Progressive cervical cord atrophy parallels cognitive decline in Alzheimer's disease.
Alzheimer’s disease
Atrophy
Cognitive decline
Magnetic resonance imaging
Spinal cord
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
16 09 2024
16 09 2024
Historique:
received:
21
09
2023
accepted:
10
07
2024
medline:
17
9
2024
pubmed:
17
9
2024
entrez:
16
9
2024
Statut:
epublish
Résumé
Alzheimer's disease (AD) is characterized by progressive episodic memory dysfunction. A prominent hallmark of AD is gradual brain atrophy. Despite extensive research on brain pathology, the understanding of spinal cord pathology in AD and its association with cognitive decline remains understudied. We analyzed serial magnetic resonance imaging (MRI) scans from the ADNI data repository to assess whether progressive cord atrophy is associated with clinical worsening. Cervical cord morphometry was measured in 45 patients and 49 cognitively normal controls (CN) at two time points over 1.5 years. Regression analysis examined associations between cord atrophy rate and cognitive worsening. Cognitive and functional activity performance declined in patients during follow-up. Compared with controls, patients showed a greater rate of decline of the anterior-posterior width of the cross-sectional cord area per month (- 0.12%, p = 0.036). Worsening in the mini-mental state examination (MMSE), clinical dementia rating (CDR), and functional assessment questionnaire (FAQ) was associated with faster rates of cord atrophy (MMSE: r = 0.320, p = 0.037; CDR: r = - 0.361, p = 0.017; FAQ: r = - 0.398, p = 0.029). Progressive cord atrophy occurs in AD patients; its rate over time being associated with cognitive and functional activity decline.
Identifiants
pubmed: 39284823
doi: 10.1038/s41598-024-67389-9
pii: 10.1038/s41598-024-67389-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
21595Informations de copyright
© 2024. The Author(s).
Références
McKhann, G. M. et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 7, 263–269 (2011).
doi: 10.1016/j.jalz.2011.03.005
Kleineidam, L. et al. Disentangling the relationship of subjective cognitive decline and depressive symptoms in the development of cognitive decline and dementia. Alzheimer’s Dement. https://doi.org/10.1002/alz.12785 (2022).
doi: 10.1002/alz.12785
Johansson, M. et al. Apathy and anxiety are early markers of Alzheimer’s disease. Neurobiol. Aging 85, 74–82 (2020).
pubmed: 31735378
doi: 10.1016/j.neurobiolaging.2019.10.008
Dubois, B. et al. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimer’s Dement. 12, 292–323 (2016).
doi: 10.1016/j.jalz.2016.02.002
Jack, C. R. et al. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013).
pubmed: 23332364
pmcid: 3622225
doi: 10.1016/S1474-4422(12)70291-0
Veitch, D. P. et al. Understanding disease progression and improving Alzheimer’s disease clinical trials: Recent highlights from the Alzheimer’s Disease Neuroimaging Initiative. Alzheimer’s Dement. 15, 106–152 (2019).
doi: 10.1016/j.jalz.2018.08.005
Schneider, J. A. et al. Substantia nigra tangles are related to gait impairment in older persons. Ann. Neurol. 59, 166–173 (2006).
pubmed: 16374822
doi: 10.1002/ana.20723
Lerch, J. P., Pruessner, J. C., Zijdenbos, A., Teipel, S. J. & Evans, A. C. Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cereb. Cortex 15, 995–1001 (2005).
pubmed: 15537673
doi: 10.1093/cercor/bhh200
Teipel, S. J. et al. Progression of corpus callosum atrophy in Alzheimer disease. Arch. Neurol. 59, 243–248 (2002).
pubmed: 11843695
doi: 10.1001/archneur.59.2.243
Holland, D., Brewer, J. B., Hagler, D. J., Fennema-Notestine, C. & Dale, A. M. Subregional neuroanatomical change as a biomarker for Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 106, 20954–20959 (2009).
pubmed: 19996185
pmcid: 2791580
doi: 10.1073/pnas.0906053106
Tabatabaei-Jafari, H., Shaw, M. E., Walsh, E. & Cherbuin, N. Regional brain atrophy predicts time to conversion to Alzheimer’s disease, dependent on baseline volume. Neurobiol. Aging 83, 86–94 (2019).
pubmed: 31585370
doi: 10.1016/j.neurobiolaging.2019.08.033
Shi, F., Liu, B., Zhou, Y., Yu, C. & Jiang, T. Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer’s disease: Meta-analyses of MRI studies. Hippocampus 19, 1055–1064 (2009).
pubmed: 19309039
doi: 10.1002/hipo.20573
Ferrarini, L. et al. MMSE scores correlate with local ventricular enlargement in the spectrum from cognitively normal to Alzheimer disease. Neuroimage 39, 1832–1838 (2008).
pubmed: 18160312
doi: 10.1016/j.neuroimage.2007.11.003
Morra, J. H. et al. NeuroImage Automated mapping of hippocampal atrophy in 1-year repeat MRI data from 490 subjects with Alzheimer ’ s disease, mild cognitive impairment, and elderly controls. Neuroimage 45, S3–S15 (2009).
pubmed: 19041724
doi: 10.1016/j.neuroimage.2008.10.043
Arlt, S., Buchert, R. & Spies, L. Association between fully automated MRI-based volumetry of different brain regions and neuropsychological test performance in patients with amnestic mild cognitive impairment and Alzheimer ’ s disease. Eur. Arch. Psychiatry Clin. Neurosci. 263, 335–344 (2013).
pubmed: 22940716
doi: 10.1007/s00406-012-0350-7
Chetelat, G. et al. Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: A longitudinal MRI study. Neuroimage 27, 934–946 (2005).
pubmed: 15979341
doi: 10.1016/j.neuroimage.2005.05.015
Apostolova, L. G. et al. Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Neurobiol. Aging 11, 1077–1088 (2006).
Ogomori, K. et al. Beta-protein amyloid is widely distributed in the central nervous system of patients with Alzheimer’s disease. Am. J. Pathol. 134, 243–251 (1989).
pubmed: 2464938
pmcid: 1879581
Dugger, B. N. et al. The distribution of phosphorylated tau in spinal cords of Alzheimer’s disease and non-demented individuals. J. Alzheimer’s Dis. 34, 529–536 (2013).
doi: 10.3233/JAD-121864
Lorenzi, R. M. et al. Unsuspected involvement of spinal cord in alzheimer disease. Front. Cell. Neurosci. 14, 1–10 (2020).
doi: 10.3389/fncel.2020.00006
Albers, M. W. et al. At the interface of sensory and motor dysfunctions and Alzheimer’s disease. Alzheimer’s Dement. 11, 70–98 (2015).
doi: 10.1016/j.jalz.2014.04.514
Buchman, A. S., Wilson, R. S., Boyle, P. A., Bienias, J. L. & Bennett, D. A. Grip strength and the risk of incident Alzheimer’s disease. Neuroepidemiology 29, 66–73 (2007).
pubmed: 17925596
doi: 10.1159/000109498
Folstein, M. F., Folstein, S. E. & McHugh, P. R. Mini-mental state. J. Psychiatr. Res. 12, 189–198 (1975).
pubmed: 1202204
doi: 10.1016/0022-3956(75)90026-6
Williams, M. M., Storandt, M., Roe, C. M. & Morris, J. C. Progression of Alzheimer ’ s disease as measured by Clinical dementia rating sum of boxes scores. Alzheimer Dementia 9, 39–44 (2013).
doi: 10.1016/j.jalz.2012.01.005
De Leener, B. et al. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage 145, 24–43 (2017).
pubmed: 27720818
doi: 10.1016/j.neuroimage.2016.10.009
Gros, C. et al. Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. Neuroimage 184, 901–915 (2019).
pubmed: 30300751
doi: 10.1016/j.neuroimage.2018.09.081
Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. Neuroimage 62, 782–790 (2012).
pubmed: 21979382
doi: 10.1016/j.neuroimage.2011.09.015
Weeda, M. M. et al. Validation of mean upper cervical cord area (MUCCA) measurement techniques in multiple sclerosis (MS): High reproducibility and robustness to lesions, but large software and scanner effects. NeuroImage Clin. 24, 101962 (2019).
pubmed: 31416017
pmcid: 6704046
doi: 10.1016/j.nicl.2019.101962
Hsu, Y.-Y. et al. Comparison of automated and manual MRI volumetry of hippocampus in normal aging and dementia. J. Magn. Reson. Imaging 16, 305–310 (2002).
pubmed: 12205587
pmcid: 1851676
doi: 10.1002/jmri.10163
Christensen, G. E., Joshi, S. C. & Miller, M. I. Volumetric transformation of brain anatomy. IEEE Trans. Med. Imaging 16, 864–877 (1997).
pubmed: 9533586
doi: 10.1109/42.650882
Pfeffer, R. I., Kurosaki, T. T., Harrah, C. H., Chance, J. M. & Filos, S. Measurement of functional activities in older adults in the community. J. Gerontol. 37, 323–329 (1982).
pubmed: 7069156
doi: 10.1093/geronj/37.3.323
Veitch, D. P. et al. Using the Alzheimer’s Disease Neuroimaging Initiative to improve early detection, diagnosis, and treatment of Alzheimer’s disease. Alzheimers. Dement. 18, 824–857 (2022).
pubmed: 34581485
doi: 10.1002/alz.12422
Grabher, P. et al. Tracking sensory system atrophy and outcome prediction in spinal cord injury. Ann. Neurol. 78, 751–761 (2015).
