β-glucans, SAM, and GSH fluctuations in barley anther tissue culture conditions affect regenerants' DNA methylation and GPRE.
β-glucans
Anther culture
Barley
DNA methylation
DNA sequence
GSH
Green plant regeneration efficiency
SAM
Journal
BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807
Informations de publication
Date de publication:
12 Sep 2024
12 Sep 2024
Historique:
received:
09
06
2024
accepted:
05
09
2024
medline:
12
9
2024
pubmed:
12
9
2024
entrez:
11
9
2024
Statut:
epublish
Résumé
Microspore embryogenesis is a process that produces doubled haploids in tissue culture environments and is widely used in cereal plants. The efficient production of green regenerants requires stresses that could be sensed at the level of glycolysis, followed by the Krebs cycle and electron transfer chain. The latter can be affected by Cu(II) ion concentration in the induction media acting as cofactors of biochemical reactions, indirectly influencing the production of glutathione (GSH) and S-adenosyl-L-methionine (SAM) and thereby affecting epigenetic mechanisms involving DNA methylation (demethylation-DM, de novo methylation-DNM). The conclusions mentioned were acquired from research on triticale regenerants, but there is no similar research on barley. In this way, the study looks at how DNM, DM, Cu(II), SAM, GSH, and β-glucan affect the ability of green plant regeneration efficiency (GPRE). The experiment involved spring barley regenerants obtained through anther culture. Nine variants (trials) of induction media were created by adding copper (CuSO We can conclude that in vitro tissue culture conditions affect biochemical levels, DNA methylation changes, and GPRE. Increasing Cu(II) concentration in the IM impacts the metabolism and DNA methylation, elevating GPRE. Thus, changing Cu(II) concentration in the IM is fair to expect to boost GPRE.
Sections du résumé
BACKGROUND
BACKGROUND
Microspore embryogenesis is a process that produces doubled haploids in tissue culture environments and is widely used in cereal plants. The efficient production of green regenerants requires stresses that could be sensed at the level of glycolysis, followed by the Krebs cycle and electron transfer chain. The latter can be affected by Cu(II) ion concentration in the induction media acting as cofactors of biochemical reactions, indirectly influencing the production of glutathione (GSH) and S-adenosyl-L-methionine (SAM) and thereby affecting epigenetic mechanisms involving DNA methylation (demethylation-DM, de novo methylation-DNM). The conclusions mentioned were acquired from research on triticale regenerants, but there is no similar research on barley. In this way, the study looks at how DNM, DM, Cu(II), SAM, GSH, and β-glucan affect the ability of green plant regeneration efficiency (GPRE).
RESULTS
RESULTS
The experiment involved spring barley regenerants obtained through anther culture. Nine variants (trials) of induction media were created by adding copper (CuSO
CONCLUSIONS
CONCLUSIONS
We can conclude that in vitro tissue culture conditions affect biochemical levels, DNA methylation changes, and GPRE. Increasing Cu(II) concentration in the IM impacts the metabolism and DNA methylation, elevating GPRE. Thus, changing Cu(II) concentration in the IM is fair to expect to boost GPRE.
Identifiants
pubmed: 39261760
doi: 10.1186/s12870-024-05572-w
pii: 10.1186/s12870-024-05572-w
doi:
Substances chimiques
Glutathione
GAN16C9B8O
beta-Glucans
0
S-Adenosylmethionine
7LP2MPO46S
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
853Informations de copyright
© 2024. The Author(s).
Références
Zohary D, Hopf M, Weiss E. Domestication of Plants in the old world: the origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin. Oxford: Oxford University Press; 2012.
doi: 10.1093/acprof:osobl/9780199549061.001.0001
Badea A, Wijekoon C. Benefits of Barley Grain in Animal and Human Diets. In: Aakash Kumar G, editor. Cereal Grains. Rijeka: IntechOpen; 2021. Ch. 5.
