Structure and mechanism of a phosphotransferase system glucose transporter.
Cryoelectron Microscopy
Molecular Dynamics Simulation
Escherichia coli
/ metabolism
Glucose
/ metabolism
Escherichia coli Proteins
/ metabolism
Phosphoenolpyruvate Sugar Phosphotransferase System
/ metabolism
Binding Sites
Glucose Transport Proteins, Facilitative
/ metabolism
Protein Conformation
Biological Transport
Protein Binding
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
12 Sep 2024
12 Sep 2024
Historique:
received:
19
03
2024
accepted:
26
08
2024
medline:
13
9
2024
pubmed:
13
9
2024
entrez:
12
9
2024
Statut:
epublish
Résumé
Glucose is the primary source of energy for many organisms and is efficiently taken up by bacteria through a dedicated transport system that exhibits high specificity. In Escherichia coli, the glucose-specific transporter IICB
Identifiants
pubmed: 39266522
doi: 10.1038/s41467-024-52100-3
pii: 10.1038/s41467-024-52100-3
doi:
Substances chimiques
Glucose
IY9XDZ35W2
Escherichia coli Proteins
0
Phosphoenolpyruvate Sugar Phosphotransferase System
EC 2.7.1.-
Glucose Transport Proteins, Facilitative
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7992Subventions
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : 184980
Organisme : UniBern Forschungsstiftung (Bern University Research Foundation)
ID : 8/2023
Organisme : Universität Bern (University of Bern)
ID : N/A
Informations de copyright
© 2024. The Author(s).
Références
Jeckelmann, J.-M. & Erni, B. Transporters of glucose and other carbohydrates in bacteria. Pflug. Arch. 472, 1129–1153 (2020).
doi: 10.1007/s00424-020-02379-0
Siebold, C., Flükiger, K., Beutler, R. & Erni, B. Carbohydrate transporters of the bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS). FEBS Lett. 504, 104–111 (2001).
pubmed: 11532441
doi: 10.1016/S0014-5793(01)02705-3
Deutscher, J. et al. The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol. Mol. Biol. Rev. 78, 231–256 (2014).
pubmed: 24847021
pmcid: 4054256
doi: 10.1128/MMBR.00001-14
Deutscher, J., Francke, C. & Postma, P. W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70, 939–1031 (2006).
pubmed: 17158705
pmcid: 1698508
doi: 10.1128/MMBR.00024-06
Saier, M. H. Jr The bacterial phosphotransferase system: new frontiers 50 years after its discovery. J. Mol. Microbiol. Biotechnol. 25, 73–78 (2015).
pubmed: 26159069
Neumann, S., Grosse, K. & Sourjik, V. Chemotactic signaling via carbohydrate phosphotransferase systems in Escherichia coli. Proc. Natl Acad. Sci. USA 109, 12159–12164 (2012).
pubmed: 22778402
pmcid: 3409764
doi: 10.1073/pnas.1205307109
Galinier, A. & Deutscher, J. Sophisticated regulation of transcriptional factors by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J. Mol. Biol. 429, 773–789 (2017).
pubmed: 28202392
doi: 10.1016/j.jmb.2017.02.006
Choe, M., Park, Y. H., Lee, C. R., Kim, Y. R. & Seok, Y. J. The general PTS component HPr determines the preference for glucose over mannitol. Sci. Rep. 7, 43431 (2017).
pubmed: 28225088
pmcid: 5320558
doi: 10.1038/srep43431
Houot, L., Chang, S., Pickering, B. S., Absalon, C. & Watnick, P. I. The phosphoenolpyruvate phosphotransferase system regulates Vibrio cholerae biofilm formation through multiple independent pathways. J. Bacteriol. 192, 3055–3067 (2010).
pubmed: 20400550
pmcid: 2901703
doi: 10.1128/JB.00213-10
Snyder, H., Kellogg, S. L., Skarda, L. M., Little, J. L. & Kristich, C. J. Nutritional control of antibiotic resistance via an interface between the phosphotransferase system and a two-component signaling system. Antimicrob. Agents Chemother. 58, 957–965 (2014).
pubmed: 24277024
pmcid: 3910890
doi: 10.1128/AAC.01919-13
Jiang, M. et al. Ampicillin-controlled glucose metabolism manipulates the transition from tolerance to resistance in bacteria. Sci. Adv. 9, eade8582 (2023).
pubmed: 36888710
pmcid: 9995076
doi: 10.1126/sciadv.ade8582
Lim, S., Seo, H. S., Jeong, J. & Yoon, H. Understanding the multifaceted roles of the phosphoenolpyruvate: phosphotransferase system in regulation of Salmonella virulence using a mutant defective in ptsI and crr expression. Microbiol. Res. 223-225, 63–71 (2019).
pubmed: 31178053
doi: 10.1016/j.micres.2019.04.002
Tchieu, J. H., Norris, V., Edwards, J. S. & Saier, M. H. Jr The complete phosphotransferase system in Escherichia coli. J. Mol. Microbiol. Biotechnol. 3, 329–346 (2001).
pubmed: 11361063
Kundig, W., Ghosh, S. & Roseman, S. Phosphate bound to histidine in a protein as an intermediate in a novel phosphotransferase system. Proc. Natl Acad. Sci. USA 52, 1067–1074 (1964).
pubmed: 14224387
pmcid: 300396
doi: 10.1073/pnas.52.4.1067
Lanz, R. & Erni, B. The glucose transporter of the Escherichia coli phosphotransferase system. Mutant analysis of the invariant arginines, histidines, and domain linker. J. Biol. Chem. 273, 12239–12243 (1998).
pubmed: 9575173
doi: 10.1074/jbc.273.20.12239
Nam, T. W. et al. Analyses of Mlc-IIBGlc interaction and a plausible molecular mechanism of Mlc inactivation by membrane sequestration. Proc. Natl Acad. Sci. USA 105, 3751–3756 (2008).
pubmed: 18319344
pmcid: 2268834
doi: 10.1073/pnas.0709295105
Saier, M. H. Jr et al. The transporter classification database (TCDB): 2021 update. Nucleic Acids Res. 49, D461–D467 (2021).
pubmed: 33170213
doi: 10.1093/nar/gkaa1004
McCoy, J. G. et al. The structure of a sugar transporter of the glucose EIIC superfamily provides insight into the elevator mechanism of membrane transport. Structure 24, 956–964 (2016).
pubmed: 27161976
pmcid: 4899283
doi: 10.1016/j.str.2016.04.003
Ren, Z. et al. Structure of an EIIC sugar transporter trapped in an inward-facing conformation. Proc. Natl Acad. Sci. USA 115, 5962–5967 (2018).
pubmed: 29784777
pmcid: 6003338
doi: 10.1073/pnas.1800647115
Cao, Y. et al. Crystal structure of a phosphorylation-coupled saccharide transporter. Nature 473, 50–54 (2011).
pubmed: 21471968
pmcid: 3201810
doi: 10.1038/nature09939
Zurbriggen, A., Schneider, P., Bahler, P., Baumann, U. & Erni, B. Expression, purification, crystallization and preliminary X-ray analysis of the EIIC
pubmed: 20516600
pmcid: 2882770
doi: 10.1107/S1744309110013102
Kalbermatter, D. et al. 2D and 3D crystallization of the wild-type IIC domain of the glucose PTS transporter from Escherichia coli. J. Struct. Biol. 191, 376–380 (2015).
pubmed: 26260226
doi: 10.1016/j.jsb.2015.08.003
Kalbermatter, D. et al. Electron crystallography reveals that substrate release from the PTS IIC glucose transporter is coupled to a subtle conformational change. J. Struct. Biol. 199, 39–45 (2017).
pubmed: 28522226
doi: 10.1016/j.jsb.2017.05.005
Jeckelmann, J.-M. et al. Structure and function of the glucose PTS transporter from Escherichia coli. J. Struct. Biol. 176, 395–403 (2011).
pubmed: 21996078
doi: 10.1016/j.jsb.2011.09.012
Garaeva, A. A. & Slotboom, D. J. Elevator-type mechanisms of membrane transport. Biochem. Soc. Trans. 48, 1227–1241 (2020).
pubmed: 32369548
pmcid: 7329351
doi: 10.1042/BST20200290
Krishnamurthy, H., Piscitelli, C. L. & Gouaux, E. Unlocking the molecular secrets of sodium-coupled transporters. Nature 459, 347–355 (2009).
pubmed: 19458710
pmcid: 6821466
doi: 10.1038/nature08143
Smart, O. S., Goodfellow, J. M. & Wallace, B. A. The pore dimensions of gramicidin A. Biophys. J. 65, 2455–2460 (1993).
pubmed: 7508762
pmcid: 1225986
doi: 10.1016/S0006-3495(93)81293-1
Ilgü, H. et al. Variation of the detergent-binding capacity and phospholipid content of membrane proteins when purified in different detergents. Biophys. J. 106, 1660–1670 (2014).
pubmed: 24739165
pmcid: 4008799
doi: 10.1016/j.bpj.2014.02.024
Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006–0008 (2006).
pmcid: 1681482
doi: 10.1038/msb4100050
Ritchie, T. K. et al. Chapter 11 - reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol. 464, 211–231 (2009).
pubmed: 19903557
pmcid: 4196316
doi: 10.1016/S0076-6879(09)64011-8
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473
doi: 10.1038/nmeth.4169
Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).
pubmed: 33257830
doi: 10.1038/s41592-020-00990-8
Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).
pubmed: 34267316
pmcid: 8282847
doi: 10.1038/s42003-021-02399-1
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844
pmcid: 8371605
doi: 10.1038/s41586-021-03819-2
Pettersen, E. F. et al. UCSF chimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
pubmed: 32881101
doi: 10.1002/pro.3943
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
pubmed: 20383002
pmcid: 2852313
doi: 10.1107/S0907444910007493
Adams, P. D. et al. PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
pubmed: 20124702
pmcid: 2815670
doi: 10.1107/S0907444909052925
Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).
pubmed: 18351591
doi: 10.1002/jcc.20945
Lee, J. et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413 (2016).
pubmed: 26631602
doi: 10.1021/acs.jctc.5b00935
Wu, E. L. et al. CHARMM-GUI membrane builder toward realistic biological membrane simulations. J. Comput. Chem. 35, 1997–2004 (2014).
pubmed: 25130509
pmcid: 4165794
doi: 10.1002/jcc.23702
Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J. Chem. Theory Comput. 8, 3257–3273 (2012).
pubmed: 23341755
pmcid: 3549273
doi: 10.1021/ct300400x
Guvench, O. et al. CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. J. Chem. Theory Comput. 7, 3162–3180 (2011).
pubmed: 22125473
pmcid: 3224046
doi: 10.1021/ct200328p
Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).
pubmed: 27819658
doi: 10.1038/nmeth.4067
Yu, Y. et al. CHARMM36 lipid force field with explicit treatment of long-range dispersion: parametrization and validation for phosphatidylethanolamine, phosphatidylglycerol, and ether lipids. J. Chem. Theory Comput. 17, 1581–1595 (2021).
pubmed: 33620194
pmcid: 8130185
doi: 10.1021/acs.jctc.0c01327
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).
doi: 10.1063/1.445869
Eastman, P. et al. OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 13, e1005659 (2017).
pubmed: 28746339
pmcid: 5549999
doi: 10.1371/journal.pcbi.1005659
Chow, K.-H. & Ferguson, D. M. Isothermal-isobaric molecular dynamics simulations with Monte Carlo volume sampling. Comput. Phys. Commun. 91, 283–289 (1995).
doi: 10.1016/0010-4655(95)00059-O
Balusek, C. et al. Accelerating membrane simulations with hydrogen mass repartitioning. J. Chem. Theory Comput. 15, 4673–4686 (2019).
pubmed: 31265271
pmcid: 7271963
doi: 10.1021/acs.jctc.9b00160
Sahil, M., Sarkar, S. & Mondal, J. Long-time-step molecular dynamics can retard simulation of protein-ligand recognition process. Biophys. J. 122, 802–816 (2023).
pubmed: 36726313
pmcid: 10027446
doi: 10.1016/j.bpj.2023.01.036
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33-38–27-38 (1996).
doi: 10.1016/0263-7855(96)00018-5
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
pubmed: 17681537
doi: 10.1016/j.jmb.2007.05.022
Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012).
pubmed: 21890895
doi: 10.1093/nar/gkr703
Sehnal D. et al. MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J. Cheminform. 5, 39 (2013).