Human-exoskeleton interaction portrait.
Control
Exoskeleton
Physical Interaction
Journal
Journal of neuroengineering and rehabilitation
ISSN: 1743-0003
Titre abrégé: J Neuroeng Rehabil
Pays: England
ID NLM: 101232233
Informations de publication
Date de publication:
04 Sep 2024
04 Sep 2024
Historique:
received:
14
03
2024
accepted:
14
08
2024
medline:
5
9
2024
pubmed:
5
9
2024
entrez:
5
9
2024
Statut:
epublish
Résumé
Human-robot physical interaction contains crucial information for optimizing user experience, enhancing robot performance, and objectively assessing user adaptation. This study introduces a new method to evaluate human-robot interaction and co-adaptation in lower limb exoskeletons by analyzing muscle activity and interaction torque as a two-dimensional random variable. We introduce the interaction portrait (IP), which visualizes this variable's distribution in polar coordinates. We applied IP to compare a recently developed hybrid torque controller (HTC) based on kinematic state feedback and a novel adaptive model-based torque controller (AMTC) with online learning, proposed herein, against a time-based controller (TBC) during treadmill walking at varying speeds. Compared to TBC, both HTC and AMTC significantly lower users' normalized oxygen uptake, suggesting enhanced user-exoskeleton coordination. IP analysis reveals that this improvement stems from two distinct co-adaptation strategies, unidentifiable by traditional muscle activity or interaction torque analyses alone. HTC encourages users to yield control to the exoskeleton, decreasing overall muscular effort but increasing interaction torque, as the exoskeleton compensates for user dynamics. Conversely, AMTC promotes user engagement through increased muscular effort and reduces interaction torques, aligning it more closely with rehabilitation and gait training applications. IP phase evolution provides insight into each user's interaction strategy formation, showcasing IP analysis's potential in comparing and designing novel controllers to optimize human-robot interaction in wearable robots.
Identifiants
pubmed: 39232812
doi: 10.1186/s12984-024-01447-1
pii: 10.1186/s12984-024-01447-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
152Subventions
Organisme : New Frontiers in Research Fund - Exploration
ID : 2018-1698
Organisme : Natural Sciences and Engineering Research Council of Canada
ID : Discovery - RGPIN-2018-4850
Informations de copyright
© 2024. The Author(s).
Références
Dupont PE, Nelson BJ, Goldfarb M, Hannaford B, Menciassi A, O’Malley MK, Simaan N, Valdastri P, Yang G-Z. A decade retrospective of medical robotics research from 2010 to 2020. Sci Robot. 2021;6:eabi8017.
pubmed: 34757801
pmcid: 8890492
doi: 10.1126/scirobotics.abi8017
Duschau-Wicke A, Zitzewitz JV, Caprez A, Lunenburger L, Riener R. Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2009;18:38–48.
doi: 10.1109/TNSRE.2009.2033061
Bryan GM, Franks PW, Song S, Reyes R, O’Donovan MP, Gregorczyk KN, Collins SH. Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads. J Neuroeng Rehabil. 2021;18:1–13.
Franks PW, Bryan GM, Martin RM, Reyes R, Lakmazaheri AC, Collins SH. Comparing optimized exoskeleton assistance of the hip, knee, and ankle in single and multi-joint configurations. Wearable Technol. 2021;2:16.
doi: 10.1017/wtc.2021.14
Durandau G, Rampeltshammer WF, Kooij H, Sartori M. Neuromechanical model-based adaptive control of bilateral ankle exoskeletons: biological joint torque and electromyogram reduction across walking conditions. IEEE Trans Robot. 2022;38:1380–94.
doi: 10.1109/TRO.2022.3170239
Poggensee KL, Collins SH. How adaptation, training, and customization contribute to benefits from exoskeleton assistance. Sci Robot. 2021;6:eabf1078.
pubmed: 34586837
doi: 10.1126/scirobotics.abf1078
Nuckols RW, Lee S, Swaminathan K, Orzel D, Howe RD, Walsh CJ. Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Sci Robot. 2021;6:eabj1362.
pubmed: 34757803
pmcid: 9052350
doi: 10.1126/scirobotics.abj1362
Lee UH, Shetty VS, Franks PW, Tan J, Evangelopoulos G, Ha S, Rouse EJ. User preference optimization for control of ankle exoskeletons using sample efficient active learning. Sci Robot. 2023;8:eadg3705.
doi: 10.1126/scirobotics.adg3705
Postol N, Lamond S, Galloway M, Palazzi K, Bivard A, Spratt NJ, Marquez J. The metabolic cost of exercising with a robotic exoskeleton: a comparison of healthy and neurologically impaired people. IEEE Trans Neural Syst Rehabil Eng. 2020;28:3031–9.
pubmed: 33211660
doi: 10.1109/TNSRE.2020.3039202
Witte KA, Fiers P, Sheets-Singer AL, Collins SH. Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Sci Robot. 2020;5:eaay9108.
