Cellular origin and clonal evolution of human dedifferentiated liposarcoma.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
12 Sep 2024
Historique:
received: 13 12 2023
accepted: 23 08 2024
medline: 13 9 2024
pubmed: 13 9 2024
entrez: 12 9 2024
Statut: epublish

Résumé

Dedifferentiated liposarcoma (DDLPS) is the most frequent high-grade soft tissue sarcoma subtype. It is characterized by a component of undifferentiated tumor cells coexisting with a component of well-differentiated adipocytic tumor cells. Both dedifferentiated (DD) and well-differentiated (WD) components exhibit MDM2 amplification, however their cellular origin remains elusive. Using single-cell RNA sequencing, DNA sequencing, in situ multiplex immunofluorescence and functional assays in paired WD and DD components from primary DDLPS tumors, we characterize the cellular heterogeneity of DDLPS tumor and micro-environment. We identify a population of tumor adipocyte stem cells (ASC) showing striking similarities with adipocyte stromal progenitors found in white adipose tissue. We show that tumor ASC harbor the ancestral genomic alterations of WD and DD components, suggesting that both derive from these progenitors following clonal evolution. Last, we show that DD tumor cells keep important biological properties of ASC including pluripotency and that their adipogenic properties are inhibited by a TGF-β-high immunosuppressive tumor micro-environment.

Identifiants

pubmed: 39266532
doi: 10.1038/s41467-024-52067-1
pii: 10.1038/s41467-024-52067-1
doi:

Substances chimiques

Proto-Oncogene Proteins c-mdm2 EC 2.3.2.27
MDM2 protein, human EC 2.3.2.27
Transforming Growth Factor beta 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7941

Subventions

Organisme : Fondation ARC pour la Recherche sur le Cancer (ARC Foundation for Cancer Research)
ID : ARCPJA2021060004026
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-10-EQPX-03

Informations de copyright

© 2024. The Author(s).

Références

Lee, A. T. J., Thway, K., Huang, P. H. & Jones, R. L. Clinical and molecular spectrum of liposarcoma. J. Clin. Oncol. 36, 151–159 (2018).
pubmed: 29220294 doi: 10.1200/JCO.2017.74.9598
Board, W.C.o.T.E. WHO Classification of Tumours: Soft Tissue and Bone Tumours, (International Agency for Research on Cancer, 2020).
de Pinieux, G. et al. Nationwide incidence of sarcomas and connective tissue tumors of intermediate malignancy over four years using an expert pathology review network. PLoS ONE 16, e0246958 (2021).
pubmed: 33630918 pmcid: 7906477 doi: 10.1371/journal.pone.0246958
Coindre, J. M., Pedeutour, F. & Aurias, A. Well-differentiated and dedifferentiated liposarcomas. Virchows Arch. 456, 167–179 (2010).
pubmed: 19688222 doi: 10.1007/s00428-009-0815-x
Gronchi, A. et al. Soft tissue and visceral sarcomas: ESMO-EURACAN-GENTURIS Clinical Practice Guidelines for diagnosis, treatment and follow-up(☆). Ann. Oncol. 32, 1348–1365 (2021).
pubmed: 34303806 doi: 10.1016/j.annonc.2021.07.006
Blay, J. Y. et al. Surgery in reference centers improves survival of sarcoma patients: a nationwide study. Ann. Oncol. 30, 1143–1153 (2019).
pubmed: 31081028 pmcid: 6637376 doi: 10.1093/annonc/mdz124
Callegaro, D. et al. Development and external validation of two nomograms to predict overall survival and occurrence of distant metastases in adults after surgical resection of localised soft-tissue sarcomas of the extremities: a retrospective analysis. Lancet Oncol. 17, 671–680 (2016).
pubmed: 27068860 doi: 10.1016/S1470-2045(16)00010-3
Gronchi, A. et al. Variability in patterns of recurrence after resection of primary retroperitoneal sarcoma (RPS): A report on 1007 patients from the multi-institutional collaborative RPS working group. Ann. Surg. 263, 1002–1009 (2016).
pubmed: 26727100 doi: 10.1097/SLA.0000000000001447
Jones, R. L., Fisher, C., Al-Muderis, O. & Judson, I. R. Differential sensitivity of liposarcoma subtypes to chemotherapy. Eur. J. Cancer 41, 2853–2860 (2005).
pubmed: 16289617 doi: 10.1016/j.ejca.2005.07.023
Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).
pubmed: 31942077 doi: 10.1038/s41586-019-1906-8
Italiano, A. et al. Pembrolizumab in soft-tissue sarcomas with tertiary lymphoid structures: a phase 2 PEMBROSARC trial cohort. Nat. Med. 28, 1199–1206 (2022).
pubmed: 35618839 doi: 10.1038/s41591-022-01821-3
Thway, K. Well-differentiated liposarcoma and dedifferentiated liposarcoma: An updated review. Semin. Diagn. Pathol. 36, 112–121 (2019).
pubmed: 30852045 doi: 10.1053/j.semdp.2019.02.006
Dalal, K. M., Kattan, M. W., Antonescu, C. R., Brennan, M. F. & Singer, S. Subtype specific prognostic nomogram for patients with primary liposarcoma of the retroperitoneum, extremity, or trunk. Ann. Surg. 244, 381–391 (2006).
pubmed: 16926564 pmcid: 1856537 doi: 10.1097/01.sla.0000234795.98607.00
Micci, F., Teixeira, M. R., Bjerkehagen, B. & Heim, S. Characterization of supernumerary rings and giant marker chromosomes in well-differentiated lipomatous tumors by a combination of G-banding, CGH, M-FISH, and chromosome- and locus-specific FISH. Cytogenet. Genome Res. 97, 13–19 (2002).
pubmed: 12438732 doi: 10.1159/000064038
Louis-Brennetot, C. et al. The CDKN2A/CDKN2B/CDK4/CCND1 pathway is pivotal in well-differentiated and dedifferentiated liposarcoma oncogenesis: an analysis of 104 tumors. Genes Chromosomes Cancer 50, 896–907 (2011).
pubmed: 21910158 doi: 10.1002/gcc.20909
Garsed, D. W. et al. The architecture and evolution of cancer neochromosomes. Cancer Cell 26, 653–667 (2014).
pubmed: 25517748 doi: 10.1016/j.ccell.2014.09.010
Momand, J., Zambetti, G. P., Olson, D. C., George, D. & Levine, A. J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69, 1237–1245 (1992).
pubmed: 1535557 doi: 10.1016/0092-8674(92)90644-R
Cisse, M. Y. et al. Targeting MDM2-dependent serine metabolism as a therapeutic strategy for liposarcoma. Sci. Transl. Med. 12, https://doi.org/10.1126/scitranslmed.aay2163 (2020).
Barretina, J. et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat. Genet. 42, 715–721 (2010).
pubmed: 20601955 pmcid: 2911503 doi: 10.1038/ng.619
Cancer Genome Atlas Research Network Electronic address, e.d.s.c. & cancer genome atlas research, N. comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell 171, 950–965.e28 (2017).
doi: 10.1016/j.cell.2017.10.014
Chibon, F. et al. ASK1 (MAP3K5) as a potential therapeutic target in malignant fibrous histiocytomas with 12q14-q15 and 6q23 amplifications. Genes Chromosomes Cancer 40, 32–37 (2004).
pubmed: 15034865 doi: 10.1002/gcc.20012
Mariani, O. et al. JUN oncogene amplification and overexpression block adipocytic differentiation in highly aggressive sarcomas. Cancer Cell 11, 361–374 (2007).
pubmed: 17418412 doi: 10.1016/j.ccr.2007.02.007
Amin-Mansour, A. et al. Genomic evolutionary patterns of Leiomyosarcoma and Liposarcoma. Clin. Cancer Res. 25, 5135–5142 (2019).
pubmed: 31164371 pmcid: 7341441 doi: 10.1158/1078-0432.CCR-19-0271
Mereu, E. et al. Benchmarking single-cell RNA-sequencing protocols for cell atlas projects. Nat. Biotechnol. 38, 747–755 (2020).
pubmed: 32518403 doi: 10.1038/s41587-020-0469-4
Zhou, Y. et al. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat. Commun. 11, 6322 (2020).
pubmed: 33303760 pmcid: 7730477 doi: 10.1038/s41467-020-20059-6
Wei, Y. et al. Single-cell analysis and functional characterization uncover the stem cell hierarchies and developmental origins of rhabdomyosarcoma. Nat. Cancer 3, 961–975 (2022).
pubmed: 35982179 pmcid: 10430812 doi: 10.1038/s43018-022-00414-w
Patel, A. G. et al. The myogenesis program drives clonal selection and drug resistance in rhabdomyosarcoma. Dev. Cell 57, 1226–1240.e8 (2022).
pubmed: 35483358 pmcid: 9133224 doi: 10.1016/j.devcel.2022.04.003
Baslan, T. & Hicks, J. Unravelling biology and shifting paradigms in cancer with single-cell sequencing. Nat. Rev. Cancer 17, 557–569 (2017).
pubmed: 28835719 doi: 10.1038/nrc.2017.58
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).
pubmed: 31740819 pmcid: 6884693 doi: 10.1038/s41592-019-0619-0
Schroeder, B. A. et al. CD4+ T cell and M2 macrophage infiltration predict dedifferentiated liposarcoma patient outcomes. J. Immunother. Cancer 9, https://doi.org/10.1136/jitc-2021-002812 (2021).
Dancsok, A. R. et al. Tumor-associated macrophages and macrophage-related immune checkpoint expression in sarcomas. Oncoimmunology 9, 1747340 (2020).
pubmed: 32313727 pmcid: 7153829 doi: 10.1080/2162402X.2020.1747340
Alaluf, E. et al. Heme oxygenase-1 orchestrates the immunosuppressive program of tumor-associated macrophages. JCI Insight 5, https://doi.org/10.1172/jci.insight.133929 (2020).
Katzenelenbogen, Y. et al. Coupled scRNA-Seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer. Cell 182, 872–885 (2020).
pubmed: 32783915 doi: 10.1016/j.cell.2020.06.032
Merrick, D. et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science 364, https://doi.org/10.1126/science.aav2501 (2019).
Emont, M. P. et al. A single-cell atlas of human and mouse white adipose tissue. Nature 603, 926–933 (2022).
pubmed: 35296864 pmcid: 9504827 doi: 10.1038/s41586-022-04518-2
Schwalie, P. C. et al. A stromal cell population that inhibits adipogenesis in mammalian fat depots. Nature 559, 103–108 (2018).
pubmed: 29925944 doi: 10.1038/s41586-018-0226-8
Kannan, S., Lock, I., Ozenberger, B. B. & Jones, K. B. Genetic drivers and cells of origin in sarcomagenesis. J. Pathol. 254, 474–493 (2021).
pubmed: 33428234 doi: 10.1002/path.5617
Cassinelli, G., Pasquali, S. & Lanzi, C. Beyond targeting amplified MDM2 and CDK4 in well differentiated and dedifferentiated liposarcomas: From promise and clinical applications towards identification of progression drivers. Front. Oncol. 12, 965261 (2022).
pubmed: 36119484 pmcid: 9479065 doi: 10.3389/fonc.2022.965261
Hirata, M. et al. Integrated exome and RNA sequencing of dedifferentiated liposarcoma. Nat. Commun. 10, 5683 (2019).
pubmed: 31831742 pmcid: 6908635 doi: 10.1038/s41467-019-13286-z
Kanojia, D. et al. Genomic landscape of liposarcoma. Oncotarget 6, 42429–42444 (2015).
pubmed: 26643872 pmcid: 4767443 doi: 10.18632/oncotarget.6464
Hofvander, J. et al. Different patterns of clonal evolution among different sarcoma subtypes followed for up to 25 years. Nat. Commun. 9, 3662 (2018).
pubmed: 30201954 pmcid: 6131146 doi: 10.1038/s41467-018-06098-0
Liu, W. et al. Integrated genomic and transcriptomic analysis revealed mutation patterns of de-differentiated liposarcoma and leiomyosarcoma. BMC Cancer 20, 1035 (2020).
pubmed: 33115433 pmcid: 7592539 doi: 10.1186/s12885-020-07456-2
Rodeheffer, M. S., Birsoy, K. & Friedman, J. M. Identification of white adipocyte progenitor cells in vivo. Cell 135, 240–249 (2008).
pubmed: 18835024 doi: 10.1016/j.cell.2008.09.036
Sanchez-Gurmaches, J. & Guertin, D. A. Adipocyte lineages: tracing back the origins of fat. Biochim. Biophys. Acta 1842, 340–351 (2014).
pubmed: 23747579 doi: 10.1016/j.bbadis.2013.05.027
Ferrero, R., Rainer, P. & Deplancke, B. Toward a consensus view of mammalian adipocyte stem and progenitor cell heterogeneity. Trends Cell Biol. 30, 937–950 (2020).
pubmed: 33148396 doi: 10.1016/j.tcb.2020.09.007
Burl, R. B. et al. Deconstructing adipogenesis induced by beta3-adrenergic receptor activation with single-cell expression profiling. Cell Metab. 28, 300–309 (2018).
pubmed: 29937373 pmcid: 6082711 doi: 10.1016/j.cmet.2018.05.025
Raajendiran, A. et al. Identification of metabolically distinct adipocyte progenitor cells in human adipose tissues. Cell Rep. 27, 1528–1540.e7 (2019).
pubmed: 31042478 doi: 10.1016/j.celrep.2019.04.010
Beird, H. C. et al. Genomic profiling of dedifferentiated liposarcoma compared to matched well-differentiated liposarcoma reveals higher genomic complexity and a common origin. Cold Spring Harb. Mol. Case Stud. 4, https://doi.org/10.1101/mcs.a002386 (2018).
Binh, M. B. et al. Dedifferentiated liposarcomas with divergent myosarcomatous differentiation developed in the internal trunk: a study of 27 cases and comparison to conventional dedifferentiated liposarcomas and leiomyosarcomas. Am. J. Surg. Pathol. 31, 1557–1566 (2007).
pubmed: 17895758 doi: 10.1097/PAS.0b013e31804b4109
Dantey, K., Schoedel, K., Yergiyev, O., Bartlett, D. & Rao, U. N. M. Correlation of histological grade of dedifferentiation with clinical outcome in 55 patients with dedifferentiated liposarcomas. Hum. Pathol. 66, 86–92 (2017).
pubmed: 28300575 doi: 10.1016/j.humpath.2017.02.015
Evans, H. L., Khurana, K. K., Kemp, B. L. & Ayala, A. G. Heterologous elements in the dedifferentiated component of dedifferentiated liposarcoma. Am. J. Surg. Pathol. 18, 1150–1157 (1994).
pubmed: 7943536 doi: 10.1097/00000478-199411000-00009
Matushansky, I. et al. A developmental model of sarcomagenesis defines a differentiation-based classification for liposarcomas. Am. J. Pathol. 172, 1069–1080 (2008).
pubmed: 18310505 pmcid: 2276417 doi: 10.2353/ajpath.2008.070284
Burns, J. et al. The proteomic landscape of soft tissue sarcomas. Nat. Commun. 14, 3834 (2023).
pubmed: 37386008 pmcid: 10310735 doi: 10.1038/s41467-023-39486-2
Grafe, I. et al. TGF-beta Family Signaling in Mesenchymal Differentiation. Cold Spring Harb. Perspect. Biol. 10, https://doi.org/10.1101/cshperspect.a022202 (2018).
Mazzu, Y. Z., Hu, Y., Shen, Y., Tuschl, T. & Singer, S. miR-193b regulates tumorigenesis in liposarcoma cells via PDGFR, TGFbeta, and Wnt signaling. Sci. Rep. 9, 3197 (2019).
pubmed: 30824765 pmcid: 6397171 doi: 10.1038/s41598-019-39560-0

Auteurs

Nadège Gruel (N)

INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France.
Department of Translational Research, Institut Curie Research Center, Paris, France.

Chloé Quignot (C)

INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France.

Laëtitia Lesage (L)

Department of Pathology, Institut Curie Hospital, Paris, France.

Sophie El Zein (S)

Department of Pathology, Institut Curie Hospital, Paris, France.

Sylvie Bonvalot (S)

Department of Surgical Oncology, Institut Curie Hospital, Paris, France.

Dimitri Tzanis (D)

Department of Surgical Oncology, Institut Curie Hospital, Paris, France.

Khadija Ait Rais (K)

Department of Genetics, Institut Curie Hospital, Paris, France.

Fabien Quinquis (F)

Department of Genetics, Institut Curie Hospital, Paris, France.

Bastien Manciot (B)

INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France.

Julien Vibert (J)

INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France.
Drug Development Department, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.

Nadine El Tannir (N)

Medico Scientific Program for Adult sarcomas, Institut Curie Research Center, Paris, France.

Ahmed Dahmani (A)

Laboratory of Preclinical Investigation, Department of translational Research, PSL Research University, Institut Curie Research Center, Paris, France.

Héloïse Derrien (H)

Laboratory of Preclinical Investigation, Department of translational Research, PSL Research University, Institut Curie Research Center, Paris, France.

Didier Decaudin (D)

Laboratory of Preclinical Investigation, Department of translational Research, PSL Research University, Institut Curie Research Center, Paris, France.
Department of Medical Oncology, Institut Curie Hospital, Paris, France.

Ivan Bièche (I)

Department of Genetics, Institut Curie Hospital, Paris, France.

Laura Courtois (L)

Department of Genetics, Institut Curie Hospital, Paris, France.

Odette Mariani (O)

Department of Pathology, Institut Curie Hospital, Paris, France.

Laëtitia K Linares (LK)

INSERM U1194, Metabolism and Sarcoma, Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, Montpellier, France.

Laurie Gayte (L)

INSERM U1194, Metabolism and Sarcoma, Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, Montpellier, France.

Sylvain Baulande (S)

Institut Curie Genomics of Excellence (ICGex) Platform, PSL Research University, Institut Curie, Paris, France.

Joshua J Waterfall (JJ)

Department of Translational Research, Institut Curie Research Center, Paris, France.
INSERM U830, Integrative Functional Genomics of Cancer Lab, PSL Research University, Institut Curie Research Center, Paris, France.

Olivier Delattre (O)

INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France.
Department of Genetics, Institut Curie Hospital, Paris, France.
SIREDO Pediatric Oncology Center, Institut Curie Hospital, Paris, France.

Gaëlle Pierron (G)

Department of Genetics, Institut Curie Hospital, Paris, France.

Sarah Watson (S)

INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France. sarah.watson@curie.fr.
Department of Medical Oncology, Institut Curie Hospital, Paris, France. sarah.watson@curie.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH