Sortilin-mediated translocation of mitochondrial ACSL1 impairs adipocyte thermogenesis and energy expenditure in male mice.
Animals
Adaptor Proteins, Vesicular Transport
/ metabolism
Thermogenesis
Male
Mitochondria
/ metabolism
Mice
Coenzyme A Ligases
/ metabolism
Energy Metabolism
Diet, High-Fat
Mice, Inbred C57BL
Obesity
/ metabolism
Adipocytes
/ metabolism
Adipose Tissue, Beige
/ metabolism
Insulin Resistance
Fatty Acids
/ metabolism
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
/ metabolism
Protein Transport
Oxidation-Reduction
Signal Transduction
3T3-L1 Cells
Mice, Knockout
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
05 Sep 2024
05 Sep 2024
Historique:
received:
16
06
2024
accepted:
30
08
2024
medline:
5
9
2024
pubmed:
5
9
2024
entrez:
4
9
2024
Statut:
epublish
Résumé
Beige fat activation involves a fuel switch to fatty acid oxidation following chronic cold adaptation. Mitochondrial acyl-CoA synthetase long-chain family member 1 (ACSL1) localizes in the mitochondria and plays a key role in fatty acid oxidation; however, the regulatory mechanism of the subcellular localization remains poorly understood. Here, we identify an endosomal trafficking component sortilin (encoded by Sort1) in adipose tissues that shows dynamic expression during beige fat activation and facilitates the translocation of ACSL1 from the mitochondria to the endolysosomal pathway for degradation. Depletion of sortilin in adipocytes results in an increase of mitochondrial ACSL1 and the activation of AMPK/PGC1α signaling, thereby activating beige fat and preventing high-fat diet (HFD)-induced obesity and insulin resistance. Collectively, our findings indicate that sortilin controls adipose tissue fatty acid oxidation by substrate fuel selection during beige fat activation and provides a potential targeted approach for the treatment of metabolic diseases.
Identifiants
pubmed: 39232011
doi: 10.1038/s41467-024-52218-4
pii: 10.1038/s41467-024-52218-4
doi:
Substances chimiques
sortilin
Z020Y8WIJ4
Adaptor Proteins, Vesicular Transport
0
Coenzyme A Ligases
EC 6.2.1.-
ACSL1 protein, mouse
EC 6.2.1.-
Fatty Acids
0
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
0
Ppargc1a protein, mouse
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7746Subventions
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 82350610277
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 82070859
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 82270910
Informations de copyright
© 2024. The Author(s).
Références
Cohen, P. & Kajimura, S. The cellular and functional complexity of thermogenic fat. Nat. Rev. Mol. Cell Biol. 22, 393–409 (2021).
pubmed: 33758402
pmcid: 8159882
doi: 10.1038/s41580-021-00350-0
Betz, M. J. & Enerbäck, S. J. D. Human brown adipose tissue: what we have learned so far. Diabetes 64, 2352–2360 (2015).
pubmed: 26050667
doi: 10.2337/db15-0146
Kajimura, S., Spiegelman, BruceM. & Seale, P. Brown and Beige Fat: Physiological Roles beyond Heat Generation. Cell Metab. 22, 546–559 (2015).
pubmed: 26445512
pmcid: 4613812
doi: 10.1016/j.cmet.2015.09.007
Sponton, C. H., de Lima-Junior, J. C. & Leiria, L. O. What puts the heat on thermogenic fat: metabolism of fuel substrates. Trends Endocrinol. Metab. 33, 587–599 (2022).
pubmed: 35697585
doi: 10.1016/j.tem.2022.05.003
Chouchani, E. T. & Kajimura, S. Metabolic adaptation and maladaptation in adipose tissue. Nat. Metab. 1, 189–200 (2019).
pubmed: 31903450
pmcid: 6941795
doi: 10.1038/s42255-018-0021-8
Morigny, P., Boucher, J., Arner, P. & Langin, D. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat. Rev. Endocrinol. 17, 276–295 (2021).
pubmed: 33627836
doi: 10.1038/s41574-021-00471-8
Gilleron, J. & Zeigerer, A. Endosomal trafficking in metabolic homeostasis and diseases. Nat. Rev. Endocrinol. 19, 28–45 (2023).
pubmed: 36216881
doi: 10.1038/s41574-022-00737-9
Xue, B. et al. Effects of High Fat Feeding on Adipose Tissue Gene Expression in Diabetic Goto-Kakizaki Rats. Gene Regul. Syst. Bio 9, 15–26 (2015).
pubmed: 26309393
pmcid: 4533846
Braulke, T. & Bonifacino, J. S. Sorting of lysosomal proteins. Biochim Biophys. Acta 1793, 605–614 (2009).
pubmed: 19046998
doi: 10.1016/j.bbamcr.2008.10.016
Kjolby, M. et al. Sort1, Encoded by the Cardiovascular Risk Locus 1p13.3, Is a Regulator of Hepatic Lipoprotein Export. Cell Metab. 12, 213–223 (2010).
pubmed: 20816088
doi: 10.1016/j.cmet.2010.08.006
Gustafsen, C. et al. The hypercholesterolemia-risk gene SORT1 facilitates PCSK9 secretion. Cell Metab. 19, 310–318 (2014).
pubmed: 24506872
doi: 10.1016/j.cmet.2013.12.006
Ouyang, S. et al. Mechanism underlying the regulation of sortilin expression and its trafficking function. J. Cell Physiol. 235, 8958–8971 (2020).
pubmed: 32474917
doi: 10.1002/jcp.29818
Li, J. et al. Neurotensin is an anti-thermogenic peptide produced by lymphatic endothelial cells. Cell Metab. 33, 1449–1465. e1446 (2021).
pubmed: 34038712
pmcid: 8266750
doi: 10.1016/j.cmet.2021.04.019
Ji, L. et al. AKAP1 Deficiency Attenuates Diet-Induced Obesity and Insulin Resistance by Promoting Fatty Acid Oxidation and Thermogenesis in Brown Adipocytes. Adv. Sci. (Weinh.) 8, 2002794 (2021).
pubmed: 33747723
Ellis, J. M. et al. Adipose acyl-CoA synthetase-1 directs fatty acids toward β-oxidation and is required for cold thermogenesis. Cell Metab. 12, 53–64 (2010).
pubmed: 20620995
pmcid: 2910420
doi: 10.1016/j.cmet.2010.05.012
Liu, Q., Gauthier, M. S., Sun, L., Ruderman, N. & Lodish, H. Activation of AMP-activated protein kinase signaling pathway by adiponectin and insulin in mouse adipocytes: requirement of acyl-CoA synthetases FATP1 and Acsl1 and association with an elevation in AMP/ATP ratio. FASEB J. 24, 4229–4239 (2010).
pubmed: 20667975
pmcid: 2974418
doi: 10.1096/fj.10-159723
Mottillo, E. P. et al. Lack of Adipocyte AMPK Exacerbates Insulin Resistance and Hepatic Steatosis through Brown and Beige Adipose Tissue Function. Cell Metab. 24, 118–129 (2016).
pubmed: 27411013
pmcid: 5239668
doi: 10.1016/j.cmet.2016.06.006
Yan, M. et al. Chronic AMPK activation via loss of FLCN induces functional beige adipose tissue through PGC-1alpha/ERRalpha. Genes Dev. 30, 1034–1046 (2016).
pubmed: 27151976
pmcid: 4863735
doi: 10.1101/gad.281410.116
Rosenwald, M., Perdikari, A., Rulicke, T. & Wolfrum, C. Bi-directional interconversion of brite and white adipocytes. Nat. Cell Biol. 15, 659–667 (2013).
pubmed: 23624403
doi: 10.1038/ncb2740
Wang, Q. et al. IL-27 signalling promotes adipocyte thermogenesis and energy expenditure. Nature 600, 314–318 (2021).
pubmed: 34819664
doi: 10.1038/s41586-021-04127-5
Sveidahl Johansen, O. et al. Lipolysis drives expression of the constitutively active receptor GPR3 to induce adipose thermogenesis. Cell 184, 3502–3518 e3533 (2021).
pubmed: 34048700
pmcid: 8238500
doi: 10.1016/j.cell.2021.04.037
Nielsen, M. S. et al. The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein. EMBO J. 20, 2180–2190 (2001).
pubmed: 11331584
pmcid: 125444
doi: 10.1093/emboj/20.9.2180
Mari, M. et al. SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors. Traffic 9, 380–393 (2008).
pubmed: 18088323
doi: 10.1111/j.1600-0854.2007.00686.x
Lobo, S., Wiczer, B. M. & Bernlohr, D. A. Functional analysis of long-chain acyl-CoA synthetase 1 in 3T3-L1 adipocytes. J. Biol. Chem. 284, 18347–18356 (2009).
pubmed: 19429676
pmcid: 2709349
doi: 10.1074/jbc.M109.017244
Goldenberg, J. R. et al. Preservation of Acyl Coenzyme A Attenuates Pathological and Metabolic Cardiac Remodeling Through Selective Lipid Trafficking. Circulation 139, 2765–2777 (2019).
pubmed: 30909726
pmcid: 6557671
doi: 10.1161/CIRCULATIONAHA.119.039610
Vitelli, R. et al. Role of the small GTPase Rab7 in the late endocytic pathway. J. Biol. Chem. 272, 4391–4397 (1997).
pubmed: 9020161
doi: 10.1074/jbc.272.7.4391
Schrøder, T. J. et al. The identification of AF38469: an orally bioavailable inhibitor of the VPS10P family sorting receptor Sortilin. Bioorg. Med Chem. Lett. 24, 177–180 (2014).
pubmed: 24355129
doi: 10.1016/j.bmcl.2013.11.046
Chen, C., Li, J., Matye, D. J., Wang, Y. & Li, T. Hepatocyte sortilin 1 knockout and treatment with a sortilin 1 inhibitor reduced plasma cholesterol in Western diet-fed mice. J. Lipid Res. 60, 539–549 (2019).
pubmed: 30670473
pmcid: 6399493
doi: 10.1194/jlr.M089789
Lee, P., Werner, C., Kebebew, E. & Celi, F. J. I. j. o. o. Functional thermogenic beige adipogenesis is inducible in human neck fat. Int J. Obes. (Lond.) 38, 170–176 (2014).
pubmed: 23736373
doi: 10.1038/ijo.2013.82
Cullen, P. J. & Steinberg, F. To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat. Rev. Mol. Cell Biol. 19, 679–696 (2018).
pubmed: 30194414
doi: 10.1038/s41580-018-0053-7
Krahmer, N. et al. Organellar Proteomics and Phospho-Proteomics Reveal Subcellular Reorganization in Diet-Induced Hepatic Steatosis. Dev. Cell 47, 205–221 e207 (2018).
pubmed: 30352176
doi: 10.1016/j.devcel.2018.09.017
Wu, L. et al. Rab8a-AS160-MSS4 regulatory circuit controls lipid droplet fusion and growth. Dev. Cell 30, 378–393 (2014).
pubmed: 25158853
doi: 10.1016/j.devcel.2014.07.005
Seitz, S. et al. Hepatic Rab24 controls blood glucose homeostasis via improving mitochondrial plasticity. Nat. Metab. 1, 1009–1026 (2019).
pubmed: 32694843
doi: 10.1038/s42255-019-0124-x
Lee, J., Ellis, J. M. & Wolfgang, M. J. Adipose fatty acid oxidation is required for thermogenesis and potentiates oxidative stress-induced inflammation. Cell Rep. 10, 266–279 (2015).
pubmed: 25578732
pmcid: 4359063
doi: 10.1016/j.celrep.2014.12.023
Ozaki, K., Sano, T., Tsuji, N., Matsuura, T. & Narama, I. Carnitine is necessary to maintain the phenotype and function of brown adipose tissue. Lab Invest. 91, 704–710 (2011).
pubmed: 21321536
doi: 10.1038/labinvest.2011.6
Srivastava, G. & Apovian, C. M. J. N. R. E. Current pharmacotherapy for obesity. Nat. Rev. Endocrinol. 14, 12–24 (2018).
pubmed: 29027993
doi: 10.1038/nrendo.2017.122
Harms, M. & Seale, P. J. N. m. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252–1263 (2013).
pubmed: 24100998
doi: 10.1038/nm.3361
Larsen, T. M. et al. Effect of a 28-d treatment with L-796568, a novel β3-adrenergic receptor agonist, on energy expenditure and body composition in obese men. Am. J. Clin. Nutr. 76, 780–788 (2002).
pubmed: 12324291
doi: 10.1093/ajcn/76.4.780
Bhadada, S. V. et al. β3 receptors: Role in cardiometabolic disorders. Ther. Adv. Endocrinol. Metab. 2, 65–79 (2011). & Metabolism.
pubmed: 23148172
pmcid: 3474626
doi: 10.1177/2042018810390259
Rhost, S. et al. Sortilin inhibition limits secretion-induced progranulin-dependent breast cancer progression and cancer stem cell expansion. Breast Cancer Res. 20, 1–15 (2018).
doi: 10.1186/s13058-018-1060-5
Kajimura, S., Ruiz, L. & Liisberg Aune, U. Isolation and Differentiation of Stromal Vascular Cells to Beige/Brite Cells. J. Visualized Exp. 28, 50191 (2013).
Shinoda, K. et al. Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat. Med 21, 389–394 (2015).
pubmed: 25774848
pmcid: 4427356
doi: 10.1038/nm.3819
Altshuler-Keylin, S. et al. Beige adipocyte maintenance is regulated by autophagy-induced mitochondrial clearance. cell Metab. 24, 402–419 (2016).
pubmed: 27568548
pmcid: 5023491
doi: 10.1016/j.cmet.2016.08.002
Yoneshiro, T. et al. BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature 572, 614–619 (2019).
pubmed: 31435015
pmcid: 6715529
doi: 10.1038/s41586-019-1503-x
Chen, S. et al. The phytochemical hyperforin triggers thermogenesis in adipose tissue via a Dlat-AMPK signaling axis to curb obesity. Cell Metab. 33, 565–580.e567 (2021).
pubmed: 33657393
doi: 10.1016/j.cmet.2021.02.007