Progressive cervical cord atrophy parallels cognitive decline in Alzheimer's disease.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
16 09 2024
Historique:
received: 21 09 2023
accepted: 10 07 2024
medline: 17 9 2024
pubmed: 17 9 2024
entrez: 16 9 2024
Statut: epublish

Résumé

Alzheimer's disease (AD) is characterized by progressive episodic memory dysfunction. A prominent hallmark of AD is gradual brain atrophy. Despite extensive research on brain pathology, the understanding of spinal cord pathology in AD and its association with cognitive decline remains understudied. We analyzed serial magnetic resonance imaging (MRI) scans from the ADNI data repository to assess whether progressive cord atrophy is associated with clinical worsening. Cervical cord morphometry was measured in 45 patients and 49 cognitively normal controls (CN) at two time points over 1.5 years. Regression analysis examined associations between cord atrophy rate and cognitive worsening. Cognitive and functional activity performance declined in patients during follow-up. Compared with controls, patients showed a greater rate of decline of the anterior-posterior width of the cross-sectional cord area per month (- 0.12%, p = 0.036). Worsening in the mini-mental state examination (MMSE), clinical dementia rating (CDR), and functional assessment questionnaire (FAQ) was associated with faster rates of cord atrophy (MMSE: r = 0.320, p = 0.037; CDR: r = - 0.361, p = 0.017; FAQ: r = - 0.398, p = 0.029). Progressive cord atrophy occurs in AD patients; its rate over time being associated with cognitive and functional activity decline.

Identifiants

pubmed: 39284823
doi: 10.1038/s41598-024-67389-9
pii: 10.1038/s41598-024-67389-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

21595

Informations de copyright

© 2024. The Author(s).

Références

McKhann, G. M. et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 7, 263–269 (2011).
doi: 10.1016/j.jalz.2011.03.005
Kleineidam, L. et al. Disentangling the relationship of subjective cognitive decline and depressive symptoms in the development of cognitive decline and dementia. Alzheimer’s Dement. https://doi.org/10.1002/alz.12785 (2022).
doi: 10.1002/alz.12785
Johansson, M. et al. Apathy and anxiety are early markers of Alzheimer’s disease. Neurobiol. Aging 85, 74–82 (2020).
pubmed: 31735378 doi: 10.1016/j.neurobiolaging.2019.10.008
Dubois, B. et al. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimer’s Dement. 12, 292–323 (2016).
doi: 10.1016/j.jalz.2016.02.002
Jack, C. R. et al. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013).
pubmed: 23332364 pmcid: 3622225 doi: 10.1016/S1474-4422(12)70291-0
Veitch, D. P. et al. Understanding disease progression and improving Alzheimer’s disease clinical trials: Recent highlights from the Alzheimer’s Disease Neuroimaging Initiative. Alzheimer’s Dement. 15, 106–152 (2019).
doi: 10.1016/j.jalz.2018.08.005
Schneider, J. A. et al. Substantia nigra tangles are related to gait impairment in older persons. Ann. Neurol. 59, 166–173 (2006).
pubmed: 16374822 doi: 10.1002/ana.20723
Lerch, J. P., Pruessner, J. C., Zijdenbos, A., Teipel, S. J. & Evans, A. C. Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cereb. Cortex 15, 995–1001 (2005).
pubmed: 15537673 doi: 10.1093/cercor/bhh200
Teipel, S. J. et al. Progression of corpus callosum atrophy in Alzheimer disease. Arch. Neurol. 59, 243–248 (2002).
pubmed: 11843695 doi: 10.1001/archneur.59.2.243
Holland, D., Brewer, J. B., Hagler, D. J., Fennema-Notestine, C. & Dale, A. M. Subregional neuroanatomical change as a biomarker for Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 106, 20954–20959 (2009).
pubmed: 19996185 pmcid: 2791580 doi: 10.1073/pnas.0906053106
Tabatabaei-Jafari, H., Shaw, M. E., Walsh, E. & Cherbuin, N. Regional brain atrophy predicts time to conversion to Alzheimer’s disease, dependent on baseline volume. Neurobiol. Aging 83, 86–94 (2019).
pubmed: 31585370 doi: 10.1016/j.neurobiolaging.2019.08.033
Shi, F., Liu, B., Zhou, Y., Yu, C. & Jiang, T. Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer’s disease: Meta-analyses of MRI studies. Hippocampus 19, 1055–1064 (2009).
pubmed: 19309039 doi: 10.1002/hipo.20573
Ferrarini, L. et al. MMSE scores correlate with local ventricular enlargement in the spectrum from cognitively normal to Alzheimer disease. Neuroimage 39, 1832–1838 (2008).
pubmed: 18160312 doi: 10.1016/j.neuroimage.2007.11.003
Morra, J. H. et al. NeuroImage Automated mapping of hippocampal atrophy in 1-year repeat MRI data from 490 subjects with Alzheimer ’ s disease, mild cognitive impairment, and elderly controls. Neuroimage 45, S3–S15 (2009).
pubmed: 19041724 doi: 10.1016/j.neuroimage.2008.10.043
Arlt, S., Buchert, R. & Spies, L. Association between fully automated MRI-based volumetry of different brain regions and neuropsychological test performance in patients with amnestic mild cognitive impairment and Alzheimer ’ s disease. Eur. Arch. Psychiatry Clin. Neurosci. 263, 335–344 (2013).
pubmed: 22940716 doi: 10.1007/s00406-012-0350-7
Chetelat, G. et al. Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: A longitudinal MRI study. Neuroimage 27, 934–946 (2005).
pubmed: 15979341 doi: 10.1016/j.neuroimage.2005.05.015
Apostolova, L. G. et al. Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Neurobiol. Aging 11, 1077–1088 (2006).
Ogomori, K. et al. Beta-protein amyloid is widely distributed in the central nervous system of patients with Alzheimer’s disease. Am. J. Pathol. 134, 243–251 (1989).
pubmed: 2464938 pmcid: 1879581
Dugger, B. N. et al. The distribution of phosphorylated tau in spinal cords of Alzheimer’s disease and non-demented individuals. J. Alzheimer’s Dis. 34, 529–536 (2013).
doi: 10.3233/JAD-121864
Lorenzi, R. M. et al. Unsuspected involvement of spinal cord in alzheimer disease. Front. Cell. Neurosci. 14, 1–10 (2020).
doi: 10.3389/fncel.2020.00006
Albers, M. W. et al. At the interface of sensory and motor dysfunctions and Alzheimer’s disease. Alzheimer’s Dement. 11, 70–98 (2015).
doi: 10.1016/j.jalz.2014.04.514
Buchman, A. S., Wilson, R. S., Boyle, P. A., Bienias, J. L. & Bennett, D. A. Grip strength and the risk of incident Alzheimer’s disease. Neuroepidemiology 29, 66–73 (2007).
pubmed: 17925596 doi: 10.1159/000109498
Folstein, M. F., Folstein, S. E. & McHugh, P. R. Mini-mental state. J. Psychiatr. Res. 12, 189–198 (1975).
pubmed: 1202204 doi: 10.1016/0022-3956(75)90026-6
Williams, M. M., Storandt, M., Roe, C. M. & Morris, J. C. Progression of Alzheimer ’ s disease as measured by Clinical dementia rating sum of boxes scores. Alzheimer Dementia 9, 39–44 (2013).
doi: 10.1016/j.jalz.2012.01.005
De Leener, B. et al. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage 145, 24–43 (2017).
pubmed: 27720818 doi: 10.1016/j.neuroimage.2016.10.009
Gros, C. et al. Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. Neuroimage 184, 901–915 (2019).
pubmed: 30300751 doi: 10.1016/j.neuroimage.2018.09.081
Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. Neuroimage 62, 782–790 (2012).
pubmed: 21979382 doi: 10.1016/j.neuroimage.2011.09.015
Weeda, M. M. et al. Validation of mean upper cervical cord area (MUCCA) measurement techniques in multiple sclerosis (MS): High reproducibility and robustness to lesions, but large software and scanner effects. NeuroImage Clin. 24, 101962 (2019).
pubmed: 31416017 pmcid: 6704046 doi: 10.1016/j.nicl.2019.101962
Hsu, Y.-Y. et al. Comparison of automated and manual MRI volumetry of hippocampus in normal aging and dementia. J. Magn. Reson. Imaging 16, 305–310 (2002).
pubmed: 12205587 pmcid: 1851676 doi: 10.1002/jmri.10163
Christensen, G. E., Joshi, S. C. & Miller, M. I. Volumetric transformation of brain anatomy. IEEE Trans. Med. Imaging 16, 864–877 (1997).
pubmed: 9533586 doi: 10.1109/42.650882
Pfeffer, R. I., Kurosaki, T. T., Harrah, C. H., Chance, J. M. & Filos, S. Measurement of functional activities in older adults in the community. J. Gerontol. 37, 323–329 (1982).
pubmed: 7069156 doi: 10.1093/geronj/37.3.323
Veitch, D. P. et al. Using the Alzheimer’s Disease Neuroimaging Initiative to improve early detection, diagnosis, and treatment of Alzheimer’s disease. Alzheimers. Dement. 18, 824–857 (2022).
pubmed: 34581485 doi: 10.1002/alz.12422
Grabher, P. et al. Tracking sensory system atrophy and outcome prediction in spinal cord injury. Ann. Neurol. 78, 751–761 (2015).
pubmed: 26290444 pmcid: 4737098 doi: 10.1002/ana.24508
Seif, M. et al. Quantitative MRI of rostral spinal cord and brain regions is predictive of functional recovery in acute spinal cord injury. NeuroImage Clin. 20, 556–563 (2018).
pubmed: 30175042 pmcid: 6115607 doi: 10.1016/j.nicl.2018.08.026
Azzarito, M. et al. Simultaneous voxel-wise analysis of brain and spinal cord morphometry and microstructure within the SPM framework. Hum. Brain Mapp. 42, 220–232. https://doi.org/10.1002/hbm.25218 (2020).
doi: 10.1002/hbm.25218 pubmed: 32991031 pmcid: 7721239
Lundell, H. et al. Independent spinal cord atrophy measures correlate to motor and sensory deficits in individuals with spinal cord injury. Spinal Cord 49, 70–75 (2011).
pubmed: 20697420 doi: 10.1038/sc.2010.87
Yuan, Q. et al. Amyloid pathology in spinal cord of the transgenic alzheimer’s disease mice is correlated to the corticospinal tract pathway. J. Alzheimer’s Dis. 35, 675–685 (2013).
doi: 10.3233/JAD-122323
Wirths, O., Weis, J., Szczygielski, J., Multhaup, G. & Bayer, T. A. Axonopathy in an APP/PS1 transgenic mouse model of Alzheimer’s disease. Acta Neuropathol. 111, 312–319 (2006).
pubmed: 16520967 doi: 10.1007/s00401-006-0041-4
Probst, A. et al. Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathol. 99, 469–481 (2002).
doi: 10.1007/s004010051148
Sartoretti, T. et al. Structural MRI reveals cervical spinal cord atrophy in the P301L mouse model of tauopathy: Gender and transgene-dosing effects. Front. Aging Neurosci. 14, 1–12 (2022).
doi: 10.3389/fnagi.2022.825996
Chu, T.-H. et al. Axonal and myelinic pathology in 5xFAD Alzheimer’s mouse spinal cord. PLoS ONE 12, e0188218 (2017).
pubmed: 29176903 pmcid: 5703477 doi: 10.1371/journal.pone.0188218
Jack, C. R. et al. Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology 55, 484–489 (2000).
pubmed: 10953178 doi: 10.1212/WNL.55.4.484
Casas-Herrero, A. et al. Effect of a multicomponent exercise programme (VIVIFRAIL) on functional capacity in frail community elders with cognitive decline: Study protocol for a randomized multicentre control trial. Trials 20, 362 (2019).
pubmed: 31208471 pmcid: 6580555 doi: 10.1186/s13063-019-3426-0
Yeo, B. S. Y. et al. Association of hearing aids and cochlear implants with cognitive decline and dementia. JAMA Neurol. 80, 134 (2023).
pubmed: 36469314 doi: 10.1001/jamaneurol.2022.4427
Agosta, F. et al. Sensorimotor network rewiring in mild cognitive impairment and Alzheimer’s disease. Hum. Brain Mapp. 31, 515–525 (2010).
pubmed: 19777557 doi: 10.1002/hbm.20883
Salustri, C. et al. Sensorimotor cortex reorganization in alzheimer’s disease and metal dysfunction: A MEG study. Int. J. Alzheimers. Dis. 2013, 1–8 (2013).
doi: 10.1155/2013/638312
Fiford, C. M. et al. Patterns of progressive atrophy vary with age in Alzheimer’s disease patients. Neurobiol. Aging 63, 22–32 (2018).
pubmed: 29220823 pmcid: 5805840 doi: 10.1016/j.neurobiolaging.2017.11.002
Scarmeas, N. et al. Motor signs during the course of Alzheimer disease. Neurology 63, 975–982 (2004).
pubmed: 15452286 doi: 10.1212/01.WNL.0000138440.39918.0C
Scarmeas, N. et al. Motor signs predict poor outcomes in Alzheimer disease. Neurology 64, 1696–1703 (2005).
pubmed: 15911793 doi: 10.1212/01.WNL.0000162054.15428.E9
Waite, L. M. et al. Gait slowing as a predictor of incident dementia: 6-year longitudinal data from the Sydney Older Persons Study. J. Neurol. Sci. 229–230, 89–93 (2005).
pubmed: 15760625 doi: 10.1016/j.jns.2004.11.009
Chu, C., Tranel, D., Damasio, A. R. & Van Hoesen, G. W. The autonomic-related cortex: Pathology in Alzheimer’s disease. Cereb. Cortex 7, 86–95 (1997).
pubmed: 9023436 doi: 10.1093/cercor/7.1.86
Hase, Y. et al. Small vessel disease pathological changes in neurodegenerative and vascular dementias concomitant with autonomic dysfunction. Brain Pathol. 30, 191–202 (2020).
pubmed: 31357238 doi: 10.1111/bpa.12769

Auteurs

Tim M Emmenegger (TM)

Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland.

Raoul Seiler (R)

Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093, Zurich, Switzerland.

Paul G Unschuld (PG)

Department of Psychiatry, University of Geneva (UniGE), 1205, Geneva, Switzerland.
Division of Geriatric Psychiatry, University Hospitals of Geneva (HUG), 1226, Thônex, Switzerland.

Patrick Freund (P)

Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland. patrick.freund@balgrist.ch.
Zurich Neuroscience Center (ZNZ), Winterthurer Strasse 190, 8057, Zürich, Switzerland. patrick.freund@balgrist.ch.

Jan Klohs (J)

Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093, Zurich, Switzerland. jan.klohs@bruker.com.
Zurich Neuroscience Center (ZNZ), Winterthurer Strasse 190, 8057, Zürich, Switzerland. jan.klohs@bruker.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH