Phenotype wide association study links bronchopulmonary dysplasia with eosinophilia in children.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
13 Sep 2024
Historique:
received: 02 02 2024
accepted: 05 09 2024
medline: 14 9 2024
pubmed: 14 9 2024
entrez: 13 9 2024
Statut: epublish

Résumé

Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth. Despite this, genetic drivers of BPD are poorly understood. The objective of this study is to better understand the impact of single nucleotide polymorphisms (SNPs) previously associated with BPD by examining associations with other phenotypes. We drew pediatric subjects from the biorepository at the Center for Applied Genomics to identify associations between these SNPs and 2,146 imputed phenotypes. Methylation data, external cohorts, and in silico validation methods were used to corroborate significant associations. We identified 60 SNPs that were previously associated with BPD. We found a significant association between rs3771150 and rs3771171 and mean eosinophil percentage in a European cohort of 6,999 patients and replicated this in external cohorts. Both SNPs were also associated with asthma, COPD and FEV1/FVC ratio. These SNPs displayed associations with methylation probes and were functionally linked to ST2 (IL1RL1) levels in blood and lung tissue. Our findings support a genetic justification for the epidemiological link between BPD and asthma. Given the well-established link between ST2 and type 2 inflammation in asthma, these findings provide a rationale for future studies exploring the role of type 2 inflammation in the pathogenesis of BPD.

Identifiants

pubmed: 39271728
doi: 10.1038/s41598-024-72348-5
pii: 10.1038/s41598-024-72348-5
doi:

Substances chimiques

Interleukin-1 Receptor-Like 1 Protein 0
IL1RL1 protein, human 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

21391

Subventions

Organisme : NIEHS NIH HHS
ID : P30 ES013508
Pays : United States

Informations de copyright

© 2024. The Author(s).

Références

Siffel, C., Kistler, K. D., Lewis, J. F. M. & Sarda, S. P. Global incidence of bronchopulmonary dysplasia among extremely preterm infants: A systematic literature review. J. Matern. Fetal Neonatal Med. 34, 1721–1731. https://doi.org/10.1080/14767058.2019.1646240 (2021).
doi: 10.1080/14767058.2019.1646240 pubmed: 31397199
Thébaud, B. et al. Bronchopulmonary dysplasia. Nat. Rev. Dis. Primers 5, 78. https://doi.org/10.1038/s41572-019-0127-7 (2019).
doi: 10.1038/s41572-019-0127-7 pubmed: 31727986 pmcid: 6986462
Yu, K.-H., Li, J., Snyder, M., Shaw, G. M. & O’Brodovich, H. M. The genetic predisposition to bronchopulmonary dysplasia. Curr. Opin. Pediatr. 28, 318–323. https://doi.org/10.1097/mop.0000000000000344 (2016).
doi: 10.1097/mop.0000000000000344 pubmed: 26963946 pmcid: 4853271
Parad, R. B. et al. Role of genetic susceptibility in the development of bronchopulmonary dysplasia. J. Pediatr. 203, 234–241. https://doi.org/10.1016/j.jpeds.2018.07.099 (2018).
doi: 10.1016/j.jpeds.2018.07.099 pubmed: 30287068 pmcid: 8516345
Hadchouel, A. et al. Identification of SPOCK2 as a susceptibility gene for bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 184, 1164–1170. https://doi.org/10.1164/rccm.201103-0548OC (2011).
doi: 10.1164/rccm.201103-0548OC pubmed: 21836138
Li, J. et al. Exome sequencing of neonatal blood spots and the identification of genes implicated in bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 192, 589–596. https://doi.org/10.1164/rccm.201501-0168OC (2015).
doi: 10.1164/rccm.201501-0168OC pubmed: 26030808 pmcid: 4595691
Blume, F. et al. Verification of immunology-related genetic associations in BPD supports ABCA3 and five other genes. Pediatr. Res. 92, 190–198. https://doi.org/10.1038/s41390-021-01689-y (2022).
doi: 10.1038/s41390-021-01689-y pubmed: 34465876
Lal, C. V. & Ambalavanan, N. Genetic predisposition to bronchopulmonary dysplasia. Semin. Perinatol. 39, 584–591. https://doi.org/10.1053/j.semperi.2015.09.004 (2015).
doi: 10.1053/j.semperi.2015.09.004 pubmed: 26471063
Hamvas, A. et al. Exome sequencing identifies gene variants and networks associated with extreme respiratory outcomes following preterm birth. BMC Genet. 19, 94. https://doi.org/10.1186/s12863-018-0679-7 (2018).
doi: 10.1186/s12863-018-0679-7 pubmed: 30342483 pmcid: 6195962
Huusko, J. M. et al. Polymorphisms of the gene encoding Kit ligand are associated with bronchopulmonary dysplasia. Pediatr. Pulmonol. 50, 260–270. https://doi.org/10.1002/ppul.23018 (2015).
doi: 10.1002/ppul.23018 pubmed: 24610823
Capoluongo, E. et al. Mannose-binding lectin polymorphisms and pulmonary outcome in premature neonates: A pilot study. Intensive Care Med. 33, 1787–1794. https://doi.org/10.1007/s00134-007-0793-x (2007).
doi: 10.1007/s00134-007-0793-x pubmed: 17653692
Zhang, S. et al. Surfactant protein B gene polymorphisms is associated with risk of bronchopulmonary dysplasia in Chinese Han population. Int. J. Clin. Exp. Pathol. 8, 2971–2978 (2015).
pubmed: 26045806 pmcid: 4440115
Winters, A. H. et al. Single nucleotide polymorphism in toll-like receptor 6 is associated with a decreased risk for ureaplasma respiratory tract colonization and bronchopulmonary dysplasia in preterm infants. Pediatr. Infect. Dis. J. 32, 898–904. https://doi.org/10.1097/INF.0b013e31828fc693 (2013).
doi: 10.1097/INF.0b013e31828fc693 pubmed: 23518821 pmcid: 3714365
Karjalainen, M. K., Haataja, R. & Hallman, M. Haplotype analysis of ABCA3: Association with respiratory distress in very premature infants. Ann. Med. 40, 56–65. https://doi.org/10.1080/07853890701611094 (2008).
doi: 10.1080/07853890701611094 pubmed: 18246475
Ambalavanan, N. et al. Integrated genomic analyses in bronchopulmonary dysplasia. J. Pediatr. 166, 531–537. https://doi.org/10.1016/j.jpeds.2014.09.052 (2015).
doi: 10.1016/j.jpeds.2014.09.052 pubmed: 25449221
Mailaparambil, B. et al. Genetic and epidemiological risk factors in the development of bronchopulmonary dysplasia. Dis. Markers 29, 1–9. https://doi.org/10.3233/dma-2010-0720 (2010).
doi: 10.3233/dma-2010-0720 pubmed: 20826912 pmcid: 3835287
Poggi, C. et al. Genetic contributions to the development of complications in preterm newborns. PLoS One 10, e0131741. https://doi.org/10.1371/journal.pone.0131741 (2015).
doi: 10.1371/journal.pone.0131741 pubmed: 26172140 pmcid: 4501716
Cakmak, B. C. et al. Association between bronchopulmonary dysplasia and MBL2 and IL1-RN polymorphisms. Pediatr. Int. 54, 863–868. https://doi.org/10.1111/j.1442-200X.2012.03714.x (2012).
doi: 10.1111/j.1442-200X.2012.03714.x pubmed: 22882323
Sampath, V. et al. Antioxidant response genes sequence variants and BPD susceptibility in VLBW infants. Pediatr. Res. 77, 477–483. https://doi.org/10.1038/pr.2014.200 (2015).
doi: 10.1038/pr.2014.200 pubmed: 25518008
Rezvani, M. et al. Association of a FGFR-4 gene polymorphism with bronchopulmonary dysplasia and neonatal respiratory distress. Dis. Markers 35, 633–640. https://doi.org/10.1155/2013/932356 (2013).
doi: 10.1155/2013/932356 pubmed: 24288432 pmcid: 3832980
Fujioka, K. et al. Association of a vascular endothelial growth factor polymorphism with the development of bronchopulmonary dysplasia in Japanese premature newborns. Sci. Rep. 4, 4459. https://doi.org/10.1038/srep04459 (2014).
doi: 10.1038/srep04459 pubmed: 24662923 pmcid: 3964511
Pavlovic, J. et al. Genetic variants of surfactant proteins A, B, C, and D in bronchopulmonary dysplasia. Dis. Markers 22, 277–291. https://doi.org/10.1155/2006/817805 (2006).
doi: 10.1155/2006/817805 pubmed: 17264398
Koroglu, O. A. et al. Association of vitamin D receptor gene polymorphisms and bronchopulmonary dysplasia. Pediatr. Res. 76, 171–176. https://doi.org/10.1038/pr.2014.63 (2014).
doi: 10.1038/pr.2014.63 pubmed: 24796371
Derzbach, L. et al. Selectin polymorphisms and perinatal morbidity in low-birthweight infants. Acta Paediatr. 95, 1213–1217. https://doi.org/10.1080/08035250600575404 (2006).
doi: 10.1080/08035250600575404 pubmed: 16982492
Bokodi, G., Derzbach, L., Bányász, I., Tulassay, T. & Vásárhelyi, B. Association of interferon gamma T+874A and interleukin 12 p40 promoter CTCTAA/GC polymorphism with the need for respiratory support and perinatal complications in low birthweight neonates. Arch. Dis. Child. Fetal Neonatal Ed. 92, F25-29. https://doi.org/10.1136/adc.2005.086421 (2007).
doi: 10.1136/adc.2005.086421 pubmed: 16754651
Hadchouel, A. et al. Matrix metalloproteinase gene polymorphisms and bronchopulmonary dysplasia: Identification of MMP16 as a new player in lung development. PLoS One 3, e3188. https://doi.org/10.1371/journal.pone.0003188 (2008).
doi: 10.1371/journal.pone.0003188 pubmed: 18784838 pmcid: 2527515
Trittmann, J. K. et al. Arginase I gene single-nucleotide polymorphism is associated with decreased risk of pulmonary hypertension in bronchopulmonary dysplasia. Acta Paediatr. 103, e439-443. https://doi.org/10.1111/apa.12717 (2014).
doi: 10.1111/apa.12717 pubmed: 24919409 pmcid: 4180790
Ali, S. et al. Functional genetic variation in NFKBIA and susceptibility to childhood asthma, bronchiolitis, and bronchopulmonary dysplasia. J. Immunol. 190, 3949–3958. https://doi.org/10.4049/jimmunol.1201015 (2013).
doi: 10.4049/jimmunol.1201015 pubmed: 23487427
Krueger, M., Heinzmann, A., Mailaparambil, B., Härtel, C. & Göpel, W. Polymorphisms of interleukin 18 in the genetics of preterm birth and bronchopulmonary dysplasia. Arch. Dis. Child. Fetal Neonatal Ed. 96, F299-300. https://doi.org/10.1136/adc.2009.174862 (2011).
doi: 10.1136/adc.2009.174862 pubmed: 20971720
Kazzi, S. N., Kim, U. O., Quasney, M. W. & Buhimschi, I. Polymorphism of tumor necrosis factor-alpha and risk and severity of bronchopulmonary dysplasia among very low birth weight infants. Pediatrics 114, e243-248. https://doi.org/10.1542/peds.114.2.e243 (2004).
doi: 10.1542/peds.114.2.e243 pubmed: 15286263
Zachaki, S. et al. GSTP1 and CYP2B6 genetic polymorphisms and the risk of bronchopulmonary dysplasia in preterm neonates. Am. J. Perinatol. 34, 729–734. https://doi.org/10.1055/s-0036-1597994 (2017).
doi: 10.1055/s-0036-1597994 pubmed: 28081574
Floros, J. et al. IL-18R1 and IL-18RAP SNPs may be associated with bronchopulmonary dysplasia in African-American infants. Pediatr. Res. 71, 107–114. https://doi.org/10.1038/pr.2011.14 (2012).
doi: 10.1038/pr.2011.14 pubmed: 22289858 pmcid: 3610412
Chen, L. L. et al. Dual-specificity phosphatase (DUSP) genetic variants predict pulmonary hypertension in patients with bronchopulmonary dysplasia. Pediatr. Res. 87, 81–87. https://doi.org/10.1038/s41390-019-0502-9 (2020).
doi: 10.1038/s41390-019-0502-9 pubmed: 31330530
Luo, X. et al. Identification of genetic susceptibility in preterm newborns with bronchopulmonary dysplasia by whole-exome sequencing: BIVM gene may play a role. Eur. J. Pediatr. 182, 1707–1718. https://doi.org/10.1007/s00431-022-04779-z (2023).
doi: 10.1007/s00431-022-04779-z pubmed: 36757497 pmcid: 10167099
Ryckman, K. K., Dagle, J. M., Kelsey, K., Momany, A. M. & Murray, J. C. Genetic associations of surfactant protein D and angiotensin-converting enzyme with lung disease in preterm neonates. J. Perinatol. 32, 349–355. https://doi.org/10.1038/jp.2011.104 (2012).
doi: 10.1038/jp.2011.104 pubmed: 21960125
Haas, D. M. et al. The impact of glucocorticoid polymorphisms on markers of neonatal respiratory disease after antenatal betamethasone administration. Am. J. Obstet. Gynecol. 208(215), e211-216. https://doi.org/10.1016/j.ajog.2012.12.031 (2013).
doi: 10.1016/j.ajog.2012.12.031
Mahlman, M. et al. Genes encoding vascular endothelial growth factor A (VEGF-A) and VEGF receptor 2 (VEGFR-2) and risk for bronchopulmonary dysplasia. Neonatology 108, 53–59. https://doi.org/10.1159/000381279 (2015).
doi: 10.1159/000381279 pubmed: 25998098
Akat, A. et al. Bronchopulmonary dysplasia and wnt pathway-associated single nucleotide polymorphisms. Pediatr. Res. 92, 888–898. https://doi.org/10.1038/s41390-021-01851-6 (2022).
doi: 10.1038/s41390-021-01851-6 pubmed: 34853430
Sampath, V. et al. A TLR5 (g.1174C > T) variant that encodes a stop codon (R392X) is associated with bronchopulmonary dysplasia. Pediatr. Pulmonol. 47, 460–468. https://doi.org/10.1002/ppul.21568 (2012).
doi: 10.1002/ppul.21568 pubmed: 22058078
Hilgendorff, A. et al. Association of polymorphisms in the mannose-binding lectin gene and pulmonary morbidity in preterm infants. Genes Immun. 8, 671–677. https://doi.org/10.1038/sj.gene.6364432 (2007).
doi: 10.1038/sj.gene.6364432 pubmed: 17898783
Prencipe, G. et al. A polymorphism in the macrophage migration inhibitory factor promoter is associated with bronchopulmonary dysplasia. Pediatr. Res. 69, 142–147. https://doi.org/10.1203/PDR.0b013e3182042496 (2011).
doi: 10.1203/PDR.0b013e3182042496 pubmed: 21045753
Kwinta, P. et al. Genetic risk factors of bronchopulmonary dysplasia. Pediatr. Res. 64, 682–688. https://doi.org/10.1203/PDR.0b013e318184edeb (2008).
doi: 10.1203/PDR.0b013e318184edeb pubmed: 18614962
Vuckovic, D. et al. The polygenic and monogenic basis of blood traits and diseases. Cell 182, 1214–1231. https://doi.org/10.1016/j.cell.2020.08.008 (2020).
doi: 10.1016/j.cell.2020.08.008 pubmed: 32888494 pmcid: 7482360
Valette, K. et al. Prioritization of candidate causal genes for asthma in susceptibility loci derived from UK Biobank. Commun. Biol. 4, 700. https://doi.org/10.1038/s42003-021-02227-6 (2021).
doi: 10.1038/s42003-021-02227-6 pubmed: 34103634 pmcid: 8187656
Boughton, A. P. et al. LocusZoom.js: Interactive and embeddable visualization of genetic association study results. Bioinformatics (Oxf, Engl) 37, 3017–3018. https://doi.org/10.1093/bioinformatics/btab186 (2021).
doi: 10.1093/bioinformatics/btab186
Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79. https://doi.org/10.1038/s41586-018-0175-2 (2018).
doi: 10.1038/s41586-018-0175-2 pubmed: 29875488 pmcid: 6697541
Fehrmann, R. S. et al. Trans-eQTLs reveal that independent genetic variants associated with a complex phenotype converge on intermediate genes, with a major role for the HLA. PLoS Genet. 7, e1002197. https://doi.org/10.1371/journal.pgen.1002197 (2011).
doi: 10.1371/journal.pgen.1002197 pubmed: 21829388 pmcid: 3150446
Westra, H. J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243. https://doi.org/10.1038/ng.2756 (2013).
doi: 10.1038/ng.2756 pubmed: 24013639 pmcid: 3991562
Ward, L. D. & Kellis, M. HaploReg v4: Systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. 44, D877-881. https://doi.org/10.1093/nar/gkv1340 (2016).
doi: 10.1093/nar/gkv1340 pubmed: 26657631
Nassar, L. R. et al. The UCSC genome browser database: 2023 update. Nucleic Acids Res. 51, D1188-d1195. https://doi.org/10.1093/nar/gkac1072 (2023).
doi: 10.1093/nar/gkac1072 pubmed: 36420891
Hormozdiari, F., Kostem, E., Kang, E. Y., Pasaniuc, B. & Eskin, E. Identifying causal variants at loci with multiple signals of association. Genetics 198, 497–508. https://doi.org/10.1534/genetics.114.167908 (2014).
doi: 10.1534/genetics.114.167908 pubmed: 25104515 pmcid: 4196608
Sun, T., Yu, H. Y., Yang, M., Song, Y. F. & Fu, J. H. Risk of asthma in preterm infants with bronchopulmonary dysplasia: A systematic review and meta-analysis. World J. Pediatr. 19, 549–556. https://doi.org/10.1007/s12519-023-00701-1 (2023).
doi: 10.1007/s12519-023-00701-1 pubmed: 36857022 pmcid: 10198915
Hillary, R. F. et al. Multi-method genome- and epigenome-wide studies of inflammatory protein levels in healthy older adults. Genome Med. https://doi.org/10.1186/s13073-020-00754-1 (2020).
doi: 10.1186/s13073-020-00754-1 pubmed: 32641083 pmcid: 7346642
Dijk, F. N. et al. Genetic regulation of <i>IL1RL1</i> methylation and IL1RL1-a protein levels in asthma. Eur. Respir. J. 51, 1701377. https://doi.org/10.1183/13993003.01377-2017 (2018).
doi: 10.1183/13993003.01377-2017 pubmed: 29519908
Tunc, T. et al. Predictive value of soluble urokinase plasminogen activator receptor, soluble ST2, and IL-33 in bronchopulmonary dysplasia. Pediatr. Res. 75, 788–792. https://doi.org/10.1038/pr.2014.28 (2014).
doi: 10.1038/pr.2014.28 pubmed: 24603291
Gordon, E. D. et al. IL1RL1 asthma risk variants regulate airway type 2 inflammation. JCI Insight 1, e87871. https://doi.org/10.1172/jci.insight.87871 (2016).
doi: 10.1172/jci.insight.87871 pubmed: 27699235 pmcid: 5033813
Rojo-Tolosa, S. et al. Influence of genetics on the response to Omalizumab in patients with severe uncontrolled asthma with an allergic phenotype. Int. J. Mol. Sci. 24, 7029. https://doi.org/10.3390/ijms24087029 (2023).
doi: 10.3390/ijms24087029 pubmed: 37108192 pmcid: 10139019
Gaurav, R. & Poole, J. A. Interleukin (IL)-33 immunobiology in asthma and airway inflammatory diseases. J. Asthma 59, 2530–2538. https://doi.org/10.1080/02770903.2021.2020815 (2022).
doi: 10.1080/02770903.2021.2020815 pubmed: 34928757
Tunc, T. et al. Predictive value of soluble urokinase plasminogen activator receptor, soluble ST2, and IL-33 in bronchopulmonary dysplasia. Pediatr. Res. 75, 788–792. https://doi.org/10.1038/pr.2014.28 (2014).
doi: 10.1038/pr.2014.28 pubmed: 24603291
Cayrol, C. IL-33, an alarmin of the IL-1 family involved in allergic and non allergic inflammation: Focus on the mechanisms of regulation of its activity. Cells 11, 107. https://doi.org/10.3390/cells11010107 (2021).
doi: 10.3390/cells11010107 pubmed: 35011670 pmcid: 8750818
Cunningham, F. et al. Ensembl 2022. Nucleic Acids Res. 50, D988–D995. https://doi.org/10.1093/nar/gkab1049 (2021).
doi: 10.1093/nar/gkab1049 pmcid: 8728283
Zhu, Y., Yao, H. C., Lu, H. Y., Hao, X. B. & Xu, S. Q. <scp>IL-33-ST2</scp> pathway regulates <scp>AECII</scp> transdifferentiation by targeting alveolar macrophage in a bronchopulmonary dysplasia mouse model. J. Cell. Mol. Med. 27, 304–308. https://doi.org/10.1111/jcmm.17654 (2023).
doi: 10.1111/jcmm.17654 pubmed: 36573439
Surate Solaligue, D. E., Rodríguez-Castillo, J. A., Ahlbrecht, K. & Morty, R. E. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am. J. Physiol. Lung Cell Mol. Physiol. 313, L1101-l1153. https://doi.org/10.1152/ajplung.00343.2017 (2017).
doi: 10.1152/ajplung.00343.2017 pubmed: 28971976
Gottesman, O. et al. The electronic medical records and genomics (eMERGE) network: Past, present, and future. Genet. Med. 15, 761–771. https://doi.org/10.1038/gim.2013.72 (2013).
doi: 10.1038/gim.2013.72 pubmed: 23743551 pmcid: 3795928
Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 4, 7. https://doi.org/10.1186/s13742-015-0047-8 (2015).
doi: 10.1186/s13742-015-0047-8 pubmed: 25722852 pmcid: 4342193
Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287. https://doi.org/10.1038/ng.3656 (2016).
doi: 10.1038/ng.3656 pubmed: 27571263 pmcid: 5157836
Fuchsberger, C., Abecasis, G. R. & Hinds, D. A. minimac2: Faster genotype imputation. Bioinformatics (Oxf., Engl.) 31, 782–784. https://doi.org/10.1093/bioinformatics/btu704 (2015).
doi: 10.1093/bioinformatics/btu704
Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed program. Nature 590, 290–299. https://doi.org/10.1038/s41586-021-03205-y (2021).
doi: 10.1038/s41586-021-03205-y pubmed: 33568819 pmcid: 7875770
Abraham, G. & Inouye, M. Fast principal component analysis of large-scale genome-wide data. PLoS One 9, e93766. https://doi.org/10.1371/journal.pone.0093766 (2014).
doi: 10.1371/journal.pone.0093766 pubmed: 24718290 pmcid: 3981753
Altshuler, D. M. et al. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58. https://doi.org/10.1038/nature09298 (2010).
doi: 10.1038/nature09298 pubmed: 20811451
Verma, A. et al. A simulation study investigating power estimates in phenome-wide association studies. BMC Bioinform. https://doi.org/10.1186/s12859-018-2135-0 (2018).
doi: 10.1186/s12859-018-2135-0
McLaren, W. et al. The ensembl variant effect predictor. Genome Biol. 17, 122. https://doi.org/10.1186/s13059-016-0974-4 (2016).
doi: 10.1186/s13059-016-0974-4 pubmed: 27268795 pmcid: 4893825
Ghoussaini, M. et al. Open targets genetics: Systematic identification of trait-associated genes using large-scale genetics and functional genomics. Nucleic Acids Res. 49, D1311–D1320. https://doi.org/10.1093/nar/gkaa840 (2021).
doi: 10.1093/nar/gkaa840 pubmed: 33045747
Association to Function Knowledge Portal, https://a2f.hugeamp.org/
Spindola, L. M. et al. Detecting multiple differentially methylated CpG sites and regions related to dimensional psychopathology in youths. Clin. Epigenetics 11, 146. https://doi.org/10.1186/s13148-019-0740-z (2019).
doi: 10.1186/s13148-019-0740-z pubmed: 31639064 pmcid: 6805541

Auteurs

Jelte Kelchtermans (J)

Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. kelchtermj@chop.edu.
The Center of Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. kelchtermj@chop.edu.
Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA. kelchtermj@chop.edu.

Michael E March (ME)

The Center of Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Hakon Hakonarson (H)

Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
The Center of Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA.

Sharon A McGrath-Morrow (SA)

Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH