Interlimb coordination is not strictly controlled during walking.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
20 Sep 2024
20 Sep 2024
Historique:
received:
19
02
2023
accepted:
04
09
2024
medline:
21
9
2024
pubmed:
21
9
2024
entrez:
20
9
2024
Statut:
epublish
Résumé
In human walking, the left and right legs move alternately, half a stride out of phase with each other. Although various parameters, such as stride frequency and length, vary with walking speed, the antiphase relationship remains unchanged. In contrast, during walking in left-right asymmetric situations, the relative phase shifts from the antiphase condition to compensate for the asymmetry. Interlimb coordination is important for adaptive walking and we expect that interlimb coordination is strictly controlled during walking. However, the control mechanism remains unclear. In the present study, we derived a quantity that models the control of interlimb coordination during walking using two coupled oscillators based on the phase reduction theory and Bayesian inference method. The results were not what we expected. Specifically, we found that the relative phase is not actively controlled until the deviation from the antiphase condition exceeds a certain threshold. In other words, the control of interlimb coordination has a dead zone like that in the case of the steering wheel of an automobile. It is conjectured that such forgoing of control enhances energy efficiency and maneuverability. Our discovery of the dead zone in the control of interlimb coordination provides useful insight for understanding gait control in humans.
Identifiants
pubmed: 39304734
doi: 10.1038/s42003-024-06843-w
pii: 10.1038/s42003-024-06843-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1152Subventions
Organisme : MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
ID : JPMJCR09U2
Organisme : MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
ID : JPMJCR09U2
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : JP20K21810
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : JP20H04144
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : JP20K20520
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : JP23H04467
Informations de copyright
© 2024. The Author(s).
Références
Alexander, R.McN. Principles of animal locomotion. Princeton University Press: Princeton, NJ (2003).
Haddad, J. M., van Emmerik, R. E. A., Whittlesey, S. N. & Hamill, J. Adaptations in interlimb and intralimb coordination to asymmetrical loading in human walking. Gait Posture 23, 429–434 (2006).
pubmed: 16099160
doi: 10.1016/j.gaitpost.2005.05.006
Courtine, G. & Schieppati, M. Human walking along a curved path. II. Gait features and EMG patterns. Eur. J. Neurosci. 18, 191–205 (2003).
pubmed: 12859352
doi: 10.1046/j.1460-9568.2003.02737.x
Reisman, D. S., Block, H. J. & Bastian, A. J. Interlimb coordination during locomotion: What can be adapted and stored? J. Neurophysiol. 94, 2403–2415 (2005).
pubmed: 15958603
doi: 10.1152/jn.00089.2005
Plotnik, M., Giladi, N. & Hausdorff, J. M. A new measure for quantifying the bilateral coordination of human gait: Effects of aging and Parkinson’s disease. Exp. Brain. Res. 181, 561–570 (2007).
pubmed: 17503027
doi: 10.1007/s00221-007-0955-7
Plotnik, M., Giladi, N. & Hausdorff, J. M. Bilateral coordination of walking and freezing of gait in Parkinson’s disease. Eur. J. Neurosci. 27, 1999–2006 (2008).
pubmed: 18412621
doi: 10.1111/j.1460-9568.2008.06167.x
Plotnik, M. & Hausdorff, J. M. The role of gait rhythmicity and bilateral coordination of stepping in the pathophysiology of freezing of gait in Parkinson’s disease. Mov. Disord. 23, S444–450 (2008).
Tanahashi, T. et al. Noisy interlimb coordination can be a main cause of freezing of gait in patients with little to no Parkinsonism. PLoS One 8, e84423 (2013).
pubmed: 24391953
pmcid: 3877290
doi: 10.1371/journal.pone.0084423
Tseng, S.-C. & Morton, S. M. Impaired interlimb coordination of voluntary leg movements in poststroke hemiparesis. J. Neurophysiol. 104, 248–257 (2010).
pubmed: 20463199
pmcid: 2904219
doi: 10.1152/jn.00906.2009
Aach, M. et al. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J. 14, 2847–2853 (2014).
pubmed: 24704677
doi: 10.1016/j.spinee.2014.03.042
Bryan, G. M., Franks, P. W., Klein, S. C., Peuchen, R. J. & Collins, S. H. A hip-knee-ankle exoskeleton emulator for studying gait assistance. Int. J. Robot. Res. 40, 722–746 (2021).
doi: 10.1177/0278364920961452
Grimmer, M., Riener, R., Walsh, C. J. & Seyfarth, A. Mobility related physical and functional losses due to aging and disease - a motivation for lower limb exoskeletons. J. NeuroEng. Rehabil. 16, 2 (2019).
pubmed: 30606194
pmcid: 6318939
doi: 10.1186/s12984-018-0458-8
Bishop, C.M. Pattern recognition and machine learning. Springer-Verlag: New York (2006).
Ota, K. and Aoyagi, T. Direct extraction of phase dynamics from fluctuating rhythmic data based on a Bayesian approach. arXiv:1405.4126 (2014).
Ermentrout, G.B. and Terman, D.H. Mathematical foundations of neuroscience. Springer-Verlag: New York (2010).
Hoppensteadt, F.C. and Izhikevich, E.M. Weakly connected neural networks. Springer-Verlag: New York (1997).
Kuramoto, Y. Chemical oscillations, waves, and turbulences. Springer-Verlag: Berlin (1984).
Winfree, A.T. The geometry of biological time. Springer-Verlag: New York (1980).
Kralemann, B., Cimponeriu, L., Rosenblum, M., Pikovsky, A. & Mrowka, R. Phase dynamics of coupled oscillators reconstructed from data. Phys. Rev. E 77, 066205 (2008).
doi: 10.1103/PhysRevE.77.066205
Revzen, S. & Guckenheimer, J. M. Estimating the phase of synchronized oscillators. Phys. Rev. E 78, 051907 (2008).
doi: 10.1103/PhysRevE.78.051907
Onojima, T., Goto, T., Mizuhara, H. & Aoyagi, T. A dynamical systems approach for estimating phase interactions between rhythms of different frequencies from experimental data. PLoS Comput. Biol. 14, e1005928 (2018).
pubmed: 29337999
pmcid: 5770039
doi: 10.1371/journal.pcbi.1005928
Ota, K., Aihara, I. & Aoyagi, T. Interaction mechanisms quantified from dynamical features of frog choruses. R. Soc. Open Sci. 7, 191693 (2020).
pubmed: 32269798
pmcid: 7137965
doi: 10.1098/rsos.191693
Couzin-Fuchs, E., Kiemel, T., Gal, O., Ayali, A. & Holmes, P. Intersegmental coupling and recovery from perturbations in freely running cockroaches. J. Exp. Biol. 218, 285–297 (2015).
pubmed: 25609786
pmcid: 4302167
doi: 10.1242/jeb.112805
Suzuki, Y. et al. Postural instability via a loss of intermittent control in elderly and patients with Parkinson’s disease: A model-based and data-driven approach. Chaos 30, 113140 (2020).
pubmed: 33261318
doi: 10.1063/5.0022319
Asai, Y. et al. A model of postural control in quiet standing: Robust compensation of delay-induced instability using intermittent activation of feedback control. PLoS One 4, e6169 (2009).
pubmed: 19584944
pmcid: 2704954
doi: 10.1371/journal.pone.0006169
Bottaro, A., Yasutake, Y., Nomura, T., Casadio, M. & Morasso, P. Bounded stability of the quiet standing posture: An intermittent control model. Hum. Mov. Sci. 27, 473–495 (2008).
pubmed: 18342382
doi: 10.1016/j.humov.2007.11.005
Nomura, T., Oshikawa, S., Suzuki, Y., Kiyono, K. & Morasso, P. Modeling human postural sway using an intermittent control and hemodynamic perturbations. Math. Biosci. 245, 86–95 (2013).
pubmed: 23435118
doi: 10.1016/j.mbs.2013.02.002
Suzuki, Y., Nomura, T., Casadio, M. & Morasso, P. Intermittent control with ankle, hip, and mixed strategies during quiet standing: A theoretical proposal based on a double inverted pendulum model. J. Theor. Biol. 310, 55–79 (2012).
pubmed: 22732276
doi: 10.1016/j.jtbi.2012.06.019
Borghese, N. A., Bianchi, L. & Lacquaniti, F. Kinematic determinants of human locomotion. J. Physiol. 494, 863–879 (1996).
pubmed: 8865081
pmcid: 1160684
doi: 10.1113/jphysiol.1996.sp021539
Bianchi, L., Angelini, D., Orani, G. P. & Lacquaniti, F. Kinematic coordination in human gait: relation to mechanical energy cost. J. Neurophysiol. 79, 2155–2170 (1998).
pubmed: 9535975
doi: 10.1152/jn.1998.79.4.2155
Ivanenko, Y. P., Cappellini, G., Dominici, N., Poppele, R. E. & Lacquaniti, F. Modular control of limb movements during human locomotion. J. Neurosci. 27, 11149–11161 (2007).
pubmed: 17928457
pmcid: 6672838
doi: 10.1523/JNEUROSCI.2644-07.2007
Ivanenko, Y. P., d’Avella, A., Poppele, R. E. & Lacquaniti, F. On the origin of planar covariation of elevation angles during human locomotion. J. Neurophysiol. 99, 1890–1898 (2008).
pubmed: 18272871
doi: 10.1152/jn.01308.2007
Catavitello, G., Ivanenko, Y. & Lacquaniti, F. A kinematic synergy for terrestrial locomotion shared by mammals and birds. eLife 7, e38190 (2018).
pubmed: 30376448
pmcid: 6257815
doi: 10.7554/eLife.38190
Bosco, G. & Poppele, R. E. Proprioception from a spinocerebellar perspective. Physiol. Rev. 81, 539–568 (2001).
pubmed: 11274339
doi: 10.1152/physrev.2001.81.2.539
Poppele, R. E., Bosco, G. & Rankin, A. M. Independent representations of limb axis length and orientation in spinocerebellar response components. J. Neurophysiol. 87, 409–422 (2002).
pubmed: 11784759
doi: 10.1152/jn.00022.2001
Wilshin, S., Kvalheim, M.D., Scott, C., and Revzen, S. Estimating phase from observed trajectories using the temporal 1-form. arXiv:2203.04498 (2022).
Hägglund, M. et al. Optogenetic dissection reveals multiple rhythmogenic modules underlying locomotion. Proc. Natl. Acad. Sci. USA 110, 11589–11594 (2013).
pubmed: 23798384
pmcid: 3710792
doi: 10.1073/pnas.1304365110
Kudo, N. & Yamada, T. Morphological and physiological studies of development of the monosynaptic reflex pathway in the rat lumbar spinal cord. J. Physiol. 389, 441–459 (1987).
pubmed: 2824763
pmcid: 1192089
doi: 10.1113/jphysiol.1987.sp016665
Soffe, S. R. Roles of glycinergic inhibition and N-methyl-D-aspartate receptor mediated excitation in the locomotor rhythmicity of one half of the Xenopus embryo central nervous system. Eur. J. Neurosci. 1, 561–571 (1989).
pubmed: 12106115
doi: 10.1111/j.1460-9568.1989.tb00363.x
Dietz, V., Zijlstra, W. & Duysens, J. Human neuronal interlimb coordination during split-belt locomotion. Exp. Brain Res. 101, 513–520 (1994).
pubmed: 7851518
doi: 10.1007/BF00227344
Forssberg, H., Grillner, S., Halbertsma, J. & Rossignol, S. The locomotion of the low spinal cat. II. Interlimb coordination. Acta. Physiol. Scand. 108, 283–295 (1980).
pubmed: 7376923
doi: 10.1111/j.1748-1716.1980.tb06534.x
Prokop, T., Berger, W., Zijlstra, W. & Dietz, V. Adaptational and learning processes during human split-belt locomotion: interaction between central mechanisms and afferent input. Exp. Brain Res. 106, 449–456 (1995).
pubmed: 8983988
doi: 10.1007/BF00231067
Yang, J. F., Lamont, E. V. & Pang, M. Y. C. Split-belt treadmill stepping in infants suggests autonomous pattern generators for the left and right leg in humans. J. Neurosci. 25, 6869–6876 (2005).
pubmed: 16033896
pmcid: 6725348
doi: 10.1523/JNEUROSCI.1765-05.2005
Danner, S. M. et al. Spinal V3 interneurons and left-right coordination in mammalian locomotion. Front. Cell. Neurosci. 13, 516 (2019).
pubmed: 31824266
pmcid: 6879559
doi: 10.3389/fncel.2019.00516
Laflamme, O. D. et al. Distinct roles of spinal commissural interneurons in transmission of contralateral sensory information. Curr. Biol. 33, 1–13 (2023).
doi: 10.1016/j.cub.2023.07.014
Molkov, Y. I., Bacak, B. J., Talpalar, A. E. & Rybak, I. A. Mechanisms of left-right coordination in mammalian locomotor pattern generation circuits: A mathematical modeling view. PLoS Comput. Biol. 11, e1004270 (2015).
pubmed: 25970489
pmcid: 4430237
doi: 10.1371/journal.pcbi.1004270
Zhang, H. et al. The role of V3 neurons in speed-dependent interlimb coordination during locomotion in mice. eLife 11, e73424 (2022).
pubmed: 35476640
pmcid: 9045817
doi: 10.7554/eLife.73424
Funato, T., Aoi, S., Tomita, N. & Tsuchiya, K. Validating the feedback control of intersegmental coordination by fluctuation analysis of disturbed walking. Exp. Brain Res. 233, 1421–1432 (2015).
pubmed: 25657068
doi: 10.1007/s00221-015-4216-x
Funato, T. et al. Evaluation of the phase-dependent rhythm control of human walking using phase response curves. PLoS Compt. Biol. 12, e1004950 (2016).
doi: 10.1371/journal.pcbi.1004950
Pikovsky, A., Rosenblum, M., and Kurths, J. Synchronization: A universal concept in nonlinear sciences. Cambridge University Press: Cambridge (2001).
Kralemann, B., Cimponeriu, L., Rosenblum, M., Pikovsky, A. & Mrowka, R. Uncovering interaction of coupled oscillators from data. Phys. Rev. E 76, 055201 (2007).
doi: 10.1103/PhysRevE.76.055201