pubmed: 33022600
doi: 10.1126/scirobotics.aay9108
Zhu F, Kern M, Fowkes E, Afzal T, Contreras-Vidal J-L, Francisco GE, Chang S-H. Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. J Neural Engi. 2021;18:046039.
doi: 10.1088/1741-2552/abf0d5
Ingraham KA, Remy CD, Rouse EJ. The role of user preference in the customized control of robotic exoskeletons. Sci Robot. 2022;7:eabj3487.
pubmed: 35353602
doi: 10.1126/scirobotics.abj3487
Küçüktabak EB, Wen Y, Kim SJ, Short M, Ludvig D, Hargrove L, Perreault E, Lynch K, Pons J. Haptic transparency and interaction force control for a lower-limb exoskeleton. IEEE Trans Robot. 2024.
Dalley SA, Hartigan C, Kandilakis C, Farris RJ. Increased walking speed and speed control in exoskeleton enabled gait. 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob). 2018:689–94.
Pisotta I, Tagliamonte NL, Bigioni A, Tamburella F, Lorusso M, Bentivoglio F, Pecoraro I, Argentieri P, Marri F, Zollo L, Molinari M. Pilot testing of a new questionnaire for the assessment of user experience during exoskeleton-assisted walking. 2020.
Muijzer-Witteveen H, Sibum N, Dijsseldonk RB, Keijsers NLW, Asseldonk EHF. Questionnaire results of user experiences with wearable exoskeletons and their preferences for sensory feedback. J Neuroeng Rehabil. 2018;15:112.
pubmed: 30470238
pmcid: 6260663
doi: 10.1186/s12984-018-0445-0
Lee K-S, Lee J, Hwang J. Research trend analysis of usability evaluation in exoskeleton robots. 2022.
Nasiri R, Dinovitzer H, Nirosh M, Arami A. Coordinated human-exoskeleton locomotion emerges from regulating virtual energy. PLoS ONE. 2024.
Pinto-Fernandez D, Diego T, Carmen Sanchez-Villamanan M, Aller F, Mombaur K, Conti R, Vitiello N, Moreno JC, Pons JL. Performance evaluation of lower limb exoskeletons: a systematic review. IEEE Trans Neural Syst Rehabil Eng. 2020;28:1573–83.
pubmed: 32634096
doi: 10.1109/TNSRE.2020.2989481
Slade P, Kochenderfer MJ, Delp SL, Collins SH. Personalizing exoskeleton assistance while walking in the real world. Nature. 2022;610:277–82.
pubmed: 36224415
pmcid: 9556303
doi: 10.1038/s41586-022-05191-1
Medina JR, Lorenz T, Hirche S. Synthesizing anticipatory haptic assistance considering human behavior uncertainty. IEEE Trans Robot. 2015;31:180–90.
doi: 10.1109/TRO.2014.2387571
Martinez A, Lawson B, Durrough C, Goldfarb M. A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Trans Robot. 2018;35:307–16.
doi: 10.1109/TRO.2018.2883819
Shushtari M, Nasiri R, Arami A. Online reference trajectory adaptation: a personalized control strategy for lower limb exoskeletons. IEEE Robotics and Autom Lett. 2021;7:128–34.
doi: 10.1109/LRA.2021.3115572
Asl HJ, Yamashita M, Narikiyo T, Kawanishi M. Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Trans Mechatron. 2020;25:2100–11.
doi: 10.1109/TMECH.2020.2992090
Dominijanni G, Pinheiro DL, Pollina L, Orset B, Gini M, Anselmino E, Pierella C, Olivier J, Shokur S, Micera S. Human motor augmentation with an extra robotic arm without functional interference. Sci Robot. 2023;8:eadh1438.
pubmed: 38091424
doi: 10.1126/scirobotics.adh1438
Losey DP, Mcdonald CG, Battaglia E, O’Malley M. A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction. Appl Mech Rev. 2018;70:010804. https://doi.org/10.1115/1.4039145
doi: 10.1115/1.4039145
Jackson RW, Collins SH. Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion. IEEE Trans Neural Syst Rehabil Eng. 2019;27:2059–69.
pubmed: 31425120
doi: 10.1109/TNSRE.2019.2936383
Banala SK, Agrawal SK, Scholz JP. Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics. 2007:401–7. 2007 IEEE 10th International Conference on Rehabilitation Robotics.
Dinovitzer H, Shushtari M, Arami A. Feedforward control of lower limb exoskeletons: which torque profile should we use? IEEE Robot Autom Lett. 2023;9:382–9.
doi: 10.1109/LRA.2023.3331674
Dinovitzer H, Shushtari M, Arami A. Accurate real-time joint torque estimation for dynamic prediction of human locomotion. IEEE Trans Biomed Eng. 2023;70:2289–97.
pubmed: 37022250
doi: 10.1109/TBME.2023.3240879
Shushtari M, Dinovitzer H, Weng J, Arami A. Ultra-robust estimation of gait phase. IEEE Trans Neural Syst Rehabil Eng. 2022;30:2793–801.
pubmed: 36121941
doi: 10.1109/TNSRE.2022.3207919
Shushtari M, Arami A. Human-exoskeleton interaction force estimation in indego exoskeleton. Robotics. 2023;12:66.
doi: 10.3390/robotics12030066
Carroll K, Kennedy R, Koutoulas V, Bui M, Kraan C. Validation of shoe-worn gait up physilog® 5 wearable inertial sensors in adolescents. Gait & Posture. 2022;91:19–25.
doi: 10.1016/j.gaitpost.2021.09.203
Schwameder H, Andress M, Graf E, Strutzenberger G. Validation of an imu-system (gait-up) to identify gait parameters in normal and induced limping walking conditions. In: ISBS-conference Proceedings Archive. 2015.
Crouter SE, LaMunion SR, Hibbing PR, Kaplan AS, Bassett DR Jr. Accuracy of the cosmed k5 portable calorimeter. PLoS ONE. 2019;14(12):0226290.
doi: 10.1371/journal.pone.0226290
Weng J, Hashemi E, Arami A. Human gait cost function varies with walking speed: an inverse optimal control study. IEEE Robot Autom Lett. 2023;8(8):4777–84.
doi: 10.1109/LRA.2023.3289088
Pedotti A, Krishnan VV, Stark L. Optimization of muscle-force sequencing in human locomotion. Math Biosci. 1978;38:57–76.
doi: 10.1016/0025-5564(78)90018-4
Crowninshield RD, Brand RA. A physiologically based criterion of muscle force prediction in locomotion. J Biomech. 1981;14:793–801.
pubmed: 7334039
doi: 10.1016/0021-9290(81)90035-X
Lieber RL, Roberts TJ, Blemker SS, Lee SSM, Herzog W. Skeletal muscle mechanics, energetics and plasticity. J Neuroeng Rehabil. 2017;14:1–16.
doi: 10.1186/s12984-017-0318-y
Rayssiguie E, Erden MS. A review of exoskeletons considering nurses. Sensors. 2022;22(18):7035.
pubmed: 36146385
pmcid: 9501849
doi: 10.3390/s22187035
Blank AA, French JA, Pehlivan AU, O’Malley MK. Current trends in robot-assisted upper-limb stroke rehabilitation: promoting patient engagement in therapy. Curr Phys Med Rehabil Rep. 2014;2:184–95.
pubmed: 26005600
pmcid: 4441271
doi: 10.1007/s40141-014-0056-z
Guigon E, Chafik O, Jarrassé N, Roby-Brami A. Experimental and theoretical study of velocity fluctuations during slow movements in humans. J Neurophysiol. 2019;121(2):715–27.
pubmed: 30649981
doi: 10.1152/jn.00576.2018
Brach JS, McGurl D, Wert DM, VanSwearingen J, Perera S, Cham R, Studenski SA. Validation of a measure of smoothness of walking. J Gerontol Se A Biol Sci Med Sci. 2011;66(1):136–41.
Bruijn SM, Dieën JH, Meijer OG, Beek PJ. Is slow walking more stable? J Biomech. 2009;42(10):1506–12.
pubmed: 19446294
doi: 10.1016/j.jbiomech.2009.03.047
Park S-W, Marino H, Charles SK, Sternad D, Hogan N. Moving slowly is hard for humans: limitations of dynamic primitives. J Neurophysiol. 2017;118(1):69–83.
pubmed: 28356477
pmcid: 5494357
doi: 10.1152/jn.00643.2016
Massardi S, Rodriguez-Cianca D, Pinto-Fernández D, Moreno JC, Lancini M, Torricelli D. Characterization and evaluation of human–exoskeleton interaction dynamics: a review. Sensors. 2022;22:3993.
pubmed: 35684614
pmcid: 9183080
doi: 10.3390/s22113993
Cirstea M, Levin MF. Compensatory strategies for reaching in stroke. Brain. 2000;123(5):940–53.
pubmed: 10775539
doi: 10.1093/brain/123.5.940
Raghavan P, Santello M, Gordon AM, Krakauer JW. Compensatory motor control after stroke: an alternative joint strategy for object-dependent shaping of hand posture. J Neurophysiol. 2010;103(6):3034–43.
pubmed: 20457866
pmcid: 2888236
doi: 10.1152/jn.00936.2009
Ishmael MK, Gunnell A, Pruyn K, Creveling S, Hunt G, Hood S, Archangeli D, Foreman KB, Lenzi T. Powered hip exoskeleton reduces residual hip effort without affecting kinematics and balance in individuals with above-knee amputations during walking. IEEE Trans Biomed Eng. 2022;70(4):1162–71.
doi: 10.1109/TBME.2022.3211842