Structure and mechanism of a phosphotransferase system glucose transporter.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
12 Sep 2024
Historique:
received: 19 03 2024
accepted: 26 08 2024
medline: 13 9 2024
pubmed: 13 9 2024
entrez: 12 9 2024
Statut: epublish

Résumé

Glucose is the primary source of energy for many organisms and is efficiently taken up by bacteria through a dedicated transport system that exhibits high specificity. In Escherichia coli, the glucose-specific transporter IICB

Identifiants

pubmed: 39266522
doi: 10.1038/s41467-024-52100-3
pii: 10.1038/s41467-024-52100-3
doi:

Substances chimiques

Glucose IY9XDZ35W2
Escherichia coli Proteins 0
Phosphoenolpyruvate Sugar Phosphotransferase System EC 2.7.1.-
Glucose Transport Proteins, Facilitative 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7992

Subventions

Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : 184980
Organisme : UniBern Forschungsstiftung (Bern University Research Foundation)
ID : 8/2023
Organisme : Universität Bern (University of Bern)
ID : N/A

Informations de copyright

© 2024. The Author(s).

Références

Jeckelmann, J.-M. & Erni, B. Transporters of glucose and other carbohydrates in bacteria. Pflug. Arch. 472, 1129–1153 (2020).
doi: 10.1007/s00424-020-02379-0
Siebold, C., Flükiger, K., Beutler, R. & Erni, B. Carbohydrate transporters of the bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS). FEBS Lett. 504, 104–111 (2001).
pubmed: 11532441 doi: 10.1016/S0014-5793(01)02705-3
Deutscher, J. et al. The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol. Mol. Biol. Rev. 78, 231–256 (2014).
pubmed: 24847021 pmcid: 4054256 doi: 10.1128/MMBR.00001-14
Deutscher, J., Francke, C. & Postma, P. W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70, 939–1031 (2006).
pubmed: 17158705 pmcid: 1698508 doi: 10.1128/MMBR.00024-06
Saier, M. H. Jr The bacterial phosphotransferase system: new frontiers 50 years after its discovery. J. Mol. Microbiol. Biotechnol. 25, 73–78 (2015).
pubmed: 26159069
Neumann, S., Grosse, K. & Sourjik, V. Chemotactic signaling via carbohydrate phosphotransferase systems in Escherichia coli. Proc. Natl Acad. Sci. USA 109, 12159–12164 (2012).
pubmed: 22778402 pmcid: 3409764 doi: 10.1073/pnas.1205307109
Galinier, A. & Deutscher, J. Sophisticated regulation of transcriptional factors by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J. Mol. Biol. 429, 773–789 (2017).
pubmed: 28202392 doi: 10.1016/j.jmb.2017.02.006
Choe, M., Park, Y. H., Lee, C. R., Kim, Y. R. & Seok, Y. J. The general PTS component HPr determines the preference for glucose over mannitol. Sci. Rep. 7, 43431 (2017).
pubmed: 28225088 pmcid: 5320558 doi: 10.1038/srep43431
Houot, L., Chang, S., Pickering, B. S., Absalon, C. & Watnick, P. I. The phosphoenolpyruvate phosphotransferase system regulates Vibrio cholerae biofilm formation through multiple independent pathways. J. Bacteriol. 192, 3055–3067 (2010).
pubmed: 20400550 pmcid: 2901703 doi: 10.1128/JB.00213-10
Snyder, H., Kellogg, S. L., Skarda, L. M., Little, J. L. & Kristich, C. J. Nutritional control of antibiotic resistance via an interface between the phosphotransferase system and a two-component signaling system. Antimicrob. Agents Chemother. 58, 957–965 (2014).
pubmed: 24277024 pmcid: 3910890 doi: 10.1128/AAC.01919-13
Jiang, M. et al. Ampicillin-controlled glucose metabolism manipulates the transition from tolerance to resistance in bacteria. Sci. Adv. 9, eade8582 (2023).
pubmed: 36888710 pmcid: 9995076 doi: 10.1126/sciadv.ade8582
Lim, S., Seo, H. S., Jeong, J. & Yoon, H. Understanding the multifaceted roles of the phosphoenolpyruvate: phosphotransferase system in regulation of Salmonella virulence using a mutant defective in ptsI and crr expression. Microbiol. Res. 223-225, 63–71 (2019).
pubmed: 31178053 doi: 10.1016/j.micres.2019.04.002
Tchieu, J. H., Norris, V., Edwards, J. S. & Saier, M. H. Jr The complete phosphotransferase system in Escherichia coli. J. Mol. Microbiol. Biotechnol. 3, 329–346 (2001).
pubmed: 11361063
Kundig, W., Ghosh, S. & Roseman, S. Phosphate bound to histidine in a protein as an intermediate in a novel phosphotransferase system. Proc. Natl Acad. Sci. USA 52, 1067–1074 (1964).
pubmed: 14224387 pmcid: 300396 doi: 10.1073/pnas.52.4.1067
Lanz, R. & Erni, B. The glucose transporter of the Escherichia coli phosphotransferase system. Mutant analysis of the invariant arginines, histidines, and domain linker. J. Biol. Chem. 273, 12239–12243 (1998).
pubmed: 9575173 doi: 10.1074/jbc.273.20.12239
Nam, T. W. et al. Analyses of Mlc-IIBGlc interaction and a plausible molecular mechanism of Mlc inactivation by membrane sequestration. Proc. Natl Acad. Sci. USA 105, 3751–3756 (2008).
pubmed: 18319344 pmcid: 2268834 doi: 10.1073/pnas.0709295105
Saier, M. H. Jr et al. The transporter classification database (TCDB): 2021 update. Nucleic Acids Res. 49, D461–D467 (2021).
pubmed: 33170213 doi: 10.1093/nar/gkaa1004
McCoy, J. G. et al. The structure of a sugar transporter of the glucose EIIC superfamily provides insight into the elevator mechanism of membrane transport. Structure 24, 956–964 (2016).
pubmed: 27161976 pmcid: 4899283 doi: 10.1016/j.str.2016.04.003
Ren, Z. et al. Structure of an EIIC sugar transporter trapped in an inward-facing conformation. Proc. Natl Acad. Sci. USA 115, 5962–5967 (2018).
pubmed: 29784777 pmcid: 6003338 doi: 10.1073/pnas.1800647115
Cao, Y. et al. Crystal structure of a phosphorylation-coupled saccharide transporter. Nature 473, 50–54 (2011).
pubmed: 21471968 pmcid: 3201810 doi: 10.1038/nature09939
Zurbriggen, A., Schneider, P., Bahler, P., Baumann, U. & Erni, B. Expression, purification, crystallization and preliminary X-ray analysis of the EIIC
pubmed: 20516600 pmcid: 2882770 doi: 10.1107/S1744309110013102
Kalbermatter, D. et al. 2D and 3D crystallization of the wild-type IIC domain of the glucose PTS transporter from Escherichia coli. J. Struct. Biol. 191, 376–380 (2015).
pubmed: 26260226 doi: 10.1016/j.jsb.2015.08.003
Kalbermatter, D. et al. Electron crystallography reveals that substrate release from the PTS IIC glucose transporter is coupled to a subtle conformational change. J. Struct. Biol. 199, 39–45 (2017).
pubmed: 28522226 doi: 10.1016/j.jsb.2017.05.005
Jeckelmann, J.-M. et al. Structure and function of the glucose PTS transporter from Escherichia coli. J. Struct. Biol. 176, 395–403 (2011).
pubmed: 21996078 doi: 10.1016/j.jsb.2011.09.012
Garaeva, A. A. & Slotboom, D. J. Elevator-type mechanisms of membrane transport. Biochem. Soc. Trans. 48, 1227–1241 (2020).
pubmed: 32369548 pmcid: 7329351 doi: 10.1042/BST20200290
Krishnamurthy, H., Piscitelli, C. L. & Gouaux, E. Unlocking the molecular secrets of sodium-coupled transporters. Nature 459, 347–355 (2009).
pubmed: 19458710 pmcid: 6821466 doi: 10.1038/nature08143
Smart, O. S., Goodfellow, J. M. & Wallace, B. A. The pore dimensions of gramicidin A. Biophys. J. 65, 2455–2460 (1993).
pubmed: 7508762 pmcid: 1225986 doi: 10.1016/S0006-3495(93)81293-1
Ilgü, H. et al. Variation of the detergent-binding capacity and phospholipid content of membrane proteins when purified in different detergents. Biophys. J. 106, 1660–1670 (2014).
pubmed: 24739165 pmcid: 4008799 doi: 10.1016/j.bpj.2014.02.024
Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006–0008 (2006).
pmcid: 1681482 doi: 10.1038/msb4100050
Ritchie, T. K. et al. Chapter 11 - reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol. 464, 211–231 (2009).
pubmed: 19903557 pmcid: 4196316 doi: 10.1016/S0076-6879(09)64011-8
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473 doi: 10.1038/nmeth.4169
Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).
pubmed: 33257830 doi: 10.1038/s41592-020-00990-8
Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).
pubmed: 34267316 pmcid: 8282847 doi: 10.1038/s42003-021-02399-1
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844 pmcid: 8371605 doi: 10.1038/s41586-021-03819-2
Pettersen, E. F. et al. UCSF chimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
pubmed: 32881101 doi: 10.1002/pro.3943
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
pubmed: 20383002 pmcid: 2852313 doi: 10.1107/S0907444910007493
Adams, P. D. et al. PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
pubmed: 20124702 pmcid: 2815670 doi: 10.1107/S0907444909052925
Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).
pubmed: 18351591 doi: 10.1002/jcc.20945
Lee, J. et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413 (2016).
pubmed: 26631602 doi: 10.1021/acs.jctc.5b00935
Wu, E. L. et al. CHARMM-GUI membrane builder toward realistic biological membrane simulations. J. Comput. Chem. 35, 1997–2004 (2014).
pubmed: 25130509 pmcid: 4165794 doi: 10.1002/jcc.23702
Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J. Chem. Theory Comput. 8, 3257–3273 (2012).
pubmed: 23341755 pmcid: 3549273 doi: 10.1021/ct300400x
Guvench, O. et al. CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. J. Chem. Theory Comput. 7, 3162–3180 (2011).
pubmed: 22125473 pmcid: 3224046 doi: 10.1021/ct200328p
Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).
pubmed: 27819658 doi: 10.1038/nmeth.4067
Yu, Y. et al. CHARMM36 lipid force field with explicit treatment of long-range dispersion: parametrization and validation for phosphatidylethanolamine, phosphatidylglycerol, and ether lipids. J. Chem. Theory Comput. 17, 1581–1595 (2021).
pubmed: 33620194 pmcid: 8130185 doi: 10.1021/acs.jctc.0c01327
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).
doi: 10.1063/1.445869
Eastman, P. et al. OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 13, e1005659 (2017).
pubmed: 28746339 pmcid: 5549999 doi: 10.1371/journal.pcbi.1005659
Chow, K.-H. & Ferguson, D. M. Isothermal-isobaric molecular dynamics simulations with Monte Carlo volume sampling. Comput. Phys. Commun. 91, 283–289 (1995).
doi: 10.1016/0010-4655(95)00059-O
Balusek, C. et al. Accelerating membrane simulations with hydrogen mass repartitioning. J. Chem. Theory Comput. 15, 4673–4686 (2019).
pubmed: 31265271 pmcid: 7271963 doi: 10.1021/acs.jctc.9b00160
Sahil, M., Sarkar, S. & Mondal, J. Long-time-step molecular dynamics can retard simulation of protein-ligand recognition process. Biophys. J. 122, 802–816 (2023).
pubmed: 36726313 pmcid: 10027446 doi: 10.1016/j.bpj.2023.01.036
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33-38–27-38 (1996).
doi: 10.1016/0263-7855(96)00018-5
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
pubmed: 17681537 doi: 10.1016/j.jmb.2007.05.022
Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012).
pubmed: 21890895 doi: 10.1093/nar/gkr703
Sehnal D. et al. MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J. Cheminform. 5, 39 (2013).

Auteurs

Patrick Roth (P)

Institute of Biochemistry and Molecular Medicine, Medical Faculty, University of Bern, Bern, Switzerland.

Jean-Marc Jeckelmann (JM)

Institute of Biochemistry and Molecular Medicine, Medical Faculty, University of Bern, Bern, Switzerland.

Inken Fender (I)

Institute of Biochemistry and Molecular Medicine, Medical Faculty, University of Bern, Bern, Switzerland.

Zöhre Ucurum (Z)

Institute of Biochemistry and Molecular Medicine, Medical Faculty, University of Bern, Bern, Switzerland.

Thomas Lemmin (T)

Institute of Biochemistry and Molecular Medicine, Medical Faculty, University of Bern, Bern, Switzerland.

Dimitrios Fotiadis (D)

Institute of Biochemistry and Molecular Medicine, Medical Faculty, University of Bern, Bern, Switzerland. dimitrios.fotiadis@unibe.ch.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria

Conservation of the cooling agent binding pocket within the TRPM subfamily.

Kate Huffer, Matthew C S Denley, Elisabeth V Oskoui et al.
1.00
TRPM Cation Channels Animals Binding Sites Mice Pyrimidinones
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans

Classifications MeSH