Rani H, Bhardwaj RD. Quality attributes for barley malt: “The backbone of beer.” J Food Sci. 2021;86:3322–40.
pubmed: 34287897
doi: 10.1111/1750-3841.15858
Balcerek M, Pielech-Przybylska K, Strąk E, Patelski P, Dziekońska U. Comparison of fermentation results and quality of the agricultural distillates obtained by application of commercial amylolytic preparations and cereal malts. Eur Food Res Technol. 2016;242:321–35.
doi: 10.1007/s00217-015-2542-7
Kasha KJ, Subrahmanyam NC, Ali A. Effect of gibberellic acid treatment, and nutrient supply through detached tillers, upon haploid frequency in barley. Theor Appl Genet. 1978;51:169–75.
pubmed: 24317748
doi: 10.1007/BF00273142
Clapham D. Haploid Hordeum plants from anthers in vitro. Zeitschrift für Pflanzenzuechtung. 1973;69:142–55.
Ziauddin A, Simion E, Kasha K. Improved plant regeneration from shed microspore culture in barley (Hordeum vulgare L.) cv. Igri. Plant Cell Rep. 1990;9:69–72.
pubmed: 24226432
doi: 10.1007/BF00231551
Devaux P, Kasha KJ. Overview of barley doubled haploid production. In: Touraev A, Forester BP, Jain SM, editors. Advances in haploid production in higher plants. Dordrecht: Springer; 2009. p. 47–63.
doi: 10.1007/978-1-4020-8854-4_3
Weyen J. Barley and wheat doubled haploids in breeding. In: Touraev A, Forster BP, Jain M, editors. Advances in haploid production in higher plants: Springer Dordrecht; 2009. p. 179–88.
Patial M, Chauhan R, Chaudhary HK, Pramanick KK, Shukla AK, Kumar V, Verma RPS. Au-courant and novel technologies for efficient doubled haploid development in barley (Hordeum vulgare L.). Crit Rev Biotechnol. 2023;43:575–93.
pubmed: 35435095
doi: 10.1080/07388551.2022.2050181
Evans DA, Sharp WR, Medina-Filho HP. Somaclonal and gametoclonal variation. Am J Bot. 1984;71:759–74.
doi: 10.1002/j.1537-2197.1984.tb14141.x
Machczyńska J, Orłowska R, Mańkowski DR, Zimny J, Bednarek PT. DNA methylation changes in triticale due to in vitro culture plant regeneration and consecutive reproduction. Plant Cell, Tissue Organ Cult. 2014;119:289–99.
doi: 10.1007/s11240-014-0533-1
Machczyńska J, Zimny J, Bednarek P. Tissue culture-induced genetic and epigenetic variation in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927) regenerants. Plant Mol Biol. 2015;89:279–92.
pubmed: 26337939
pmcid: 4579263
doi: 10.1007/s11103-015-0368-0
Orłowska R, Machczyńska J, Oleszczuk S, Zimny J, Bednarek PT. DNA methylation changes and TE activity induced in tissue cultures of barley (Hordeum vulgare L.). J Biol Res (Thessaloniki, Greece). 2016;23:19–19.
doi: 10.1186/s40709-016-0056-5
Bednarek PT, Orłowska R, Koebner RM, Zimny J. Quantification of the tissue-culture induced variation in barley (Hordeum vulgare L.). BMC Plant Biol. 2007;7:10.
pubmed: 17335560
pmcid: 1819380
doi: 10.1186/1471-2229-7-10
Orłowska R, Bednarek PT. Precise evaluation of tissue culture-induced variation during optimisation of in vitro regeneration regime in barley. Plant Mol Biol. 2020;103:33–50.
pubmed: 32048207
pmcid: 7170832
doi: 10.1007/s11103-020-00973-5
Ullrich SE, Edmiston JM, Kleinhofs A, Kudrna DA, Maatougui MEH. Evaluation of somaclonal variation in barley. Cereal Research Communications. 1991;19:245–60.
Breiman A, Rotem-Abarbanell D. Somaclonal variation in barley (Hordeum vulgare L.). In: Bajaj YPS, editor. In somaclonal variation in crop improvement I. Berlin, Heidelberg: Springer Berlin Heidelberg; 1990. p. 352–75.
Li JC, Choo TM, Ho KM, Falk DE, Blatt R. Barley somaclones associated with high yield or resistance to powdery mildew. Euphytica. 2001;121:349–56.
doi: 10.1023/A:1012087705402
Smulders MJM, de Klerk GJ. Epigenetics in plant tissue culture. Plant Growth Regul. 2011;63:137–46.
doi: 10.1007/s10725-010-9531-4
Bednarek PT, Orłowska R. Plant tissue culture environment as a switch-key of (epi)genetic changes. Plant Cell Tiss Organ Cult (PCTOC). 2020;140:245–57.
doi: 10.1007/s11240-019-01724-1
Alfalahi AO, Hussein ZT, Khalofah A, Sadder MT, Qasem JR, Al-Khayri JM, Jain SM, Almehemdi AF. Epigenetic variation as a new plant breeding tool: a review. J King Saud Univ - Science. 2022;34:102302.
doi: 10.1016/j.jksus.2022.102302
Li J, Zhang Q, Wang Z, Liu Q. The roles of epigenetic regulators in plant regeneration: Exploring patterns amidst complex conditions. Plant Physiol. 2024;194:2022–38.
pubmed: 38290051
pmcid: 10980418
doi: 10.1093/plphys/kiae042
Ngezahayo F, Dong Y, Liu B. Somaclonal variation at the nucleotide sequence level in rice (Oryza sativa L.) as revealed by RAPD and ISSR markers, and by pairwise sequence analysis. J Appl Genet. 2007;48:329–36.
pubmed: 17998589
doi: 10.1007/BF03195229
Zayed EM, Ghonaim MM, Attya AM, Morsi NA, Hussein KA. IRAP-PCR technique for determining the biodiversity between Egyptian barley cultivars. Egypt J Bot. 2022;62:359–70.
de la Puente R, González AI, Ruiz ML, Polanco C. Somaclonal variation in rye (Secale cereale L.) analyzed using polymorphic and sequenced AFLP markers. In Vitro Cell Dev Biol - Plant. 2008;44:419–26.
doi: 10.1007/s11627-008-9152-z
Brown PTH, Göbel E, Lörz H. RFLP analysis of Zea mays callus cultures and their regenerated plants. Theor Appl Genet. 1991;81:227–32.
pubmed: 24221207
doi: 10.1007/BF00215727
Tiwari A, Mishra N, Tripathi S, Lal M, Singh R, Sharma M. Assessment of genetic stability in micropropagated population of sugarcane variety CoS 07250 through SSR markers. Vegetos Soc Plant Res. 2011;24:75–81.
Brown PTH, Kyozuka J, Sukekiyo Y, Kimura Y, Shimamoto K, Lörz H. Molecular changes in protoplast-derived rice plants. Mol Gen Genet. 1990;223:324–8.
pubmed: 1979143
doi: 10.1007/BF00265070
Kaeppler SM, Phillips RL. Tissue culture-induced DNA methylation variation in maize. Proc Natl Acad Sci USA. 1993;90:8773–6.
pubmed: 8415605
pmcid: 47442
doi: 10.1073/pnas.90.19.8773
Pachota KA, Orłowska R. Effect of copper and silver ions on sequence and DNA methylation changes in triticale regenerants gained via somatic embryogenesis. J Appl Genet. 2022;63:663–75.
pubmed: 35984629
pmcid: 9637072
doi: 10.1007/s13353-022-00717-9
Baranek M, Cechova J, Kovacs T, Eichmeier A, Wang S, Raddova J, Necas T, Ye X. Use of combined MSAP and NGS techniques to identify differentially methylated regions in somaclones: a case study of two stable Somatic Wheat Mutants. PLoS ONE. 2016;11: e0165749.
pubmed: 27792769
pmcid: 5085084
doi: 10.1371/journal.pone.0165749
Orłowska R, Zimny J, Zebrowski J, Androsiuk P, Bednarek PT. An insight into tissue culture-induced variation origin shared between anther culture-derived triticale regenerants. BMC Plant Biol. 2024;24:43.
pubmed: 38200422
pmcid: 10782687
doi: 10.1186/s12870-023-04679-w
Bednarek PT, Zebrowski J, Orłowska R. Exploring the biochemical origin of DNA sequence variation in barley plants regenerated via in vitro anther culture. Int J Mol Sci. 2020;21:5770.
pubmed: 32796744
pmcid: 7461140
doi: 10.3390/ijms21165770
Bednarek PT, Orłowska R. Time of in vitro anther culture may moderate action of copper and silver Ions that affect the relationship between DNA methylation change and the yield of barley green regenerants. Plants-Basel. 2020;9:1064.
pubmed: 32825181
pmcid: 7570150
doi: 10.3390/plants9091064
Orłowska R, Pachota KA, Androsiuk P, Bednarek PT. Triticale green plant regeneration is due to DNA methylation and sequence changes affecting distinct sequence contexts in the presence of copper ions in induction medium. Cells. 2022;11:84.
doi: 10.3390/cells11010084
Orłowska R, Zebrowski J, Dynkowska WM, Androsiuk P, Bednarek PT. Metabolomic changes as key factors of green plant regeneration efficiency of triticale in vitro anther culture. Cells. 2023;12:163.
doi: 10.3390/cells12010163
Berthomieu C, Hienerwadel R. Fourier transform infrared (FTIR) spectroscopy. Photosynth Res. 2009;101:157–70.
pubmed: 19513810
doi: 10.1007/s11120-009-9439-x
Fuliaş A, Ledeţi I, Vlase G, Popoiu C, Hegheş A, Bilanin M, Vlase T, Gheorgheosu D, Craina M, Ardelean S, et al. Thermal behaviour of procaine and benzocaine Part II: compatibility study with some pharmaceutical excipients used in solid dosage forms. Chem Cent J. 2013;7:140.
pubmed: 23962059
pmcid: 4015284
doi: 10.1186/1752-153X-7-140
Lahlali R, Jiang Y, Kumar S, Karunakaran C, Liu X, Borondics F, et al. ATR–FTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance. Front Plant Sci. 2014;5:747.
pubmed: 25566312
pmcid: 4273626
doi: 10.3389/fpls.2014.00747
Butler HJ, McAinsh MR, Adams S, Martin FL. Application of vibrational spectroscopy techniques to non-destructively monitor plant health and development. Anal Methods. 2015;7:4059–70.
doi: 10.1039/C5AY00377F
Pérez-Rodríguez M, Horák-Terra I, Rodríguez-Lado L, Martínez Cortizas A. Modelling mercury accumulation in minerogenic peat combining FTIR-ATR spectroscopy and partial least squares (PLS). Spectrochim Acta Part A Mol Biomol Spectrosc. 2016;168:65–72.
doi: 10.1016/j.saa.2016.05.052
Sharma S, Uttam KN. Investigation of the manganese stress on wheat plant by attenuated total reflectance Fourier transform infrared spectroscopy. Spectrosc Lett. 2016;49:520–8.
doi: 10.1080/00387010.2016.1212897
Immonen S, Anttila H. Cold pretreatment to enhance green plant regeneration from rye anther culture. Plant Cell, Tissue Organ Cult. 1999;57:121–7.
doi: 10.1023/A:1006381516632
Ma R, Guo Y-D, Pulli S. Comparison of anther and microspore culture in the embryogenesis and regeneration of rye (Secale cereale). Plant Cell, Tissue Organ Cult. 2004;76:147–57.
doi: 10.1023/B:TICU.0000007294.68389.ed
Zieliński K, Krzewska M, Żur I, Juzoń K, Kopeć P, Nowicka A, Moravčiková J, Skrzypek E, Dubas E. The effect of glutathione and mannitol on androgenesis in anther and isolated microspore cultures of rye (Secale cereale L.). Plant Cell Tissue Organ Cult. 2020;140:577–92.
doi: 10.1007/s11240-019-01754-9
Żur I, Dubas E, Krzewska M, Janowiak F. Current insights into hormonal regulation of microspore embryogenesis. Front Plant Sci. 2015;6:424.
pubmed: 26113852
pmcid: 4462098
Guo YD, Pulli S. Isolated microspore culture and plant regeneration in rye (Secale cereale L.). Plant Cell Rep. 2000;19:875–80.
pubmed: 30754923
doi: 10.1007/s002990000194
Immonen S, Anttila H. Media composition and anther plating for production of androgenetic green plants from cultivated rye (Secale cereale L.). J Plant Physiol. 2000;156:204–10.
doi: 10.1016/S0176-1617(00)80307-7
Bednarek PT, Orłowska R, Mańkowski DR, Zimny J, Kowalczyk K, Nowak M, et al. Glutathione and copper ions as critical factors of green plant regeneration efficiency of triticale in vitro anther culture. Front Plant Sci. 2022;13:926305.
Orłowska R, Zebrowski J, Zimny J, Androsiuk P, Bednarek PT. S-Adenosyl-L-Methionine and Cu(II) impact green plant regeneration efficiency. Cells. 2022;11:2700.
pubmed: 36078107
pmcid: 9454820
doi: 10.3390/cells11172700
Roulin S, Buchala AJ, Fincher GB. Induction of (1→3,1→4)-β-D-glucan hydrolases in leaves of dark-incubated barley seedlings. Planta. 2002;215:51–9.
pubmed: 12012241
doi: 10.1007/s00425-001-0721-1
Watanabe M, Chiba Y, Hirai MY. Metabolism and regulatory functions of O-Acetylserine, S-Adenosylmethionine, Homocysteine, and Serine in plant development and environmental responses. Front Plant Sci. 2021;12:643403.
Mäkinen K, De S. The significance of methionine cycle enzymes in plant virus infections. Curr Opin Plant Biol. 2019;50:67–75.
pubmed: 30959442
doi: 10.1016/j.pbi.2019.03.002
Orłowska R, Pachota KA, Machczyńska J, Niedziela A, Makowska K, Zimny J, Bednarek PT. Improvement of anther cultures conditions using the Taguchi method in three cereal crops. Electron J Biotechnol. 2020;43:8–15.
doi: 10.1016/j.ejbt.2019.11.001
Chu CC. The N6 medium and its applications to anther culture of cereal crops. In: Hu R, editor. In proceedings of symposium on plant tissue culture. Peking: Science Press; 1978. p. 43–50.
Kumlehn J, Serazetdinova L, Hensel G, Becker D, Loerz H. Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol J. 2006;4:251–61.
pubmed: 17177801
doi: 10.1111/j.1467-7652.2005.00178.x
Bednarek PT, Orłowska R, Niedziela A. A relative quantitative Methylation-Sensitive Amplified Polymorphism (MSAP) method for the analysis of abiotic stress. BMC Plant Biol. 2017;17:79.
pubmed: 28431570
pmcid: 5399823
doi: 10.1186/s12870-017-1028-0
Hanson BA. ChemoSpec: exploratory chemometrics for spectroscopy. In: R package version 4.4.97. Greencastle, IN, USA: DePauw University; 2017. Available online: https://CRAN.R-project.org/package=ChemoSpec . Accessed 12 December 2017 .
R Core Team. R. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2021. Available online: http://www.R-project.org . Accessed 31 March 2021 .
Addinsoft: XLSTAT statistical and data analysis solution. 2020.1.1 edition. New York, USA; 2022. https://www.xlstat.com .
Pereira WJ, Pappas MdCR, Grattapaglia D, Pappas GJ Jr. A cost-effective approach to DNA methylation detection by Methyl Sensitive DArT sequencing. PLOS ONE. 2020;15:e0233800.
pubmed: 32497070
pmcid: 7272069
doi: 10.1371/journal.pone.0233800
Matsuda S, Sato M, Ohno S, Yang SJ, Doi M, Hosokawa M. Cutting leaves and plant growth regulator application enhance somaclonal variation induced by transposition of VGs1 of Saintpaulia. J Jpn Soc Horticultural Sci. 2014;83:308–16.
doi: 10.2503/jjshs1.MI-009
Bednarek PT, Pachota KA, Dynkowska WM, Machczynska J, Orłowska R. Understanding In Vitro Tissue Culture-Induced Variation Phenomenon in Microspore System. Int J Mol Sci. 2021;22:7546.
pubmed: 34299165
pmcid: 8304781
doi: 10.3390/ijms22147546
Martin JL, McMillan FM. SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol. 2002;12:783–93.
pubmed: 12504684
doi: 10.1016/S0959-440X(02)00391-3
Schubert HL, Blumenthal RM, Cheng X. Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci. 2003;28:329–35.
pubmed: 12826405
pmcid: 2758044
doi: 10.1016/S0968-0004(03)00090-2
Fontecave M, Atta M, Mulliez E. S-adenosylmethionine: nothing goes to waste. Trends Biochem Sci. 2004;29:243–9.
pubmed: 15130560
doi: 10.1016/j.tibs.2004.03.007
Sbodio JI, Snyder SH, Paul BD. Regulators of the transsulfuration pathway. Br J Pharmacol. 2019;176:583–93.
pubmed: 30007014
doi: 10.1111/bph.14446
Roeder S, Dreschler K, Wirtz M, Cristescu SM, van Harren FJM, Hell R, Piechulla B. SAM levels, gene expression of SAM synthetase, methionine synthase and ACC oxidase, and ethylene emission from N. suaveolens flowers. Plant Mol Biol. 2009;70:535–46.
pubmed: 19396585
pmcid: 2697359
doi: 10.1007/s11103-009-9490-1
Chen D, Shao Q, Yin L, Younis A, Zheng B. Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci. 2019;9:1945–1945.
pubmed: 30687350
pmcid: 6335389
doi: 10.3389/fpls.2018.01945
Foyer CH, Noctor G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell. 2005;17:1866–75.
pubmed: 15987996
pmcid: 1167537
doi: 10.1105/tpc.105.033589
Foyer CH, Noctor G. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell Environ. 2005;28:1056–71.
doi: 10.1111/j.1365-3040.2005.01327.x
Hasanuzzaman M, Nahar K, Anee TI, Fujita M. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiology and molecular biology of plants : an international journal of functional plant biology. 2017;23:249–68.
pubmed: 28461715
pmcid: 5391355
doi: 10.1007/s12298-017-0422-2
Żur I, Dubas E, Krzewska M, Zieliński K, Fodor J, Janowiak F. Glutathione provides antioxidative defence and promotes microspore-derived embryo development in isolated microspore cultures of triticale (× Triticosecale Wittm.). Plant Cell Rep. 2019;38:195–209.
pubmed: 30499031
doi: 10.1007/s00299-018-2362-x
Kudełko K, Gaj MD. Glutathione (GSH) induces embryogenic response in in vitro cultured explants of Arabidopsis thaliana via auxin-related mechanism. Plant Growth Regul. 2019;89:25–36.
doi: 10.1007/s10725-019-00514-1
Burton RA, Fincher GB. (1,3;1,4)-β-D-Glucans in cell walls of the poaceae, lower plants, and fungi: a tale of two linkages. Mol Plant. 2009;2:873–82.
pubmed: 19825664
doi: 10.1093/mp/ssp063
Gibeaut DM, Pauly M, Bacic A, Fincher GB. Changes in cell wall polysaccharides in developing barley (Hordeum vulgare) coleoptiles. Planta. 2005;221:729–38.
pubmed: 15824908
doi: 10.1007/s00425-005-1481-0
Fernie AR, Carrari F, Sweetlove LJ. Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol. 2004;7:254–61.
pubmed: 15134745
doi: 10.1016/j.pbi.2004.03.007
Hasanuzzaman M, Bhuyan M, Anee TI, Parvin K, Nahar K, Mahmud JA, et al. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants (Basel). 2019;8:681.
Yan G, Li X, Yang J, Li Z, Hou J, Rao B, Hu Y, Ma L, Wang Y. Cost-effective production of ATP and S-Adenosylmethionine using engineered multidomain scaffold proteins. Biomolecules. 2021;11:1706.
pubmed: 34827704
pmcid: 8616028
doi: 10.3390/biom11111706
Cohu CM, Pilon M. Cell biology of copper. In: Hell R, Mendel RR, editors. In cell biology of metals and nutrients. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 55–74.
doi: 10.1007/978-3-642-10613-2_3
Christou C, Agapiou A, Kokkinofta R. Use of FTIR spectroscopy and chemometrics for the classification of carobs origin. J Adv Res. 2018;10:1–8.
pubmed: 30046470
doi: 10.1016/j.jare.2017.12.001
Beil S, Schamberger A, Naumann W, Machill S, van Pée KH. Determination of the degree of N-acetylation (DA) of chitin and chitosan in the presence of water by first derivative ATR FTIR spectroscopy. Carbohydr Polym. 2012;87:117–22.
pubmed: 34662939
doi: 10.1016/j.carbpol.2011.07.025
Rieppo L, Saarakkala S, Närhi T, Helminen HJ, Jurvelin JS, Rieppo J. Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage. Osteoarthritis Cartilage. 2012;20:451–9.
pubmed: 22321720
doi: 10.1016/j.joca.2012.01.010
Lindermayr C, Rudolf EE, Durner J, Groth M. Interactions between metabolism and chromatin in plant models. Mol Metab. 2020;38:100951.
pubmed: 32199818
pmcid: 7300381
doi: 10.1016/j.molmet.2020.01.015
Orłowska R. Triticale doubled haploid plant regeneration factors linked by structural equation modeling. J Appl Genet. 2022;63:677–90.
pubmed: 36018540
pmcid: 9637073
doi: 10.1007/s13353-022-00719-7