From Skin to Gut: Understanding Microbial Diversity in Rana amurensis and R. dybowskii.
Journal
Current microbiology
ISSN: 1432-0991
Titre abrégé: Curr Microbiol
Pays: United States
ID NLM: 7808448
Informations de publication
Date de publication:
13 Sep 2024
13 Sep 2024
Historique:
received:
29
02
2024
accepted:
21
08
2024
medline:
13
9
2024
pubmed:
13
9
2024
entrez:
13
9
2024
Statut:
epublish
Résumé
Amphibians face the threat of decline and extinction, and their health is crucially affected by the microbiota. Their health and ecological adaptability essentially depend on the diverse microbial communities that are shaped by unique host traits and environmental factors. However, there is still limited research on this topic. In this study, cutaneous (C) and gut (G) microbiota in Rana amurensis (A) and R. dybowskii (D) was analyzed through 16S amplicon sequencing. Groups AC and DC significantly differed in alpha diversity, while the gut groups (AG and DG) showed no such differences. Analyses of Bray-Curtis dissimilarity matrix and unweighted UniFrac distances showed significant differences in cutaneous microbiota between groups AC and DC, but not between groups AG and DG. Stochastic processes significantly influenced the assembly of cutaneous and gut microbiota in amphibians, with a notably higher species dispersal rate in the gut. The predominant phyla in the skin of R. amurensis and R. dybowskii were Bacteroidetes and Proteobacteria, respectively, with significant variations in Bacteroidota. Contrarily, the gut microbiota of both species was dominated by Firmicutes, Proteobacteria, and Bacteroidetes, without significant phylum-level differences. Linear discriminant analysis effect size (LEfSe) analysis identified distinct microbial enrichment in each group. Predictive analysis using phylogenetic investigation of communities by reconstruction of unobserved states 2 (PICRUSt2) revealed the significant functional pathways associated with the microbiota, which indicates their potential roles in immune system function, development, regeneration, and response to infectious diseases. This research underscores the critical impact of both host and environmental factors in shaping amphibian microbial ecosystems and emphasizes the need for further studies to explore these complex interactions for conservation efforts.
Identifiants
pubmed: 39269482
doi: 10.1007/s00284-024-03868-6
pii: 10.1007/s00284-024-03868-6
doi:
Substances chimiques
RNA, Ribosomal, 16S
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
354Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Trevelline BK, Fontaine SS, Hartup BK, Kohl KD (1895) Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc R Soc B Biol Sci 2019(286):20182448. https://doi.org/10.1098/rspb.2018.2448
doi: 10.1098/rspb.2018.2448
Jiménez RR, Sommer S (2017) The amphibian microbiome: natural range of variation, pathogenic dysbiosis, and role in conservation. Biodivers Conserv 26(4):763–786. https://doi.org/10.1007/s10531-016-1272-x
doi: 10.1007/s10531-016-1272-x
Leonhardt F, Keller A, Aveces CA, Ernst R (2023) From alien species to alien communities: host- and habitat-associated microbiomes in an alien amphibian. Microb Ecol 86(4):2373–2385. https://doi.org/10.1007/s00248-023-02227-5
doi: 10.1007/s00248-023-02227-5
pubmed: 37233803
pmcid: 10640505
Weitzman CL, Kaestli M, Rose A, Hudson CM, Gibb K, Brown GP, Shine R, Christian K (2023) Geographic variation in bacterial assemblages on cane toad skin is influenced more by local environments than by evolved changes in host traits. Biol Open 12(2):bio059641. https://doi.org/10.1242/bio.059641
doi: 10.1242/bio.059641
pubmed: 36745034
pmcid: 9932784
Kaganer AW, Ossiboff RJ, Keith NI, Schuler KL, Comizzoli P, Hare MP, Fleischer RC, Gratwicke B, Bunting EM (2023) Immune priming prior to pathogen exposure sheds light on the relationship between host, microbiome and pathogen in disease. R Soc Open Sci 10(2):220810. https://doi.org/10.1098/rsos.220810
doi: 10.1098/rsos.220810
pubmed: 36756057
pmcid: 9890126
Cao HW, Shi YP, Wang J, Niu ZY, Wei L, Tian HB, Yu FF, Gao L (2024) The intestinal microbiota and metabolic profiles of Strauchbufo raddei underwent adaptive changes during hibernation. Integr Zool 19(4):612–630. https://doi.org/10.1111/1749-4877.12749
doi: 10.1111/1749-4877.12749
pubmed: 37430430
Liu YT, Zhang SL, Deng HZ, Chen AX, Chai LH (2023) Lead and copper influenced bile acid metabolism by changing intestinal microbiota and activating farnesoid X receptor in Bufo gargarizans. Sci Total Environ 863:160849. https://doi.org/10.1016/j.scitotenv.2022.160849
doi: 10.1016/j.scitotenv.2022.160849
pubmed: 36521604
Patel BK, Patel KH, Huang RY, Lee CN, Moochhala SM (2022) The gut-skin microbiota axis and its role in diabetic wound healing—a review based on current literature. Int J Mol Sci 23(4):2375. https://doi.org/10.3390/ijms23042375
doi: 10.3390/ijms23042375
pubmed: 35216488
pmcid: 8880500
Chai LH, Wang HM, Li XY, Wang HY (2023) Comparison of the characteristics of gut microbiota response to lead in Bufo gargarizans tadpole at different developmental stages. Environ Sci Pollut Res 30(8):20907–20922. https://doi.org/10.1007/s11356-022-23671-9
doi: 10.1007/s11356-022-23671-9
Zhu DQ, Dong WJ, Long XZ, Yang XM, Han XY, Kou YH, Tong Q (2024) Skin ulcers and microbiota in Rana dybowskii: uncovering the role of the gut-skin axis in amphibian health. Aquaculture 585:740724. https://doi.org/10.1016/j.aquaculture.2024.740724
doi: 10.1016/j.aquaculture.2024.740724
Sannejal AD, Divyashree M, Kumar DV, Nithin M, Rai P (2023) Fish microbiome and metagenomics. In: Microbiome of finfish and shellfish. Springer, pp 75–92. https://doi.org/10.1007/978-981-99-0852-3_4
Kolodziejczyk AA, Zheng D, Elinav E (2019) Diet–microbiota interactions and personalized nutrition. Nat Rev Microbiol 17(12):742–753. https://doi.org/10.1038/s41579-019-0256-8
doi: 10.1038/s41579-019-0256-8
pubmed: 31541197
Chang CW, Huang BH, Lin SM, Huang CL, Liao PC (2016) Changes of diet and dominant intestinal microbes in farmland frogs. BMC Microbiol 16:33. https://doi.org/10.1186/s12866-016-0660-4
doi: 10.1186/s12866-016-0660-4
pubmed: 26966006
pmcid: 4785643
Weng FCH, Yang YJ, Wang D (2016) Functional analysis for gut microbes of the brown tree frog (Polypedates megacephalus) in artificial hibernation. BMC Genomics 17:1024. https://doi.org/10.1186/s12864-016-3318-6
doi: 10.1186/s12864-016-3318-6
pubmed: 28155661
pmcid: 5260014
Dagbasi A, Lett AM, Murphy K, Frost G (2020) Understanding the interplay between food structure, intestinal bacterial fermentation and appetite control. Proc Nutr Soc 79(4):514–530. https://doi.org/10.1017/s0029665120006941
doi: 10.1017/s0029665120006941
Antwis RE, Haworth RL, Engelmoer DJ, Ogilvy V, Fidgett AL, Preziosi RF (2014) Ex situ diet influences the bacterial community associated with the skin of red-eyed tree frogs (Agalychnis callidryas). PLoS ONE 9(1):e85563. https://doi.org/10.1371/journal.pone.0085563
doi: 10.1371/journal.pone.0085563
pubmed: 24416427
pmcid: 3887054
Ruff WE, Greiling TM, Kriegel MA (2020) Host-microbiota interactions in immune-mediated diseases. Nat Rev Microbiol 18(9):521–538. https://doi.org/10.1038/s41579-020-0367-2
doi: 10.1038/s41579-020-0367-2
pubmed: 32457482
Mallott EK, Amato KR (2021) Host specificity of the gut microbiome. Nat Rev Microbiol 19(10):639–653. https://doi.org/10.1038/s41579-021-00562-3
doi: 10.1038/s41579-021-00562-3
pubmed: 34045709
Gomaa EZ (2020) Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek 113(12):2019–2040. https://doi.org/10.1007/s10482-020-01474-7
doi: 10.1007/s10482-020-01474-7
pubmed: 33136284
Kueneman J, Bletz M, Becker M, Gratwicke B, Garces OA, Hertz A, Holden WM, Ibanez R, Loudon A, McKenzie V et al (2022) Effects of captivity and rewilding on amphibian skin microbiomes. Biol Conserv 271:109576. https://doi.org/10.1016/j.biocon.2022.109576
doi: 10.1016/j.biocon.2022.109576
Jani AJ, Briggs CJ (2018) Host and aquatic environment shape the amphibian skin microbiome but effects on downstream resistance to the pathogen Batrachochytrium dendrobatidis are variable. Front Microbiol 9:326077. https://doi.org/10.3389/fmicb.2018.00487
doi: 10.3389/fmicb.2018.00487
Tong Q, Cui L-Y, Hu Z-F, Du X-P, Abid HM, Wang H-B (2020) Environmental and host factors shaping the gut microbiota diversity of brown frog Rana dybowskii. Sci Total Environ 741:140142. https://doi.org/10.1016/j.scitotenv.2020.140142
doi: 10.1016/j.scitotenv.2020.140142
pubmed: 32615421
Tong Q, Hu Z-f, Du X-p, Bie J, Wang H-b (2020) Effects of seasonal hibernation on the similarities between the skin microbiota and gut microbiota of an amphibian (Rana dybowskii). Microb Ecol 79(4):898–909. https://doi.org/10.1007/s00248-019-01466-9
doi: 10.1007/s00248-019-01466-9
pubmed: 31820074
Tong Q, Du X-p, Hu Z-f, Cui L-y, Bie J, Zhang Q-z, Xiao J-h, Lin Y, Wang H-b (2019) Comparison of the gut microbiota of Rana amurensis and Rana dybowskii under natural winter fasting conditions. FEMS Microbiol Lett 366(21):fnz241. https://doi.org/10.1093/femsle/fnz241
doi: 10.1093/femsle/fnz241
pubmed: 31778183
Tong Q, Dong W-j, Long X-z, Hu Z-f, Luo Z-w, Guo P, Cui L-y (2023) Effects of fine-scale habitat quality on activity, dormancy, habitat use, and survival after reproduction in Rana dybowskii (Chordata, Amphibia). BMC Zool. https://doi.org/10.1186/s40850-022-00163-4
doi: 10.1186/s40850-022-00163-4
pubmed: 37170169
pmcid: 10127375
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(Database issue):D590–D596. https://doi.org/10.1093/nar/gks1219
doi: 10.1093/nar/gks1219
pubmed: 23193283
Shade A, Handelsman J (2012) Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol 14(1):4–12. https://doi.org/10.1111/j.1462-2920.2011.02585.x
doi: 10.1111/j.1462-2920.2011.02585.x
pubmed: 22004523
Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235. https://doi.org/10.1128/aem.71.12.8228-8235.2005
doi: 10.1128/aem.71.12.8228-8235.2005
pubmed: 16332807
pmcid: 1317376
Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP (2006) Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol 8(4):732–740. https://doi.org/10.1111/j.1462-2920.2005.00956.x
doi: 10.1111/j.1462-2920.2005.00956.x
pubmed: 16584484
Ji P, Rhoads WJ, Edwards MA, Pruden A (2017) Impact of water heater temperature setting and water use frequency on the building plumbing microbiome. ISME J 11(6):1318–1330. https://doi.org/10.1038/ismej.2017.14
doi: 10.1038/ismej.2017.14
pubmed: 28282040
pmcid: 5437349
Zhong Y, Yan W, Zhouping S (2015) Impact of long-term N additions upon coupling between soil microbial community structure and activity, and nutrient-use efficiencies. Soil Biol Biochem 91:151–159. https://doi.org/10.1016/j.soilbio.2015.08.030
doi: 10.1016/j.soilbio.2015.08.030
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40(D1):D109–D114. https://doi.org/10.1093/nar/gkr988
doi: 10.1093/nar/gkr988
pubmed: 22080510
Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821. https://doi.org/10.1038/nbt.2676
doi: 10.1038/nbt.2676
pubmed: 23975157
pmcid: 3819121
Ghosh SK, Wong MK-S, Hyodo S, Goto S, Hamasaki K (2022) Temperature modulation alters the gut and skin microbial profiles of chum salmon (Oncorhynchus keta). Front Mar Sci 9:1027621. https://doi.org/10.3389/fmars.2022.1027621
doi: 10.3389/fmars.2022.1027621
Masi D, Le Roy T, Adriouch S, Clement K (2024) Nourishing the gut: the impact of diet on host-gut microbiota interaction. Curr Opin Clin Nutr Metab Care 27(4):361–371. https://doi.org/10.1097/mco.0000000000001009
doi: 10.1097/mco.0000000000001009
pubmed: 38260940
Bates KA, Clare FC, O’Hanlon S, Bosch J, Brookes L, Hopkins K, McLaughlin EJ, Daniel O, Garner TWJ, Fisher MC et al (2018) Amphibian chytridiomycosis outbreak dynamics are linked with host skin bacterial community structure. Nat Commun 9(1):693. https://doi.org/10.1038/s41467-018-02967-w
doi: 10.1038/s41467-018-02967-w
pubmed: 29449565
pmcid: 5814395
Park J-K, Do Y (2024) Combined effect of seasons and life history in an anuran strengthens the response and relationship between their physiology and gut microbiota. Sci Rep 14(1):10137–10137. https://doi.org/10.1038/s41598-024-60105-7
doi: 10.1038/s41598-024-60105-7
pubmed: 38698108
pmcid: 11066060
Chen Z, Chen JQ, Liu Y, Zhang J, Chen XH, Qu YF (2022) Comparative study on gut microbiota in three Anura frogs from a mountain stream. Ecol Evol 12(4):e8854. https://doi.org/10.1002/ece3.8854
doi: 10.1002/ece3.8854
pubmed: 35475186
pmcid: 9021931
Bieg C, Vasseur D (2024) Interactions between temperature and nutrients determine the population dynamics of primary producers. Ecol Lett 27(1):e14363. https://doi.org/10.1111/ele.14363
doi: 10.1111/ele.14363
pubmed: 38235912
O’Brien AM, Laurich JR, Frederickson ME (2024) Evolutionary consequences of microbiomes for hosts: impacts on host fitness, traits, and heritability. Evolution 78(2):237–252. https://doi.org/10.1093/evolut/qpad183
doi: 10.1093/evolut/qpad183
pubmed: 37828761
Li Z, Lu J, Shi X, Duo L, Smith JLD, Wang T (2024) Competitive interactions and coexistence of sympatric flagship carnivores in Asia. Integr Zool 19(2):183–199. https://doi.org/10.1111/1749-4877.12724
doi: 10.1111/1749-4877.12724
pubmed: 37231642
Scherlach K, Graupner K, Hertweck C (2013) Molecular bacteria-fungi interactions: effects on environment, food, and medicine. In: Gottesman S (ed) Annual review of microbiology, vol 67. pp 375–397. https://doi.org/10.1146/annurev-micro-092412-155702
Friedman M (2017) Chemistry, antimicrobial mechanisms, and antibiotic activities of cinnamaldehyde against pathogenic bacteria in animal feeds and human foods. J Agric Food Chem 65(48):10406–10423. https://doi.org/10.1021/acs.jafc.7b04344
doi: 10.1021/acs.jafc.7b04344
pubmed: 29155570
Stevens EJ, Bates KA, King KC (2021) Host microbiota can facilitate pathogen infection. PLoS Pathog 17(5):e1009514. https://doi.org/10.1371/journal.ppat.1009514
doi: 10.1371/journal.ppat.1009514
pubmed: 33984069
pmcid: 8118302
Zmora N, Suez J, Elinav E (2019) You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol 16(1):35–56. https://doi.org/10.1038/s41575-018-0061-2
doi: 10.1038/s41575-018-0061-2
pubmed: 30262901
Mao L, Gao B, Chang H, Shen H (2024) Interaction and metabolic pathways: elucidating the role of gut microbiota in gestational diabetes mellitus pathogenesis. Metabolites 14(1):43. https://doi.org/10.3390/metabo14010043
doi: 10.3390/metabo14010043
pubmed: 38248846
pmcid: 10819307
Roux E, Nicolas A, Valence F, Siekaniec G, Chuat V, Nicolas J, Le Loir Y, Guedon E (2022) The genomic basis of the Streptococcus thermophilus health-promoting properties. BMC Genomics 23(1):210. https://doi.org/10.1186/s12864-022-08459-y
doi: 10.1186/s12864-022-08459-y
pubmed: 35291951
pmcid: 8925076
Settanni CR, Bibbo S, Ianiro G, Rinninella E, Cintoni M, Mele MC, Cammarota G, Gasbarrini A (2021) Gastrointestinal involvement of autism spectrum disorder: focus on gut microbiota. Expert Rev Gastroenterol Hepatol 15(6):599–622. https://doi.org/10.1080/17474124.2021.1869938
doi: 10.1080/17474124.2021.1869938
pubmed: 33356668
Guo P, Zhang K, Ma X, He P (2020) Clostridium species as probiotics: potentials and challenges. J Anim Sci Biotechnol 11(1):1–10. https://doi.org/10.1186/s40104-019-0402-1
doi: 10.1186/s40104-019-0402-1
Piwowarek K, Lipinska E, Hac-Szymanczuk E, Kieliszek M, Scibisz I (2018) Propionibacterium spp.-source of propionic acid, vitamin B12, and other metabolites important for the industry. Appl Microbiol Biotechnol 102(2):515–538. https://doi.org/10.1007/s00253-017-8616-7
doi: 10.1007/s00253-017-8616-7
pubmed: 29167919
van der Hee B, Wells JM (2021) Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol 29(8):700–712. https://doi.org/10.1016/j.tim.2021.02.001
doi: 10.1016/j.tim.2021.02.001
pubmed: 33674141
Li X, Wang H, Li Y, Chen R, Zhang P, Wang X, Zou Z, Shen X, Roy A, Luo W (2023) Adaptive shifts of the skin and gut microbiomes during metamorphosis of anuran amphibians. https://doi.org/10.21203/rs.3.rs-3327674/v1
Li Q, Chan H, Liu WX, Liu CA, Zhou YF, Huang D, Wang XL, Li XX, Xie C, Liu WYZ et al (2023) Carnobacterium maltaromaticum boosts intestinal vitamin D production to suppress colorectal cancer in female mice. Cancer Cell 41(8):1450–1465. https://doi.org/10.1016/j.ccell.2023.06.011
doi: 10.1016/j.ccell.2023.06.011
pubmed: 37478851
Singh K, Al-Greene N, Verriere T, Piazuelo MB, Allaman MM, Barry D, Gobert AP, Wilson KT (2016) Deletion of the L-arginine transporter solute carrier family 7, member 2 (SLC7A2) results in increased abundance of firmicutes and associated protection from Citrobacter rodentium colitis. Gastroenterology 150(4):S3–S4. https://doi.org/10.1016/s0016-5085(16)30145-7
doi: 10.1016/s0016-5085(16)30145-7
Dimkic I, Bhardwaj V, Carpentieri-Pipolo V, Kuzmanovic N, Degrassi G (2021) The chitinolytic activity of the Curtobacterium sp. isolated from field-grown soybean and analysis of its genome sequence. PLoS ONE 16(11):e0259465. https://doi.org/10.1371/journal.pone.0259465
doi: 10.1371/journal.pone.0259465
pubmed: 34731210
pmcid: 8565777
Tong Q, Dong WJ, Xu MD, Hu ZF, Guo P, Han XY, Cui LY (2023) Characteristics and a comparison of the gut microbiota in two frog species at the beginning and end of hibernation. Front Microbiol 14:1057398. https://doi.org/10.3389/fmicb.2023.1057398
doi: 10.3389/fmicb.2023.1057398
pubmed: 37206336
pmcid: 10191234
Berman DI, Bulakhova NA, Meshcheryakova EN (2019) The Siberian wood frog survives for months underwater without oxygen. Sci Rep 9(1):13594. https://doi.org/10.1038/s41598-018-31974-6
doi: 10.1038/s41598-018-31974-6
pubmed: 30728368
pmcid: 6365510
Bergstrom K, Xia LJ (2022) The barrier and beyond: roles of intestinal mucus and mucin-type O-glycosylation in resistance and tolerance defense strategies guiding host-microbe symbiosis. Gut Microbes 14(1):2052699. https://doi.org/10.1080/19490976.2022.2052699
doi: 10.1080/19490976.2022.2052699
pubmed: 35380912
pmcid: 8986245
Moran NA, Ochman H, Hammer TJ (2019) Evolutionary and ecological consequences of gut microbial communities. In: Futuyma DJ (ed) Annual review of ecology, evolution, and systematics, vol 50. pp 451–475. https://doi.org/10.1146/annurev-ecolsys-110617-062453
Harrison XA, Price SJ, Hopkins K, Leung WTM, Sergeant C, Garner TWJ (2019) Diversity-stability dynamics of the amphibian skin microbiome and susceptibility to a lethal viral pathogen. Front Microbiol 10:2883. https://doi.org/10.3389/fmicb.2019.02883
doi: 10.3389/fmicb.2019.02883
pubmed: 31956320
pmcid: 6951417
Van Rossum T, Ferretti P, Maistrenko OM, Bork P (2020) Diversity within species: interpreting strains in microbiomes. Nat Rev Microbiol 18(9):491–506. https://doi.org/10.1038/s41579-020-0368-1
doi: 10.1038/s41579-020-0368-1
pubmed: 32499497
pmcid: 7610499