pubmed: 26290444
pmcid: 4737098
doi: 10.1002/ana.24508
Seif, M. et al. Quantitative MRI of rostral spinal cord and brain regions is predictive of functional recovery in acute spinal cord injury. NeuroImage Clin. 20, 556–563 (2018).
pubmed: 30175042
pmcid: 6115607
doi: 10.1016/j.nicl.2018.08.026
Azzarito, M. et al. Simultaneous voxel-wise analysis of brain and spinal cord morphometry and microstructure within the SPM framework. Hum. Brain Mapp. 42, 220–232. https://doi.org/10.1002/hbm.25218 (2020).
doi: 10.1002/hbm.25218
pubmed: 32991031
pmcid: 7721239
Lundell, H. et al. Independent spinal cord atrophy measures correlate to motor and sensory deficits in individuals with spinal cord injury. Spinal Cord 49, 70–75 (2011).
pubmed: 20697420
doi: 10.1038/sc.2010.87
Yuan, Q. et al. Amyloid pathology in spinal cord of the transgenic alzheimer’s disease mice is correlated to the corticospinal tract pathway. J. Alzheimer’s Dis. 35, 675–685 (2013).
doi: 10.3233/JAD-122323
Wirths, O., Weis, J., Szczygielski, J., Multhaup, G. & Bayer, T. A. Axonopathy in an APP/PS1 transgenic mouse model of Alzheimer’s disease. Acta Neuropathol. 111, 312–319 (2006).
pubmed: 16520967
doi: 10.1007/s00401-006-0041-4
Probst, A. et al. Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathol. 99, 469–481 (2002).
doi: 10.1007/s004010051148
Sartoretti, T. et al. Structural MRI reveals cervical spinal cord atrophy in the P301L mouse model of tauopathy: Gender and transgene-dosing effects. Front. Aging Neurosci. 14, 1–12 (2022).
doi: 10.3389/fnagi.2022.825996
Chu, T.-H. et al. Axonal and myelinic pathology in 5xFAD Alzheimer’s mouse spinal cord. PLoS ONE 12, e0188218 (2017).
pubmed: 29176903
pmcid: 5703477
doi: 10.1371/journal.pone.0188218
Jack, C. R. et al. Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology 55, 484–489 (2000).
pubmed: 10953178
doi: 10.1212/WNL.55.4.484
Casas-Herrero, A. et al. Effect of a multicomponent exercise programme (VIVIFRAIL) on functional capacity in frail community elders with cognitive decline: Study protocol for a randomized multicentre control trial. Trials 20, 362 (2019).
pubmed: 31208471
pmcid: 6580555
doi: 10.1186/s13063-019-3426-0
Yeo, B. S. Y. et al. Association of hearing aids and cochlear implants with cognitive decline and dementia. JAMA Neurol. 80, 134 (2023).
pubmed: 36469314
doi: 10.1001/jamaneurol.2022.4427
Agosta, F. et al. Sensorimotor network rewiring in mild cognitive impairment and Alzheimer’s disease. Hum. Brain Mapp. 31, 515–525 (2010).
pubmed: 19777557
doi: 10.1002/hbm.20883
Salustri, C. et al. Sensorimotor cortex reorganization in alzheimer’s disease and metal dysfunction: A MEG study. Int. J. Alzheimers. Dis. 2013, 1–8 (2013).
doi: 10.1155/2013/638312
Fiford, C. M. et al. Patterns of progressive atrophy vary with age in Alzheimer’s disease patients. Neurobiol. Aging 63, 22–32 (2018).
pubmed: 29220823
pmcid: 5805840
doi: 10.1016/j.neurobiolaging.2017.11.002
Scarmeas, N. et al. Motor signs during the course of Alzheimer disease. Neurology 63, 975–982 (2004).
pubmed: 15452286
doi: 10.1212/01.WNL.0000138440.39918.0C
Scarmeas, N. et al. Motor signs predict poor outcomes in Alzheimer disease. Neurology 64, 1696–1703 (2005).
pubmed: 15911793
doi: 10.1212/01.WNL.0000162054.15428.E9
Waite, L. M. et al. Gait slowing as a predictor of incident dementia: 6-year longitudinal data from the Sydney Older Persons Study. J. Neurol. Sci. 229–230, 89–93 (2005).
pubmed: 15760625
doi: 10.1016/j.jns.2004.11.009
Chu, C., Tranel, D., Damasio, A. R. & Van Hoesen, G. W. The autonomic-related cortex: Pathology in Alzheimer’s disease. Cereb. Cortex 7, 86–95 (1997).
pubmed: 9023436
doi: 10.1093/cercor/7.1.86
Hase, Y. et al. Small vessel disease pathological changes in neurodegenerative and vascular dementias concomitant with autonomic dysfunction. Brain Pathol. 30, 191–202 (2020).
pubmed: 31357238
doi: 10.1111/bpa.12769