The effect of calcium on the removal of Cd
Acidithiobacillus ferrooxidans
Ca2+
Cd2+
Co-precipitation effect
Secondary high-iron minerals
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
14 Sep 2024
14 Sep 2024
Historique:
received:
27
06
2024
accepted:
10
09
2024
medline:
15
9
2024
pubmed:
15
9
2024
entrez:
14
9
2024
Statut:
epublish
Résumé
Cadmium is a toxic heavy metal found in acid mine drainage. It hinders plant and animal growth and accumulates in human organs. In this study, through shake flask experiments, an iron-rich, sulphate-rich environment was simulated, and Acidithiobacillus ferrooxidans was used to mediate the formation of secondary high-iron minerals to explore the effect of calcium ions on the removal of Cd
Identifiants
pubmed: 39277706
doi: 10.1038/s41598-024-72764-7
pii: 10.1038/s41598-024-72764-7
doi:
Substances chimiques
Cadmium
00BH33GNGH
Calcium
SY7Q814VUP
Iron
E1UOL152H7
Minerals
0
Water Pollutants, Chemical
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
21499Subventions
Organisme : Foundation of Guilin University of Technology
ID : GUTQDJJ 2005020
Organisme : Foundation of Guilin University of Technology
ID : GUTQDJJ 2001013
Organisme : Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology
ID : 1601Z005
Informations de copyright
© 2024. The Author(s).
Références
Ighalo, J. O. et al. A review of treatment technologies for the mitigation of the toxic environmental effects of acid mine drainage (AMD). Process Saf. Environ. Prot.157, 37–58 (2022).
doi: 10.1016/j.psep.2021.11.008
Skousen, J. et al. Review of passive systems for acid mine drainage treatment. Mine Water Environ.36, 133–153 (2017).
doi: 10.1007/s10230-016-0417-1
Jiao, Y. et al. A review of acid mine drainage: formation mechanism, treatment technology, typical engineering cases and resource utilization. Process Saf. Environ. Prot.170, 1240–1260 (2023).
doi: 10.1016/j.psep.2022.12.083
Wei, T. T. et al. Research progress of acid mine drainage treatment technology in China. Appl. Mech. Mater.409, 214–220 (2013).
doi: 10.4028/www.scientific.net/AMM.409-410.214
Colmer, A. R. & Hinkle, M. E. The role of microorganisms in acid mine drainage: a preliminary report. Science. 106 (2751), 253–256 (1947).
doi: 10.1126/science.106.2751.253
pubmed: 17777068
Quatrini, R. & Johnson, D. B. Acidithiobacillus ferrooxidans. Trends Microbiol.27 (3), 282–283 (2019).
doi: 10.1016/j.tim.2018.11.009
pubmed: 30563727
Jung, H., Inaba, Y. & Banta, S. Genetic Engineering of the Acidophilic Chemolithoautotroph Acidithiobacillus ferrooxidans (Trends in Biotechnology, 2021).
Li, H. et al. Sorption of arsenate (V) to naturally occurring secondary iron minerals formed at different conditions: the relationship between sorption behavior and surface structure. Chemosphere. 285, 131525 (2021).
doi: 10.1016/j.chemosphere.2021.131525
pubmed: 34265703
Kamizela, T., Grobelak, A. & Worwag, M. Use of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans in the recovery of heavy metals from landfill leachates. Energies. 14 (11), 3336 (2021).
doi: 10.3390/en14113336
Dutrizac, J. E. & Kaiman, S. Synthesis and properties of jarosite-type compounds. Can. Miner.14(2), 151–158 (1976).
Dutrizac, J. E. The effectiveness of jarosite species for precipitating sodium jarosite. Jom. 51 (12), 30–32 (1999).
doi: 10.1007/s11837-999-0168-6
Fu, Y. et al. Effects of initial pH and carbonate rock dosage on bio-oxidation and secondary iron mineral synthesis. Toxics11(3), 224 (2023).
doi: 10.3390/toxics11030224
pubmed: 36976989
pmcid: 10056450
Gramp, P. J. et al. Monovalent cation concentrations determine the types of Fe(III) hydroxysulfate precipitates formed in bioleach solutions. Hydrometallurgy. 94 (1), 29–33 (2008).
doi: 10.1016/j.hydromet.2008.05.019
Huang, H. et al. Impact of fulvic acid and Acidithiobacillus Ferrooxidan inoculum amount on the formation of secondary iron minerals. Int. J. Environ. Res. Public Health20(6), 4736 (2023).
doi: 10.3390/ijerph20064736
pubmed: 36981642
pmcid: 10048549
Wang, M. et al. A review on cadmium exposure in the population and intervention strategies against cadmium toxicity. Bull. Environ. Contam. Toxicol.106, 65–74 (2021).
doi: 10.1007/s00128-020-03088-1
pubmed: 33486543
Ebrahimi, M. et al. Effects of lead and cadmium on the immune system and cancer progression. J. Environ. Health Sci. Eng.18, 335–343 (2020).
doi: 10.1007/s40201-020-00455-2
pubmed: 32399244
pmcid: 7203386
Fan, L. & Zhang, X. Adsorption and desorption of cadmium on synthetic schwertmannite. Desalin. Water Treat.79, 243–250 (2017).
doi: 10.5004/dwt.2017.20339
Xiao, P., Xiao, B. & Adnan, M. Effects of Ca
doi: 10.1002/ldr.4092
Song, Y. W. et al. Effect of anions on the oxidation activity of Acidithiobacillus ferrooxidans and the formation of secondary iron minerals. China Environ. Sci.38 (2), 574–580 (2018).
Paulton, R. J. L. The bacterial growth curve. J. Biol. Educ.25 (2), 92–94 (1991).
doi: 10.1080/00219266.1991.9655183
Lazaroff, N., Sigal, W. & Wasserman, A. Iron oxidation and precipitation of ferric hydroxysulfates by resting Thiobacillus ferrooxidans cells. Appl. Environ. Microbiol.43 (4), 924–938 (1982).
doi: 10.1128/aem.43.4.924-938.1982
pubmed: 16345996
pmcid: 241942
Min, G. A. N. et al. Acidithiobacillus ferrooxidans enhanced heavy metals immobilization efficiency in acidic aqueous system through bio-mediated coprecipitation. Trans. Nonferrous Met. Soc. China. 27 (5), 1156–1164 (2017).
doi: 10.1016/S1003-6326(17)60135-3
Jamal, H. Y. A. Removal of heavy metals from acid mine drainage: A review. Int. J. New Technol. Sci. Eng.2, 77–84 (2015).
Bai, S. Y., Liang, J. R. & Zhou, L. X. Effects of iron/potassium molar ratio on mass of biogenic Fe(III) hydroxysulfate precipitates in the FeSO4-K
Dong, Y. B. & Lin, H. Effects of Ion stress on the oxidation activity of Acidithiobacillus ferrooxidans. Adv. Mater. Res.1130, 165–168 (2015).
doi: 10.4028/www.scientific.net/AMR.1130.165
Zhao, Q. et al. Effects of K/Ca molar Ratio on oxidation and mineralization of Acidithiobacillus Ferrooxidans. Heilongjiang Sci.14 (06), 1–5 (2023).
Lin, H. et al. Mechanisms, application advances and future perspectives of microbial-induced heavy metal precipitation: a review. Int. Biodeterior. Biodegrad.178, 105544 (2023).
doi: 10.1016/j.ibiod.2022.105544
Zhao, K. L. et al. Study on the jarosite mediated by bioleaching of pyrrhotite using Acidthiobacillus ferrooxidans. Biosci. J.33(3), 721–729 (2017).
doi: 10.14393/BJ-v33n3-33824
Fan, C. et al. Fe (II)-mediated transformation of schwertmannite associated with calcium from acid mine drainage treatment. J. Environ. Sci.126, 612–620 (2023).
doi: 10.1016/j.jes.2022.05.044
Liu, F. et al. Effect of calcium ions on secondary iron minerals formation in sulfate-rich acidic environment. China Environ. Sci.35 (04), 1142–1148 (2015).
Bai, S. et al. Both initial concentrations of Fe (II) and monovalent cations jointly determine the formation of biogenic iron hydroxysulfate precipitates in acidic sulfate-rich environments. Mater. Sci. Eng. C32(8), 2323–2329 (2012).
doi: 10.1016/j.msec.2012.07.003
Shi, M. et al. Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr) oxides. Sci. Total Environ.752, 141930 (2021).
doi: 10.1016/j.scitotenv.2020.141930
pubmed: 32892052