Control of bacterial cell wall autolysins by peptidoglycan crosslinking mode.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
11 Sep 2024
Historique:
received: 21 03 2024
accepted: 03 09 2024
medline: 12 9 2024
pubmed: 12 9 2024
entrez: 11 9 2024
Statut: epublish

Résumé

To withstand their internal turgor pressure and external threats, most bacteria have a protective peptidoglycan (PG) cell wall. The growth of this PG polymer relies on autolysins, enzymes that create space within the structure. Despite extensive research, the regulatory mechanisms governing these PG-degrading enzymes remain poorly understood. Here, we unveil a novel and widespread control mechanism of lytic transglycosylases (LTs), a type of autolysin responsible for breaking down PG glycan chains. Specifically, we show that LD-crosslinks within the PG sacculus act as an inhibitor of LT activity. Moreover, we demonstrate that this regulation controls the release of immunogenic PG fragments and provides resistance against predatory LTs of both bacterial and viral origin. Our findings address a critical gap in understanding the physiological role of the LD-crosslinking mode in PG homeostasis, highlighting how bacteria can enhance their resilience against environmental threats, including phage attacks, through a single structural PG modification.

Identifiants

pubmed: 39261529
doi: 10.1038/s41467-024-52325-2
pii: 10.1038/s41467-024-52325-2
doi:

Substances chimiques

Peptidoglycan 0
N-Acetylmuramoyl-L-alanine Amidase EC 3.5.1.28
Bacterial Proteins 0
Glycosyltransferases EC 2.4.-

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7937

Informations de copyright

© 2024. The Author(s).

Références

Vollmer, W., Blanot, D. & de Pedro, M. A. Peptidoglycan structure and architecture. FEMS Microbiol Rev. 32, 149–167 (2008).
pubmed: 18194336 doi: 10.1111/j.1574-6976.2007.00094.x
Cava, F. & de Pedro, M. A. Peptidoglycan plasticity in bacteria: emerging variability of the murein sacculus and their associated biological functions. Curr. Opin. Microbiol. 18, 46–53 (2014).
pubmed: 24607990 doi: 10.1016/j.mib.2014.01.004
Egan, A. J. F., Errington, J. & Vollmer, W. Regulation of peptidoglycan synthesis and remodelling. Nat. Rev. Microbiol 18, 446–460 (2020).
pubmed: 32424210 doi: 10.1038/s41579-020-0366-3
Rohs, P. D. A. & Bernhardt, T. G. Growth and division of the peptidoglycan matrix. Annu. Rev. Microbiol. 75, 315–336 (2021).
pubmed: 34351794 doi: 10.1146/annurev-micro-020518-120056
Aliashkevich, A. & Cava, F. LD-transpeptidases: the great unknown among the peptidoglycan cross-linkers. FEBS J. 289, 4718–4730 (2022).
pubmed: 34109739 doi: 10.1111/febs.16066
Magnet, S., Dubost, L., Marie, A., Arthur, M. & Gutmann, L. Identification of the L,D-transpeptidases for peptidoglycan cross-linking in Escherichia coli. J. Bacteriol. 190, 4782–4785 (2008).
pubmed: 18456808 pmcid: 2446776 doi: 10.1128/JB.00025-08
Mainardi, J. L. et al. A novel peptidoglycan cross-linking enzyme for a beta-lactam-resistant transpeptidation pathway. J. Biol. Chem. 280, 38146–38152 (2005).
pubmed: 16144833 doi: 10.1074/jbc.M507384200
Godessart, P. et al. beta-Barrels covalently link peptidoglycan and the outer membrane in the alpha-proteobacterium Brucella abortus. Nat. Microbiol. 6, 27–33 (2021).
pubmed: 33139884 doi: 10.1038/s41564-020-00799-3
Magnet, S. et al. Identification of the L,D-transpeptidases responsible for attachment of the Braun lipoprotein to Escherichia coli peptidoglycan. J. Bacteriol. 189, 3927–3931 (2007).
pubmed: 17369299 pmcid: 1913343 doi: 10.1128/JB.00084-07
Sandoz, K. M. et al. beta-Barrel proteins tether the outer membrane in many Gram-negative bacteria. Nat. Microbiol. 6, 19–26 (2021).
pubmed: 33139883 doi: 10.1038/s41564-020-00798-4
Cava, F., de Pedro, M. A., Lam, H., Davis, B. M. & Waldor, M. K. Distinct pathways for modification of the bacterial cell wall by non-canonical D-amino acids. EMBO J. 30, 3442–3453 (2011).
pubmed: 21792174 pmcid: 3160665 doi: 10.1038/emboj.2011.246
Hugonnet, J. E. et al. Factors essential for L,D-transpeptidase-mediated peptidoglycan cross-linking and beta-lactam resistance in Escherichia coli. eLife 5 https://doi.org/10.7554/eLife.19469 (2016).
More, N. et al. Peptidoglycan Remodeling Enables Escherichia coli To Survive Severe Outer Membrane Assembly Defect. mBio 10 (2019). https://doi.org/10.1128/mBio.02729-18 (2019).
Peters, K. et al. Copper inhibits peptidoglycan LD-transpeptidases suppressing beta-lactam resistance due to bypass of penicillin-binding proteins. Proc. Natl Acad. Sci. USA 115, 10786–10791 (2018).
pubmed: 30275297 pmcid: 6196517 doi: 10.1073/pnas.1809285115
Espaillat, A. et al. A distinctive family of L,D-transpeptidases catalyzing L-Ala-mDAP crosslinks in Alpha- and Betaproteobacteria. Nat. Commun. 15, 1343 (2024).
pubmed: 38351082 pmcid: 10864386 doi: 10.1038/s41467-024-45620-5
Uehara, T. & Bernhardt, T. G. More than just lysins: peptidoglycan hydrolases tailor the cell wall. Curr. Opin. Microbiol. 14, 698–703 (2011).
pubmed: 22055466 pmcid: 3347972 doi: 10.1016/j.mib.2011.10.003
Vollmer, W., Joris, B., Charlier, P. & Foster, S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev. 32, 259–286 (2008).
pubmed: 18266855 doi: 10.1111/j.1574-6976.2007.00099.x
Vermassen, A. et al. Cell wall hydrolases in bacteria: insight on the diversity of cell wall amidases, glycosidases and peptidases toward peptidoglycan. Front Microbiol 10, 331 (2019).
pubmed: 30873139 pmcid: 6403190 doi: 10.3389/fmicb.2019.00331
Holtje, J. V., Mirelman, D., Sharon, N. & Schwarz, U. Novel type of murein transglycosylase in Escherichia coli. J. Bacteriol. 124, 1067–1076 (1975).
pubmed: 357 pmcid: 236007 doi: 10.1128/jb.124.3.1067-1076.1975
Williams, A. H. et al. A step-by-step in crystallo guide to bond cleavage and 1,6-anhydro-sugar product synthesis by a peptidoglycan-degrading lytic transglycosylase. J. Biol. Chem. 293, 6000–6010 (2018).
pubmed: 29483188 pmcid: 5912472 doi: 10.1074/jbc.RA117.001095
Dik, D. A., Marous, D. R., Fisher, J. F. & Mobashery, S. Lytic transglycosylases: concinnity in concision of the bacterial cell wall. Crit. Rev. Biochem Mol. Biol. 52, 503–542 (2017).
pubmed: 28644060 pmcid: 6102726 doi: 10.1080/10409238.2017.1337705
Lee, M. et al. Exolytic and endolytic turnover of peptidoglycan by lytic transglycosylase Slt of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 115, 4393–4398 (2018).
pubmed: 29632171 pmcid: 5924928 doi: 10.1073/pnas.1801298115
Weaver, A., Taguchi, A. & Dorr, T. Masters of misdirection: peptidoglycan glycosidases in bacterial growth. J. Bacteriol. 205, e0042822 (2023).
pubmed: 36757204 doi: 10.1128/jb.00428-22
Brogan, A. P. & Rudner, D. Z. Regulation of peptidoglycan hydrolases: localization, abundance, and activity. Curr. Opin. Microbiol 72, 102279 (2023).
pubmed: 36812681 pmcid: 10031507 doi: 10.1016/j.mib.2023.102279
Kaul, M., Meher, S. K., Nallamotu, K. C. & Reddy, M. Glycan strand cleavage by a lytic transglycosylase, MltD contributes to the expansion of peptidoglycan in Escherichia coli. PLoS Genet 20, e1011161 (2024).
pubmed: 38422114 pmcid: 10931528 doi: 10.1371/journal.pgen.1011161
Santin, Y. G. & Cascales, E. Domestication of a housekeeping transglycosylase for assembly of a Type VI secretion system. EMBO Rep. 18, 138–149 (2017).
pubmed: 27920034 doi: 10.15252/embr.201643206
Irazoki, O., Hernandez, S. B. & Cava, F. Peptidoglycan Muropeptides: Release, Perception, and Functions as Signaling Molecules. Front Microbiol 10, 500 (2019).
pubmed: 30984120 pmcid: 6448482 doi: 10.3389/fmicb.2019.00500
Weaver, A. I. et al. Lytic transglycosylases mitigate periplasmic crowding by degrading soluble cell wall turnover products. eLife 11 (2022).
Hernandez, S. B. et al. Bile-induced peptidoglycan remodelling in Salmonella enterica. Environ. Microbiol. 17, 1081–1089 (2015).
pubmed: 24762004 doi: 10.1111/1462-2920.12491
Kang, K. N. et al. Septal class A penicillin-binding protein activity and ld-transpeptidases mediate selection of colistin-resistant lipooligosaccharide-deficient Acinetobacter baumannii. mBio 12 (2021).
Lavollay, M. et al. The peptidoglycan of Mycobacterium abscessus is predominantly cross-linked by L,D-transpeptidases. J. Bacteriol. 193, 778–782 (2011).
pubmed: 21097619 doi: 10.1128/JB.00606-10
Le, N. H., Pinedo, V., Lopez, J., Cava, F. & Feldman, M. F. Killing of Gram-negative and Gram-positive bacteria by a bifunctional cell wall-targeting T6SS effector. Proceedings of the National Academy of Sciences of the United States of America 118 (2021).
Bienkowska-Szewczyk, K. & Taylor, A. Murein transglycosylase from phage lambda lysate. Purification and properties. Biochimica et. biophysica acta 615, 489–496 (1980).
pubmed: 6448076 doi: 10.1016/0005-2744(80)90515-X
Bronneke, V. & Fiedler, F. Production of bacteriolytic enzymes by Streptomyces globisporus regulated by exogenous bacterial cell walls. Appl Environ. Microbiol 60, 785–791 (1994).
pubmed: 16349213 pmcid: 201393 doi: 10.1128/aem.60.3.785-791.1994
Chipman, D. M., Pollock, J. J. & Sharon, N. Lysozyme-catalyzed hydrolysis and transglycosylation reactions of bacterial cell wall oligosaccharides. J. Biol. Chem. 243, 487–496 (1968).
pubmed: 5637699 doi: 10.1016/S0021-9258(18)93630-6
Sanders, A. N. & Pavelka, M. S. Phenotypic analysis of Eschericia coli mutants lacking L,D-transpeptidases. Microbiol. (Read.) 159, 1842–1852 (2013).
doi: 10.1099/mic.0.069211-0
Dominguez-Gil, T. et al. Activation by allostery in cell-wall remodeling by a modular membrane-bound lytic transglycosylase from Pseudomonas aeruginosa. Structure 24, 1729–1741 (2016).
pubmed: 27618662 pmcid: 5494840 doi: 10.1016/j.str.2016.07.019
Wang, M., Ma, S. X. & Darwin, A. J. An inhibitor/anti-inhibitor system controls the activity of lytic transglycosylase MltF in Pseudomonas aeruginosa. bioRxiv https://doi.org/10.1101/2023.07.28.551027 (2023).
doi: 10.1101/2023.07.28.551027 pubmed: 38529510 pmcid: 10793428
Abergel, C. et al. Structure and evolution of the Ivy protein family, unexpected lysozyme inhibitors in Gram-negative bacteria. Proc. Natl Acad. Sci. USA 104, 6394–6399 (2007).
pubmed: 17405861 pmcid: 1847508 doi: 10.1073/pnas.0611019104
Liang, Y., Zhao, Y., Kwan, J. M. C., Wang, Y. & Qiao, Y. Escherichia coli has robust regulatory mechanisms against elevated peptidoglycan cleavage by lytic transglycosylases. J. Biol. Chem. 299, 104615 (2023).
pubmed: 36931392 pmcid: 10139938 doi: 10.1016/j.jbc.2023.104615
Clarke, C. A., Scheurwater, E. M. & Clarke, A. J. The vertebrate lysozyme inhibitor Ivy functions to inhibit the activity of lytic transglycosylase. J. Biol. Chem. 285, 14843–14847 (2010).
pubmed: 20351104 pmcid: 2865275 doi: 10.1074/jbc.C110.120931
Moynihan, P. J. & Clarke, A. J. O-Acetylated peptidoglycan: controlling the activity of bacterial autolysins and lytic enzymes of innate immune systems. Int. J. Biochem. cell Biol. 43, 1655–1659 (2011).
pubmed: 21889603 doi: 10.1016/j.biocel.2011.08.007
Biarrotte-Sorin, S. et al. Crystal structure of a novel beta-lactam-insensitive peptidoglycan transpeptidase. J. Mol. Biol. 359, 533–538 (2006).
pubmed: 16647082 doi: 10.1016/j.jmb.2006.03.014
Erdemli, S. B. et al. Targeting the cell wall of Mycobacterium tuberculosis: structure and mechanism of L,D-transpeptidase 2. Structure 20, 2103–2115 (2012).
pubmed: 23103390 pmcid: 3573878 doi: 10.1016/j.str.2012.09.016
Artola-Recolons, C. et al. Structure and cell wall cleavage by modular lytic transglycosylase MltC of Escherichia coli. ACS Chem. Biol. 9, 2058–2066 (2014).
pubmed: 24988330 pmcid: 4168783 doi: 10.1021/cb500439c
Kim, S. J., Chang, J. & Singh, M. Peptidoglycan architecture of gram-positive bacteria by solid-state NMR. Biochim Biophys. Acta 1848, 350–362 (2015).
pubmed: 24915020 doi: 10.1016/j.bbamem.2014.05.031
Thunnissen, A. M. et al. Doughnut-shaped structure of a bacterial muramidase revealed by X-ray crystallography. Nature 367, 750–753 (1994).
pubmed: 8107871 doi: 10.1038/367750a0
Cho, H., Uehara, T. & Bernhardt, T. G. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159, 1300–1311 (2014).
pubmed: 25480295 pmcid: 4258230 doi: 10.1016/j.cell.2014.11.017
Lee, M. et al. Reactions of all Escherichia coli lytic transglycosylases with bacterial cell wall. J. Am. Chem. Soc. 135, 3311–3314 (2013).
pubmed: 23421439 pmcid: 3645847 doi: 10.1021/ja309036q
de Pedro, M. A. & Cava, F. Structural constraints and dynamics of bacterial cell wall architecture. Front. Microbiol. 6, 449 (2015).
pubmed: 26005443 pmcid: 4424881 doi: 10.3389/fmicb.2015.00449
Brown, P. J. et al. Polar growth in the Alphaproteobacterial order Rhizobiales. Proc. Natl Acad. Sci. USA 109, 1697–1701 (2012).
pubmed: 22307633 pmcid: 3277149 doi: 10.1073/pnas.1114476109
Lavollay, M. et al. The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by L,D-transpeptidation. J. Bacteriol. 190, 4360–4366 (2008).
pubmed: 18408028 pmcid: 2446752 doi: 10.1128/JB.00239-08
Lisboa, J. et al. A Secreted NlpC/P60 Endopeptidase from Photobacterium damselae Subsp. piscicida cleaves the peptidoglycan of potentially competing bacteria. mSphere 6 (2021).
Zeng, X. & Lin, J. Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Front. Microbiol. 4, 128 (2013).
pubmed: 23734147 pmcid: 3660660 doi: 10.3389/fmicb.2013.00128
Hernandez, S. B. et al. Peptidoglycan editing in non-proliferating intracellular Salmonella as source of interference with immune signaling. PLoS Pathog. 18, e1010241 (2022).
pubmed: 35077524 pmcid: 8815878 doi: 10.1371/journal.ppat.1010241
Aliashkevich, A. et al. Essentiality of LD-Transpeptidation in Agrobacterium tumefaciens. bioRxiv https://doi.org/10.1101/2024.06.21.600065 (2024).
Bernal-Cabas, M., Ayala, J. A. & Raivio, T. L. The Cpx envelope stress response modifies peptidoglycan cross-linking via the L,D-transpeptidase LdtD and the novel protein YgaU. J. Bacteriol. 197, 603–614 (2015).
pubmed: 25422305 pmcid: 4285979 doi: 10.1128/JB.02449-14
Pisabarro, A. G., de Pedro, M. A. & Vazquez, D. Structural modifications in the peptidoglycan of Escherichia coli associated with changes in the state of growth of the culture. J. Bacteriol. 161, 238–242 (1985).
pubmed: 3881387 pmcid: 214862 doi: 10.1128/jb.161.1.238-242.1985
Kuru, E. et al. Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorus predation. Nat. Microbiol. 2, 1648–1657 (2017).
pubmed: 28974693 pmcid: 5705579 doi: 10.1038/s41564-017-0029-y
Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).
pubmed: 7608087 pmcid: 177145 doi: 10.1128/jb.177.14.4121-4130.1995
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. methods 9, 671–675 (2012).
pubmed: 22930834 pmcid: 5554542 doi: 10.1038/nmeth.2089
Ducret, A., Quardokus, E. M. & Brun, Y. V. MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. Nat. Microbiol. 1, 16077 (2016).
pubmed: 27572972 pmcid: 5010025 doi: 10.1038/nmicrobiol.2016.77
Hernandez, S. B., et al. Genome-wide peptidoglycan profiling of Vibrio cholerae. bioRxiv https://doi.org/10.1101/2022.08.25.505259 (2022).
Alvarez, L., Cordier, B., Van Teeffelen, S. & Cava, F. Analysis of gram-negative bacteria peptidoglycan by ultra-performance liquid chromatography. Bio Protoc. 10, e3780 (2020).
pubmed: 33659436 pmcid: 7842696 doi: 10.21769/BioProtoc.3780
Kumar, K., Espaillat, A. & Cava, F. PG-Metrics: a chemometric-based approach for classifying bacterial peptidoglycan data sets and uncovering their subjacent chemical variability. PloS one 12, e0186197 (2017).
pubmed: 29040278 pmcid: 5645090 doi: 10.1371/journal.pone.0186197
Vigouroux, A. et al. Class-A penicillin binding proteins do not contribute to cell shape but repair cell-wall defects. eLife 9 https://doi.org/10.7554/eLife.51998 (2020).
Hernandez, S. B., Dorr, T., Waldor, M. K. & Cava, F. Modulation of peptidoglycan synthesis by recycled cell wall tetrapeptides. Cell Rep. 31, 107578 (2020).
pubmed: 32348759 pmcid: 7395960 doi: 10.1016/j.celrep.2020.107578
Alvarez, L., Hernandez, S. B., de Pedro, M. A. & Cava, F. Ultra-sensitive, high-resolution liquid chromatography methods for the high-throughput quantitative analysis of bacterial cell wall chemistry and structure. Methods Mol. Biol. 1440, 11–27 (2016).
pubmed: 27311661 doi: 10.1007/978-1-4939-3676-2_2
Maffei, E. et al. Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection. PLoS Biol. 19, e3001424 (2021).
pubmed: 34784345 pmcid: 8594841 doi: 10.1371/journal.pbio.3001424
UniProt, C. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res 51, D523–D531 (2023).
doi: 10.1093/nar/gkac1052
Wang, J. et al. The conserved domain database in 2023. Nucleic Acids Res 51, D384–D388 (2023).
pubmed: 36477806 doi: 10.1093/nar/gkac1096
Fortier, L. C. & Moineau, S. Phage production and maintenance of stocks, including expected stock lifetimes. Methods Mol. Biol. 501, 203–219 (2009).
pubmed: 19066823 doi: 10.1007/978-1-60327-164-6_19
Lech, K. & Brent, R. Plating lambda phage to generate plaques. Current protocols in molecular biology Chapter 1, Unit1 11 https://doi.org/10.1002/0471142727.mb0111s13 (2001).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2016).

Auteurs

Laura Alvarez (L)

Department of Molecular Biology, Umeå University, Umeå, Sweden.

Sara B Hernandez (SB)

Department of Molecular Biology, Umeå University, Umeå, Sweden.
Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain.

Gabriel Torrens (G)

Department of Molecular Biology, Umeå University, Umeå, Sweden.

Anna I Weaver (AI)

Department of Microbiology, Cornell University, Ithaca, New York, USA.
Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA.
Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.

Tobias Dörr (T)

Department of Microbiology, Cornell University, Ithaca, New York, USA.
Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA.
Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA.

Felipe Cava (F)

Department of Molecular Biology, Umeå University, Umeå, Sweden. felipe.cava@umu.se.
Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden. felipe.cava@umu.se.
The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden. felipe.cava@umu.se.
Science for Life Laboratory (SciLifeLab), Umeå University, Umeå, Sweden. felipe.cava@umu.se.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Female Biofilms Animals Lactobacillus Mice

Two codependent routes lead to high-level MRSA.

Abimbola Feyisara Adedeji-Olulana, Katarzyna Wacnik, Lucia Lafage et al.
1.00
Methicillin-Resistant Staphylococcus aureus Penicillin-Binding Proteins Peptidoglycan Bacterial Proteins Anti-Bacterial Agents
Host Specificity Bacteriophages Genomics Algorithms Escherichia coli

Classifications MeSH