Classification of ossicular fixation based on a computational simulation of ossicular mobility.
Cluster analysis
Finite-element model
Middle ear transfer function
Ossiculoplasty
Otosclerosis
Palpation
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
03 09 2024
03 09 2024
Historique:
received:
28
03
2024
accepted:
28
08
2024
medline:
4
9
2024
pubmed:
4
9
2024
entrez:
3
9
2024
Statut:
epublish
Résumé
Ossicular fixation disturbs the mobility of the ossicular chain and causes conductive hearing loss. To diagnose the lesion area, otologists typically assess ossicular mobility through intraoperative palpation. Quantification of ossicular mobility and evidence-based diagnostic criteria are necessary for accurate assessment of each pathology, because diagnosis via palpation can rely on the surgeons' experiences and skills. In this study, ossicular mobilities were simulated in 92 pathological cases of ossicular fixation as compliances using a finite-element (FE) model of the human middle ear. The validity of the ossicular mobilities obtained from the FE model was verified by comparison with measurements of ossicular mobilities in cadavers using our newly developed intraoperative ossicular mobility measurement system. The fixation-induced changes in hearing were validated by comparison with changes in the stapedial velocities obtained from the FE model with measurements reported in patients and in temporal bones. The 92 cases were classified into four groups by conducting a cluster analysis based on the simulated ossicular compliances. Most importantly, the cases of combined fixation of the malleus and/or the incus with otosclerosis were classified into two different surgical procedure groups by degree of fixation, i.e., malleo-stapedotomy and stapedotomy. These results suggest that pathological characteristics can be detected using quantitatively measured ossicular compliances followed by cluster analysis, and therefore, an effective diagnosis of ossicular fixation is achievable.
Identifiants
pubmed: 39227675
doi: 10.1038/s41598-024-71474-4
pii: 10.1038/s41598-024-71474-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
20468Subventions
Organisme : Japan Agency for Medical Research and Development
ID : #20he0122007j0001
Informations de copyright
© 2024. The Author(s).
Références
Morgan, W. C. Tympanosclerosis. Laryngoscope 87, 1821–1825 (1977).
doi: 10.1002/lary.1977.87.11.1821
pubmed: 916775
Sleeckx, J. P., Shea, J. J. & Pitzer, F. J. Epitympanic ossicular fixation. Arch. Otolaryngol. 85, 619–631 (1967).
doi: 10.1001/archotol.1967.00760040621008
pubmed: 6024491
Niemczyk, E., Lachowska, M., Tataj, E., Kurczak, K. & Niemczyk, K. Wideband tympanometry and absorbance measurements in otosclerotic ears. Laryngoscope 129, 365–376 (2019).
doi: 10.1002/lary.27747
Sliwa, L., Kochanek, K., Jedrzejczak, W. W., Mrugala, K. & Skarzynski, H. Measurement of wideband absorbance as a test for otosclerosis. J. Clin. Med. 9, 1908 (2020).
doi: 10.3390/jcm9061908
pubmed: 32570989
pmcid: 7355593
Huber, A., Koike, T., Nandapalan, V., Wada, H. & Fisch, U. Fixation of the anterior mallear ligament: Diagnosis and consequences for hearing results in stapes surgery. Ann. Otol. Rhinol. Laryngol. 112, 348–355 (2003).
doi: 10.1177/000348940311200409
pubmed: 12731630
Nguyen, D. D., Judd, R. T., Imbery, T. E. & Gluth, M. B. Frequency-specific analysis of hearing outcomes associated with ossiculoplasty versus stapedotomy. Ann. Otol. Rhinol. Laryngol. 130, 1010–1015 (2021).
doi: 10.1177/0003489421990164
pubmed: 33511847
Nakajima, H. H., Ravicz, M. E., Merchant, S. N., Peake, W. T. & Rosowski, J. J. Experimental ossicular fixations and the middle ear’s response to sound: Evidence for a flexible ossicular chain. Hear. Res. 204, 60–77 (2005).
doi: 10.1016/j.heares.2005.01.002
pubmed: 15925192
Nakajima, H. H., Ravicz, M. E., Rosowski, J. J., Peake, W. T. & Merchant, S. N. Experimental and clinical studies of malleus. Laryngoscope 115, 147–154 (2005).
doi: 10.1097/01.mlg.0000150692.23506.b7
pubmed: 15630384
Dai, C., Cheng, T., Wood, M. W. & Gan, R. Z. Fixation and detachment of superior and anterior malleolar ligaments in human middle ear: Experiment and modeling. Hear. Res. 230, 24–33 (2007).
doi: 10.1016/j.heares.2007.03.006
pubmed: 17517484
pmcid: 2039917
Schmeltz, M. et al. The human middle ear in motion: 3D visualization and quantification using dynamic synchrotron-based X-ray imaging. Commun. Biol. 7, 157 (2024).
doi: 10.1038/s42003-023-05738-6
pubmed: 38326549
pmcid: 10850498
Gyo, K., Yumoto, E., Sato, H. & Yanagihara, N. Assessment of stapes mobility by use of a newly developed piezoelectric ceramic device: A preliminary experiment in dogs. Ann. Otol. Rhinol. Laryngol. 109, 473–477 (2000).
doi: 10.1177/000348940010900506
pubmed: 10823476
Hato, N. et al. A new tool for testing ossicular mobility during middle ear surgery: Preliminary report of four cases. Otol. Neurotol. 27, 592–595 (2006).
doi: 10.1097/01.mao.0000226298.36327.3d
pubmed: 16868506
Koike, T. et al. An apparatus for diagnosis of ossicular chain mobility in humans. Int. J. Audiol. 45, 121–128 (2006).
doi: 10.1080/14992020500377899
pubmed: 16566250
Peacock, J., Dirckx, J. & von Unge, M. Intraoperative assessment of ossicular fixation. Hear. Res. 340, 99–106 (2016).
doi: 10.1016/j.heares.2016.03.004
pubmed: 27034152
Dobrev, I. et al. Effects of middle ear quasi-static stiffness on sound transmission quantified by a novel 3-axis optical force sensor. Hear. Res. 357, 1–9 (2018).
doi: 10.1016/j.heares.2017.11.002
pubmed: 29149722
Koike, T. et al. Development of intra-operative assessment system for ossicular mobility and middle ear transfer function. Hear. Res. 378, 139–148 (2019).
doi: 10.1016/j.heares.2018.11.007
pubmed: 30503297
Herrera, M., Izquierdo, J., Montalvo, I., Garcia-Armengol, J. & Roig, J. V. Identification of surgical practice patterns using evolutionary cluster analysis. Math. Comput. Model. 50, 705–712 (2009).
doi: 10.1016/j.mcm.2008.12.026
Kita, S. et al. Diagnosing middle ear malformation by pure-tone audiometry using a three-dimensional finite element model: A case-control study. J. Clin. Med. 12, 7493 (2023).
doi: 10.3390/jcm12237493
pubmed: 38068545
pmcid: 10707247
Koike, T., Wada, H. & Kobayashi, T. Modeling of the human middle ear using the finite-element method. J. Acoust. Soc. Am. 111, 1306–1317 (2002).
doi: 10.1121/1.1451073
pubmed: 11931308
Gerig, R. et al. Contribution of the incudo-malleolar joint to middle-ear sound transmission. Hear. Res. 327, 218–226 (2015).
doi: 10.1016/j.heares.2015.07.011
pubmed: 26209186
Gottlieb, P. K., Vaisbuvh, Y. & Puria, S. Human ossicular-joint flexibility transforms the peak amplitude and width of impulsive acoustic stimuli. J. Acoust. Soc. Am. 143, 3418–3433 (2018).
doi: 10.1121/1.5039845
pubmed: 29960477
pmcid: 5991968
Lee, S., Kanzaki, S. & Koike, T. Study of diagnostic criteria for ossicular fixation based on numerical analysis. Otol. Jpn. 29, 154–161 (2019).
Gan, R. Z., Yang, F., Zhang, X. & Nakmali, D. Mechanical properties of stapedial annular ligament. Med. Eng. Phys. 33, 330–339 (2011).
doi: 10.1016/j.medengphy.2010.10.022
pubmed: 21112232
ASTM. Standard Practice for Describing System Output of Implantable Middle Ear Hearing Devices (ASTM International, 2014).
Koch, M. et al. Methods and reference data for middle ear transfer functions. Sci. Rep. 12, 17241 (2022).
doi: 10.1038/s41598-022-21245-w
pubmed: 36241675
pmcid: 9568555
Merchant, S. & Rosowski, J. J. Syntax of referencing. In Auditory Physiology and Middle-Ear Mechanics (eds Gulya, A. J. & Glasscock, M. E., III.) 59–82 (BC Decker, 2003).
Nakajima, H. H., Ravicz, M. E., Rosowski, J. J., Peake, W. T. & Merchant, S. N. Syntax of referencing. In Middle Ear Mechanics in Research and Otology (eds Gyo, K. et al.) 189–196 (World Scientific, 2004).
doi: 10.1142/9789812703019_0027
Nandapalan, V., Pollak, A., Langner, A. & Fisch, U. The anterior and superior malleal ligaments in otosclerosis: A histopathologic observation. Otol. Neurotol. 23, 854–861 (2002).
doi: 10.1097/00129492-200211000-00008
pubmed: 12438846
Ward, J. H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).
doi: 10.1080/01621459.1963.10500845
Murtagh, F. & Legendre, P. Ward’s hierarchical agglomerative clustering method: Which algorithms implement ward’s criterion?. J. Classif. 31, 274–295 (2014).
doi: 10.1007/s00357-014-9161-z
Crompton, M. et al. The epidemiology of otosclerosis in a British Cohort. Otol. Neurotol. 40, 22–30 (2019).
doi: 10.1097/MAO.0000000000002047
pubmed: 30540696
pmcid: 6314447
Fisch, U., Acar, G. O. & Huber, A. M. Malleostapedotomy in revision surgery for otosclerosis. Otol. Neurotol. 22, 776–785 (2001).
doi: 10.1097/00129492-200111000-00011
pubmed: 11698795