Predicting anxiety treatment outcome in community mental health services using linked health administrative data.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
04 09 2024
Historique:
received: 17 05 2024
accepted: 29 08 2024
medline: 5 9 2024
pubmed: 5 9 2024
entrez: 4 9 2024
Statut: epublish

Résumé

Anxiety disorders is ranked as the most common class of mental illness disorders globally, affecting hundreds of millions of people and significantly impacting daily life. Developing reliable predictive models for anxiety treatment outcomes holds immense potential to help guide the development of personalised care, optimise resource allocation and improve patient outcomes. This research investigates whether community mental health treatment for anxiety disorder is associated with reliable changes in Kessler psychological distress scale (K10) scores and whether pre-treatment K10 scores and past health service interactions can accurately predict reliable change (improvement). The K10 assessment was administered to 46,938 public patients in a community setting within the Western Australia dataset in 2005-2022; of whom 3794 in 4067 episodes of care were reassessed at least twice for anxiety disorders, obsessive-compulsive disorder, or reaction to severe stress and adjustment disorders (ICD-10 codes F40-F43). Reliable change on the K10 was calculated and used with the post-treatment score as the outcome variables. Machine learning models were developed using features from a large health service administrative linked dataset that includes the pre-treatment K10 assessment as well as community mental health episodes of care, emergency department presentations, and inpatient admissions for prediction. The classification model achieved an area under the receiver operating characteristic curve of 0.76 as well as an F1 score, precision and recall of 0.69, and the regression model achieved an R

Identifiants

pubmed: 39232215
doi: 10.1038/s41598-024-71557-2
pii: 10.1038/s41598-024-71557-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

20559

Informations de copyright

© 2024. The Author(s).

Références

National Study of Mental Health and Wellbeing. https://www.abs.gov.au/statistics/health/mental-health/national-study-mental-health-and-wellbeing/latest-release (2023).
Villaume, S. C., Chen, S. & Adam, E. K. Age disparities in prevalence of anxiety and depression among US adults during the COVID-19 pandemic. JAMA Netw. Open 6(11), e2345073 (2023).
doi: 10.1001/jamanetworkopen.2023.45073
Australian Institute of Health and Welfare. Medicare-subsidised mental health-specific services. https://www.aihw.gov.au/mental-health/topic-areas/medicare-subsidised-services (2023).
Castillo, E. G. et al. Community interventions to promote mental health and social equity. Curr. Psychiatry Rep. 21, 1–14. https://doi.org/10.1007/11920-019-1017-0 (2019).
doi: 10.1007/11920-019-1017-0
Australian institute of Health and Welfare. Community Services—Mental health AIHW. https://www.aihw.gov.au/mental-health/topic-areas/community-services (2023).
McMahon, F. J. Prediction of treatment outcomes in psychiatry—Where do we stand?. Dialogues Clin. Neurosci. 16(4), 455–464 (2014).
doi: 10.31887/DCNS.2014.16.4/fmcmahon pubmed: 25733951 pmcid: 4336916
Chekroud, A. M. et al. The promise of machine learning in predicting treatment outcomes in psychiatry. World Psychiatry 20(2), 154–170 (2021).
doi: 10.1002/wps.20882 pubmed: 34002503 pmcid: 8129866
Eilertsen, S. E. H. & Eilertsen, T. H. Why is it so hard to identify (consistent) predictors of treatment outcome in psychotherapy? Clinical and research perspectives. BMC Psychol. 11(1), 198 (2023).
doi: 10.1186/s40359-023-01238-8 pubmed: 37408027 pmcid: 10324269
Nemesure, M. D., Heinz, M. V., Huang, R. & Jacobson, N. C. Predictive modeling of depression and anxiety using electronic health records and a novel machine learning approach with artificial intelligence. Sci. Rep. 11(1), 1980 (2021).
doi: 10.1038/s41598-021-81368-4 pubmed: 33479383 pmcid: 7820000
Stanojevic, M., Norris, L. A., Kendall, P. C. & Obradovic, Z. Predicting anxiety treatment outcomes with machine learning. In 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA) 957–962 (IEEE, 2022).
Hornstein, S., Forman-Hoffman, V., Nazander, A., Ranta, K. & Hilbert, K. Predicting therapy outcome in a digital mental health intervention for depression and anxiety: A machine learning approach. Digit. Health 7, 20552076211060659 (2021).
pubmed: 34868624 pmcid: 8637697
Erceg-Hurn, D. M., Campbell, B. N. & McEvoy, P. M. What explains the failure to identify replicable moderators of symptom change in social anxiety disorder?. J. Anxiety Disord. 94, 102676 (2023).
doi: 10.1016/j.janxdis.2023.102676 pubmed: 36758344
Meehl, P. E. Clinical versus statistical prediction: A theoretical analysis and a review of the evidence (1954).
Dawes, R. M., Faust, D. & Meehl, P. E. Clinical versus actuarial judgment. Science 243(4899), 1668–1674 (1989).
doi: 10.1126/science.2648573 pubmed: 2648573
Lilienfeld, S. O., Ritschel, L. A., Lynn, S. J., Cautin, R. L. & Latzman, R. D. Why ineffective psychotherapies appear to work: A taxonomy of causes of spurious therapeutic effectiveness. Perspect. Psychol. Sci. 9(4), 355–387 (2014).
doi: 10.1177/1745691614535216 pubmed: 26173271
Mululo, S. C. C., Menezes, G. B. D., Vigne, P. & Fontenelle, L. F. A review on predictors of treatment outcome in social anxiety disorder. Braz. J. Psychiatry 34, 92–100 (2012).
doi: 10.1590/S1516-44462012000100016 pubmed: 22392395
Ang, Y. S. & Pizzagalli, D. A. Predictors of treatment outcome in adolescent depression. Curr. Treat. Options Psychiatry 8, 18–28 (2021).
doi: 10.1007/s40501-020-00237-5
Lee, C. M. Y. et al. Patterns of mental service utilisation: A population-based linkage of over 17 years of health administrative records. Community Ment. Health J. https://doi.org/10.1007/s10597-024-01300-8 (2024).
doi: 10.1007/s10597-024-01300-8 pubmed: 39133358
National Centre for Classification in Health. The International Statistical Classification of Diseases and Related Health Problems, Australian Modification (ICD-10-AM) 10th edn. (Independent Hospital Pricing Authority, 2017).
Kessler, R. C. M. D. & Mroczek, D. An Update of the Development of Mental Health Screening Scales for the US National Health Interview Study (University of Michigan, Survey Research Center of the Institute for Social Research, 1992).
Kessler, R. C. et al. Screening for serious mental illness in the general population. Arch. Gen. Psychiatry 60(2), 184–189 (2003).
doi: 10.1001/archpsyc.60.2.184 pubmed: 12578436
Andrews, G. & Slade, T. Interpreting scores on the Kessler Psychological Distress Scale (K10). Aust. N. Z. J. Public Health 25, 494–497 (2001).
doi: 10.1111/j.1467-842X.2001.tb00310.x pubmed: 11824981
McEvoy, P. M. et al. Group metacognitive therapy for repetitive negative thinking in primary and non-primary generalized anxiety disorder: An effectiveness trial. J. Affect. Disord. 175, 124–132 (2015).
doi: 10.1016/j.jad.2014.12.046 pubmed: 25601312
Vallat, R. Pingouin: Statistics in Python. J. Open Source Softw. 3(31), 1026. https://doi.org/10.21105/joss.01026 (2018).
doi: 10.21105/joss.01026
Jacobson, N. S. & Truax, P. Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. J. Consult. Clin. Psychol. 59, 12–19 (1992).
doi: 10.1037/0022-006X.59.1.12
Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Ali, M. PyCaret: An open source, low-code machine learning library in Python. https://www.pycaret.org (2020).
Mandrekar, J. N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 5(9), 1315–1316 (2010).
doi: 10.1097/JTO.0b013e3181ec173d pubmed: 20736804
Bishop, C. M. & Nasrabadi, N. M. Pattern Recognition and Machine Learning Vol. 4, 738 (Springer, 2006).
Strumbelj, E. & Kononenko, I. Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. J. https://doi.org/10.1007/s10115-013-0679-x (2014).
doi: 10.1007/s10115-013-0679-x
Lundberg, S. M., & Lee, S. I. A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems (NeurIPS) (2017).
Guyon, I. & Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 3(2), 1157–1182 (2003).
Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240(4857), 1285–1293 (1988).
doi: 10.1126/science.3287615 pubmed: 3287615
Streiner, D. L. & Cairney, J. What’s under the ROC? An introduction to receiver operating characteristics curves. Can. J. Psychiatry 52(2), 121–128 (2007).
doi: 10.1177/070674370705200210 pubmed: 17375868
Moore, D. S., Notz, W. & Fligner, M. A. The Basic Practice of Statistics (W.H. Freeman and Company, 2013).
Cohen, J. Statistical Power Analysis for the Behavioral Sciences 2nd edn. (Lawrence Erlbaum Associates, 1988).
Lambert, M. J. & Harmon, K. L. The merits of implementing routine outcome monitoring in clinical practice. Clin. Psychol. Sci. Pract. 25(4), e12268 (2018).
doi: 10.1111/cpsp.12268
Naragon-Gainey, K. Meta-analysis of the relations of anxiety sensitivity to the depressive and anxiety disorders. Psychol. Bull. 136(1), 128 (2010).
doi: 10.1037/a0018055 pubmed: 20063929
McEvoy, P. M., Hyett, M. P., Shihata, S., Price, J. E. & Strachan, L. The impact of methodological and measurement factors on transdiagnostic associations with intolerance of uncertainty: A meta-analysis. Clin. Psychol. Rev. 73, 101778 (2019).
doi: 10.1016/j.cpr.2019.101778 pubmed: 31678816
Akbari, M., Seydavi, M., Hosseini, Z. S., Krafft, J. & Levin, M. E. Experiential avoidance in depression, anxiety, obsessive-compulsive related, and posttraumatic stress disorders: A comprehensive systematic review and meta-analysis. J. Context. Behav. Sci. 24, 65–78 (2022).
doi: 10.1016/j.jcbs.2022.03.007
Vaz, A. M., Ferreira, L. I., Gelso, C. & Janeiro, L. The sister concepts of working alliance and real relationship: A meta-analysis. Counsel. Psychol. Q. 37(2), 247–268 (2024).
doi: 10.1080/09515070.2023.2205103
de Graaf, R., ten Have, M., Tuithof, M. & van Dorsselaer, S. First-incidence of DSM-IV mood, anxiety and substance use disorders and its determinants: Results from the Netherlands Mental Health Survey and Incidence Study-2. J. Affect. Disord. 149(1–3), 100–107 (2013).
doi: 10.1016/j.jad.2013.01.009 pubmed: 23399481
Sharma, S., Powers, A., Bradley, B. & Ressler, K. J. Gene × environment determinants of stress-and anxiety-related disorders. Annu. Rev. Psychol. 67(1), 239–261 (2016).
doi: 10.1146/annurev-psych-122414-033408 pubmed: 26442668
Cuijpers, P. Targets and outcomes of psychotherapies for mental disorders: An overview. World Psychiatry 18(3), 276–285 (2019).
doi: 10.1002/wps.20661 pubmed: 31496102 pmcid: 6732705
Lundqvist, L. O. et al. Influence of mental health service provision on the perceived quality of life among psychiatric outpatients: Associations and mediating factors. Front. Psychiatry 14, 1282466 (2024).
doi: 10.3389/fpsyt.2023.1282466 pubmed: 38293591 pmcid: 10824987
McAleavey, A. A., de Jong, K., Nissen-Lie, H. A., Boswell, J. F., Moltu, C. & Lutz, W. (2024). Routine outcome monitoring and clinical feedback in psychotherapy: Recent advances and future directions. Administration and Policy in Mental Health and Mental Health Services Research, 1–15.

Auteurs

Kevin E K Chai (KEK)

School of Population Health, Curtin University, Perth, WA, Australia. k.chai@curtin.edu.au.

Kyran Graham-Schmidt (K)

Department of Health, Perth, WA, Australia.

Crystal M Y Lee (CMY)

School of Population Health, Curtin University, Perth, WA, Australia.

Daniel Rock (D)

Western Australia Primary Health Alliance, Perth, WA, Australia.
Discipline of Psychiatry, Medical School, University of Western Australia, Perth, WA, Australia.
Faculty of Health, Health Research Institute, University of Canberra, Canberra, ACT, Australia.

Mathew Coleman (M)

Western Australia Country Health Service, Albany, WA, Australia.

Kim S Betts (KS)

School of Population Health, Curtin University, Perth, WA, Australia.

Suzanne Robinson (S)

School of Population Health, Curtin University, Perth, WA, Australia.
Deakin Health Economics, Deakin University, Melbourne, VIC, Australia.

Peter M McEvoy (PM)

School of Population Health, Curtin University, Perth, WA, Australia.
Centre for Clinical Interventions, North Metropolitan Health Service, Perth, WA, Australia.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH