Targeted inhibition of glycogen synthase kinase-3 using 9-ING-41 (elraglusib) enhances CD8 T-cell-reactivity against neuroblastoma cells.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
17 Sep 2024
Historique:
received: 10 06 2024
accepted: 09 09 2024
medline: 18 9 2024
pubmed: 18 9 2024
entrez: 17 9 2024
Statut: epublish

Résumé

The prognosis of patients with high-risk neuroblastoma remains poor, partly due to inadequate immune recognition of the tumor. Neuroblastomas display extremely low surface MHC-I, preventing recognition by cytotoxic T lymphocytes (CTLs) and contributing to an immunosuppressive tumor microenvironment. Glycogen synthase kinase-3 beta (GSK-3β) is involved in pathways that may affect the MHC-I antigen processing and presentation pathway. We proposed that therapeutic inhibition of GSK-3β might improve the surface display of MHC-I molecules on neuroblastoma cells, and therefore tested if targeting of GSK-3β using the inhibitor 9-ING-41 (Elraglusib) improves MHC-I-mediated CTL recognition. We analyzed mRNA expression data of neuroblastoma tumor datasets and found that non-MYCN-amplified neuroblastomas express higher GSK-3β levels than MYCN-amplified tumors. In non-MYCN-amplified cells SH-SY5Y, SK-N-AS and SK-N-SH 9-ING-41 treatment enhanced MHC-I surface display and the expression levels of a subset of genes involved in MHC-I antigen processing and presentation. Further, 9-ING-41 treatment triggered increased STAT1 pathway activation, upstream of antigen presentation pathways in two of the three non-MYCN-amplified cell lines. Finally, in co-culture experiments with CD8 + T cells, 9-ING-41 improved immune recognition of the neuroblastoma cells, as evidenced by augmented T-cell activation marker levels and T-cell proliferation, which was further enhanced by PD-1 immune checkpoint inhibition. Our preclinical study provides experimental support to further explore the GSK-3β inhibitor 9-ING-41 as an immunomodulatory agent to increase tumor immune recognition in neuroblastoma.

Identifiants

pubmed: 39289439
doi: 10.1038/s41598-024-72492-y
pii: 10.1038/s41598-024-72492-y
doi:

Substances chimiques

Glycogen Synthase Kinase 3 beta EC 2.7.11.1
N-Myc Proto-Oncogene Protein 0
GSK3B protein, human EC 2.7.11.1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

21710

Informations de copyright

© 2024. The Author(s).

Références

Croteau, N., Nuchtern, J. & LaQuaglia, M. P. Management of neuroblastoma in pediatric patients. Surg. Oncol. Clin. North Am. 30, 291–304. https://doi.org/10.1016/j.soc.2020.11.010 (2021).
Anderson, J., Majzner, R. G. & Sondel, P. M. Immunotherapy of neuroblastoma: Facts and hopes. Clin. Cancer Res. 28, 3196–3206. https://doi.org/10.1158/1078-0432.CCR-21-1356 (2022).
pubmed: 35435953 pmcid: 9344822
Yarmarkovich, M. et al. Targeting of intracellular oncoproteins with peptide-centric CARs. Nature 623, 820–827 (2023).
pubmed: 37938771 pmcid: 10665195
Spel, L. et al. Natural killer cells facilitate PRAME-specific T-cell reactivity against neuroblastoma. vol. 6 www.impactjournals.com/oncotarget .
Dhatchinamoorthy, K., Colbert, J. D. & Rock, K. L. Cancer immune evasion through loss of MHC class I antigen presentation. Front. Immunol 12, 636568. https://doi.org/10.3389/fimmu.2021.636568 (2021).
pubmed: 33767702 pmcid: 7986854
Balasubramanian, A., John, T. & Asselin-Labat, M. L. Regulation of the antigen presentation machinery in cancer and its implication for immune surveillance. Biochem. Soc. Trans. 50, 825–837. https://doi.org/10.1042/BST20210961 (2022).
pubmed: 35343573 pmcid: 9162455
Burr, M. L. et al. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell 36, 385-401.e8 (2019).
pubmed: 31564637 pmcid: 6876280
Chen, C. L. et al. Role of glycogen synthase kinase-3 in interferon-γ-mediated immune hepatitis. Int. J. Mol. Sci. 23, 4669. https://doi.org/10.3390/ijms23094669 (2022).
pubmed: 35563060 pmcid: 9101719
Kai, J. I. et al. Glycogen synthase kinase-3β indirectly facilitates interferon-γ-induced nuclear factor-κB activation and nitric oxide biosynthesis. J. Cell Biochem. 111, 1522–1530 (2010).
pubmed: 20872791
Tsai, C.-C. et al. Glycogen synthase kinase-3β facilitates IFN-γ-induced STAT1 activation by regulating Src homology-2 domain-containing phosphatase 2. J. Immunol. 183, 856–864 (2009).
pubmed: 19542364
Medunjanin, S. et al. GSK-3β controls NF-kappaB activity via IKKγ/NEMO. Sci. Rep. 6, 38553 (2016).
pubmed: 27929056 pmcid: 5144080
Abd-Ellah, A., Voogdt, C., Krappmann, D., Möller, P. & Marienfeld, R. B. GSK3β modulates NF-κB activation and RelB degradation through site-specific phosphorylation of BCL10. Sci. Rep. 8, 1352 (2018).
pubmed: 29358699 pmcid: 5777991
Spel, L., Schiepers, A. & Boes, M. NFκB and MHC-1 interplay in neuroblastoma and immunotherapy. Trends Cancer 4, 715–717. https://doi.org/10.1016/j.trecan.2018.09.006 (2018).
pubmed: 30352674
Spel, L. et al. Nedd4-binding protein 1 and TNFAIP3-interacting protein 1 control MHC-1 display in neuroblastoma. Cancer Res. 78, 6621–6631 (2018).
pubmed: 30213788
Korur, S. et al. GSK3β regulates differentiation and growth arrest in glioblastoma. PLoS One 4, e7443 (2009).
pubmed: 19823589 pmcid: 2757722
Becker, M. et al. Polycomb protein BMI1 regulates osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells downstream of GSK3. Stem Cells Dev. 25, 922–933 (2016).
pubmed: 27100571
Duda, P. et al. Targeting GSK3 and associated signaling pathways involved in cancer. Cells 9, 1110. https://doi.org/10.3390/cells9051110 (2020).
pubmed: 32365809 pmcid: 7290852
Ugolkov, A. V. et al. 9-ING-41, a small-molecule glycogen synthase kinase-3 inhibitor, is active in neuroblastoma. Anticancer Drugs 29, 717–724 (2018).
pubmed: 29846250 pmcid: 6092218
Anraku, T. et al. Clinically relevant GSK-3β inhibitor 9-ING-41 is active as a single agent and in combination with other antitumor therapies in human renal cancer. Int. J. Mol. Med. 45, 315–323 (2020).
pubmed: 31894292
Hsu, A. et al. Clinical activity of 9-ING-41, a small molecule selective glycogen synthase kinase-3 beta (GSK-3β) inhibitor, in refractory adult T-Cell leukemia/lymphoma. Cancer Biol. Ther. 23, 417–423 (2022).
pubmed: 35815408 pmcid: 9272832
Park, R., Coveler, A. L., Cavalcante, L. & Saeed, A. Gsk-3β in pancreatic cancer: Spotlight on 9-ing-41, its therapeutic potential and immune modulatory properties. Biology 10, 610. https://doi.org/10.3390/biology10070610 (2021).
pubmed: 34356465 pmcid: 8301062
de Bruijn, I. et al. Analysis and visualization of longitudinal genomic and clinical Data from the AACR project GENIE biopharma collaborative in cBioPortal. https://doi.org/10.1158/0008-5472.CAN-23-0816/3362081/can-23-0816.pdf .
Cerami, E. et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).
pubmed: 22588877
Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the CBioPortal InTRODUcTiOn EQUiPMenT InSTRUcTiOnS querying individual cancer studies viewing and interpreting the results performing cross-cancer queries viewing cancer study summary data viewing genomic alterations in a single tumor: Patient view programmatic access notes and remarks complementary data sources and analysis Options future directions. vol. 6 http://www.adobe.com/products/illustrator.html (2013).
Ghandi, M. et al. Next-generation characterization of the cancer cell line encyclopedia. Nature 569, 503–508 (2019).
pubmed: 31068700 pmcid: 6697103
Wienke, J. et al. The immune landscape of neuroblastoma: Challenges and opportunities for novel therapeutic strategies in pediatric oncology. Eur. J. Cancer 144, 123–150. https://doi.org/10.1016/j.ejca.2020.11.014 (2021).
pubmed: 33341446
Zhou, F. Molecular mechanisms of IFN-γ to up-regulate MHC class I antigen processing and presentation. Int. Rev. Immunol. 28, 239–260. https://doi.org/10.1080/08830180902978120 (2009).
pubmed: 19811323
Bottino, C. et al. Natural killer cells and neuroblastoma: Tumor recognition, escape mechanisms, and possible novel immunotherapeutic approaches. Front. Immunol. 5, 56. https://doi.org/10.3389/fimmu.2014.00056 (2014).
pubmed: 24575100 pmcid: 3921882
Neal, Z. C. et al. NXS2 murine neuroblastomas express increased levels of MHC class I antigens upon recurrence following NK-dependent immunotherapy. Cancer Immunol. Immunother. 53, 41–52 (2004).
pubmed: 14504825
Kaya, Z. B. et al. Optimizing SH-SY5Y cell culture: exploring the beneficial effects of an alternative media supplement on cell proliferation and viability. Sci. Rep. 14, 4775 (2024).
pubmed: 38413790 pmcid: 10899233
Kovalevich, J. & Langford, D. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol. Biol. 1078, 9–21 (2013).
pubmed: 23975817 pmcid: 5127451
Zhao, T., Li, Y., Zhang, J. & Zhang, B. Pd-l1 expression increased by ifn-γ via jak2-stat1 signaling and predicts a poor survival in colorectal cancer. Oncol. Lett. 20, 1127–1134 (2020).
pubmed: 32724352 pmcid: 7377091
Garcia-Diaz, A. et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell. Rep. 19, 1189–1201 (2017).
pubmed: 28494868 pmcid: 6420824
Nguyen, X. D. et al. Flow cytometric analysis of T cell proliferation in a mixed lymphocyte reaction with dendritic cells. J. Immunol. Methods 275, 57–68 (2003).
pubmed: 12667670
Dickey, A. et al. GSK-3β inhibition promotes cell death, apoptosis, and in vivo tumor growth delay in neuroblastoma Neuro-2A cell line. J. Neurooncol. 104, 145–153 (2011).
pubmed: 21161565
Huntington, K. E., Zhang, S., Carneiro, B. A. & El-Deiry, W. S. Abstract 2676: GSK3β inhibition by small molecule 9-ING-41 decreases VEGF and other cytokines, and boosts NK and T cell-mediated killing of colorectal tumor cells. Cancer Res. 81, 2676 (2021).
Gudipati, V. et al. Inefficient CAR-proximal signaling blunts antigen sensitivity. Nat. Immunol. 21, 848–856 (2020).
pubmed: 32632291
Cichocki, F. et al. GSK3 inhibition drives maturation of NK cells and enhances their antitumor activity. Cancer Res. 77, 5664–5675 (2017).
pubmed: 28790065 pmcid: 5645243
Hirvonen, H. et al. The N-Myc Proto-Oncogene and IGF-II Growth Factor MRNAs Are Expressed by Distinct Cells in Human Fetal Kidney and Brain. http://rupress.org/jcb/article-pdf/108/3/1093/1462919/1093.pdf .
Duffy, D. J. et al. Integrative Omics Reveals MYCN as a Global Suppressor of Cellular Signalling and Enables Network-Based Therapeutic Target Discovery in Neuroblastoma. vol. 6 www.impactjournals.com/oncotarget .
Odia, Y. et al. Malignant glioma subset from actuate 1801: Phase I/II study of 9-ING-41, GSK-3β inhibitor, monotherapy or combined with chemotherapy for refractory malignancies. Neurooncol Adv 4, (2022).

Auteurs

A Markovska (A)

Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands.

K Somers (K)

Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Sydney, NSW, Australia.
School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia.

J Guillaume (J)

Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands.

J Melief (J)

Karolinska Institutet, Stockholm, Sweden.

A P Mazar (AP)

Actuate Therapeutics, Fort Worth, TX, 76107, USA.

D M Schmitt (DM)

Actuate Therapeutics, Fort Worth, TX, 76107, USA.

H S Schipper (HS)

Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands.
Pediatric Cardiology, Sophia Children's Hospital, Erasmus Medical Centre, Rotterdam, The Netherlands.

M Boes (M)

Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands. M.L.Boes@umcutrecht.nl.
Department of Pediatrics, University Medical Center Utrecht, Utrecht, Heidelberglaan 100, 3508 GA, The Netherlands. M.L.Boes@umcutrecht.nl.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH