
doi: 10.1016/j.crpv.2010.05.002
Daujeard, C., Brugal, J.-P., Moncel, M.-H., Fernandes, P., Delvigne, V., Lafarge, A., Le Pape, J.-M. & Raynal, J.-P. Neanderthals and Caprines in Two Upper Pleistocene Caves of Southeastern France, in: Gourichon, L., Daujeard, C. & Brugal, J.-P. (Eds.), Hommes et Caprinés. De la montagne à la steppe, de la chasse à l’élevage. XXXIXe rencontres internationales d’archéologie et d’histoire d’Antibes. Éditions APDCA, Antibes, pp. 115–137 (2019).
Marín, J. et al. Neanderthal faunal exploitation and settlement dynamics at the Abri du Maras, level 5 (south-eastern France). Quat. Sci. Rev. 243, 106472 (2020).
Sponheimer, M. et al. Saving old bones: A non-destructive method for bone collagen prescreening. Sci. Rep. 9, 13928. https://doi.org/10.1038/s41598-019-50443-2 (2019).
doi: 10.1038/s41598-019-50443-2
pubmed: 31558827
pmcid: 6763469
Fewlass, H. et al. Pretreatment and gaseous radiocarbon dating of 40–100 mg archaeological bone. Sci. Rep. 9, 5342. https://doi.org/10.1038/s41598-019-41557-8 (2019).
doi: 10.1038/s41598-019-41557-8
pubmed: 30926822
pmcid: 6440986
Ramsey, C. B., Higham, T., Bowles, A. & Hedges, R. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46, 155–163 (2004).
doi: 10.1017/S0033822200039473
Wacker, L., Němec, M. & Bourquin, J. A revolutionary graphitisation system: Fully automated, compact and simple. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268, 931–934. https://doi.org/10.1016/j.nimb.2009.10.067 (2010).
doi: 10.1016/j.nimb.2009.10.067
Synal, H.-A., Stocker, M. & Suter, M. MICADAS: A new compact radiocarbon AMS system. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 259, 7–13. https://doi.org/10.1016/j.nimb.2007.01.138 (2007).
doi: 10.1016/j.nimb.2007.01.138
Wacker, L. et al. MICADAS: Routine and high-precision radiocarbon dating. Radiocarbon 52, 252–262. https://doi.org/10.1017/S0033822200045288 (2010).
doi: 10.1017/S0033822200045288
Wacker, L., Christl, M. & Synal, H. A. Bats: A new tool for AMS data reduction. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268, 976–979. https://doi.org/10.1016/j.nimb.2009.10.078 (2010).
doi: 10.1016/j.nimb.2009.10.078
Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
doi: 10.1017/S0033822200033865
Reimer, P. J. et al. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 62, 725–757. https://doi.org/10.1017/RDC.2020.41 (2020).
doi: 10.1017/RDC.2020.41
Welker, F. et al. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. Proc. Natl. Acad. Sci. 113, 11162–11167. https://doi.org/10.1073/pnas.1605834113 (2016).
doi: 10.1073/pnas.1605834113
pubmed: 27638212
pmcid: 5056053
van Doorn, N. L., Hollund, H. & Collins, M. J. A novel and non-destructive approach for ZooMS analysis: Ammonium bicarbonate buffer extraction. Archaeol. Anthropol. Sci. 3, 281–289. https://doi.org/10.1007/s12520-011-0067-y (2011).
doi: 10.1007/s12520-011-0067-y
Buckley, M., Collins, M., Thomas-Oates, J. & Wilson, J. C. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 23, 3843–3854. https://doi.org/10.1002/rcm.4316 (2009).
doi: 10.1002/rcm.4316
pubmed: 19899187
R Core Team. R: A language and environment for statistical computing [R Foundation for Statistical Computing] (2021).
Gibb, S. & Strimmer, K. MALDIquant: A versatile R package for the analysis of mass spectrometry data. Bioinformatics 28, 2270–2271. https://doi.org/10.1093/bioinformatics/bts447 (2012).
doi: 10.1093/bioinformatics/bts447
pubmed: 22796955
Strohalm, M., Kavan, D., Novák, P., Volný, M. & Havlíček, V. mMass 3: A cross-platform software environment for precise analysis of mass spectrometric data. Anal. Chem. 82, 4648–4651. https://doi.org/10.1021/ac100818g (2010).
doi: 10.1021/ac100818g
pubmed: 20465224
Mercier, N. & Falguères, C. Field gamma dose-rate measurement with a NaI(Tl) detector: Re-evaluation of the “threshold” technique. Ancient TL 25, 1–4 (2007).
Duller, G. A. Assessing the error on equivalent dose estimates derived from single aliquot regenerative dose measurements. Ancient TL 25, 15–24 (2007).
Duller, G. A. T. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37, 161–165 (2003).
Brennan, B. J., Lyons, R. G. & Phillips, S. W. Attenuation of alpha particle track dose for spherical grains. Int. J. Radiat. Appl. Instrum. Part D Nucl. Tracks Radiat. Meas. 18, 249–253. https://doi.org/10.1016/1359-0189(91)90119-3 (1991).
doi: 10.1016/1359-0189(91)90119-3
Guérin, G., Mercier, N., Nathan, R., Adamiec, G. & Lefrais, Y. On the use of the infinite matrix assumption and associated concepts: A critical review. Radiat. Meas. 47, 778–785. https://doi.org/10.1016/j.radmeas.2012.04.004 (2012).
doi: 10.1016/j.radmeas.2012.04.004
Guérin, G., Mercier, N. & Adamiec, G. Dose-rate conversion factors: update. Ancient TL 29, 5–8 (2011).
Prescott, J. R. & Hutton, J. T. Cosmic ray and gamma ray dosimetry for TL and ESR. Int. J. Radiat. Appl. Instrum. Part D Nucl. Tracks Radiat. Meas. 14, 223–227. https://doi.org/10.1016/1359-0189(88)90069-6 (1988).
doi: 10.1016/1359-0189(88)90069-6
Murray, A. S. & Wintle, A. G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 32, 57–73. https://doi.org/10.1016/S1350-4487(99)00253-X (2000).
doi: 10.1016/S1350-4487(99)00253-X
Grün, R. Methods of dose determination using ESR spectra of tooth enamel. Radiat. Meas. 32, 767–772. https://doi.org/10.1016/S1350-4487(99)00281-4 (2000).
doi: 10.1016/S1350-4487(99)00281-4
Yokoyama, Y., Falguères, C. & Quaegebeur, J. P. ESR dating of quartz from quaternary sediments: First attempt. Nucl. Tracks Radiat. Meas. 1982(10), 921–928. https://doi.org/10.1016/0735-245X(85)90109-7 (1985).
doi: 10.1016/0735-245X(85)90109-7
Pons-Branchu, E. et al. A geochemical perspective on Parisian urban history based on U-Th dating, laminae counting and yttrium and REE concentrations of recent carbonates in underground aqueducts. Quat. Geochronol. 24, 44–53. https://doi.org/10.1016/j.quageo.2014.08.001 (2014).
doi: 10.1016/j.quageo.2014.08.001
Pons-Branchu, E. et al. U-series dating at Nerja cave reveal open system. Questioning the Neanderthal origin of Spanish rock art. J. Archaeol. Sci. 117, 105120. https://doi.org/10.1016/j.jas.2020.105120 (2020).
doi: 10.1016/j.jas.2020.105120
Grün, R. The DATA program for the calculation of ESR age estimates on tooth enamel. Quat. Geochronol. 4, 231–232. https://doi.org/10.1016/j.quageo.2008.12.005 (2009).
doi: 10.1016/j.quageo.2008.12.005
Grün, R. & Katzenberger-Apel, O. An alpha irradiator for ESR dating. Ancient TL 12, 35–38 (1994).
Brennan, B. J., Rink, W. J., McGuirl, E. L., Schwarcz, H. P. & Prestwich, W. V. Beta doses in tooth enamel by “one-group” theory and the ROSY ESR dating software. Radiat. Meas. 27, 307–314. https://doi.org/10.1016/S1350-4487(96)00132-1 (1997).
doi: 10.1016/S1350-4487(96)00132-1
Lanos, P. & Philippe, A. Hierarchical Bayesian modeling for combining dates in archaeological context. Journal de la Société Française de Statistique 158, 72–88 (2017).
Lanos, P. & Philippe, A. Event date model: A robust Bayesian tool for chronology building. Commun. Stat. Appl. Methods 25, 131–157 (2018).
Lanos, P. & Dufresne, P. ChronoModel version 2.0: Software for Chronological Modelling of Archaeological Data using Bayesian Statistics (2019).