The genetic relationship between human and pet isolates: a core genome multilocus sequence analysis of multidrug-resistant bacteria.
Humans
Animals
Multilocus Sequence Typing
Dogs
Drug Resistance, Multiple, Bacterial
/ genetics
Cats
Pets
/ microbiology
Methicillin-Resistant Staphylococcus aureus
/ genetics
Anti-Bacterial Agents
/ pharmacology
Genome, Bacterial
Vancomycin-Resistant Enterococci
/ genetics
Germany
Microbial Sensitivity Tests
Genetic Variation
One Health
Molecular typing
Multidrug-resistance
One Health
cgMLST
Journal
Antimicrobial resistance and infection control
ISSN: 2047-2994
Titre abrégé: Antimicrob Resist Infect Control
Pays: England
ID NLM: 101585411
Informations de publication
Date de publication:
20 Sep 2024
20 Sep 2024
Historique:
received:
22
03
2024
accepted:
25
08
2024
medline:
21
9
2024
pubmed:
21
9
2024
entrez:
20
9
2024
Statut:
epublish
Résumé
The global increase of multidrug-resistant organisms (MDROs) is one of the most urgent public health threats affecting both humans and animals. The One Health concept emphasizes the interconnectedness of human, animal and environmental health and highlights the need for integrated approaches to combat antimicrobial resistance (AMR). Although the sharing of environments and antimicrobial agents between companion animals and humans poses a risk for MDRO transmission, companion animals have been studied to a lesser extent than livestock animals. This study therefore used core genome multilocus sequence typing (cgMLST) to investigate the genetic relationships and putative transmission of MDROs between humans and pets. This descriptive integrated typing study included 252 human isolates, 53 dog isolates and 10 cat isolates collected from 2019 to 2022 at the Charité University Hospital in Berlin, Germany. CgMLST was performed to characterize methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci and multidrug-resistant gram-negative bacteria. The genetic diversity of the MDROs of the different host populations was determined and compared based on sequence type and core genome complex type. Within this study the majority of samples from pets and humans was genetically distinct. However, for some isolates, the number of allelic differences identified by cgMLST was low. Two cases of putative household transmission or shared source of VR E. faecium and MDR E. coli between humans and pets were documented. The interaction between humans and their pets appears to play a minor role in the spread of the MDROs studied. However, further research is needed. This study emphasizes the importance of comprehensive molecular surveillance and a multidisciplinary One Health approach to understand and contain the spread of MDROs in human and animal populations. The study is registered with the German Clinical Trials Register (DRKS00030009).
Identifiants
pubmed: 39304920
doi: 10.1186/s13756-024-01457-7
pii: 10.1186/s13756-024-01457-7
doi:
Substances chimiques
Anti-Bacterial Agents
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
107Informations de copyright
© 2024. The Author(s).
Références
Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–55.
doi: 10.1016/S0140-6736(21)02724-0
World Health Organization. Ten threats to global health in 2019. 2023. https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019
Friedman ND, Temkin E, Carmeli Y. The negative impact of antibiotic resistance. Clin Microbiol Infect. 2016;22(5):416–22.
pubmed: 26706614
doi: 10.1016/j.cmi.2015.12.002
Dadgostar P. Antimicrobial Resistance: Implications and Costs. Infection and Drug Resistance. 2019:3903-10.
Shrestha P, Cooper BS, Coast J, Oppong R, Do Thi Thuy N, Phodha T, et al. Enumerating the economic cost of antimicrobial resistance per antibiotic consumed to inform the evaluation of interventions affecting their use. Antimicrob Resist Infect Control. 2018;7:1–9.
doi: 10.1186/s13756-018-0384-3
Jonas O, Irwin A, Berthe F, Le Gall F, Marquez P. Drug-resistant infections: a threat to our economic future (Vol. 2) : final report (English). World Bank Group; 2017.
Atlas RM. One Health: its origins and future. One Health: The Human-Animal-Environment Interfaces in Emerging Infectious Diseases: The Concept and Examples of a One Health Approach. 2012:1–13.
Rhouma M, Soufi L, Cenatus S, Archambault M, Butaye P. Current insights regarding the role of farm animals in the spread of antimicrobial resistance from a one health perspective. Veterinary Sci. 2022;9(9):480.
doi: 10.3390/vetsci9090480
Guardabassi L, Loeber M, Jacobson A. Transmission of multiple antimicrobial-resistant Staphylococcus intermedius between dogs affected by deep pyoderma and their owners. Vet Microbiol. 2004;98(1):23–7.
pubmed: 14738778
doi: 10.1016/j.vetmic.2003.09.021
Guardabassi L, Schwarz S, Lloyd DH. Pet animals as reservoirs of antimicrobial-resistant bacteria. J Antimicrob Chemother. 2004;54(2):321–32.
pubmed: 15254022
doi: 10.1093/jac/dkh332
Bhat AH. Bacterial zoonoses transmitted by household pets and as reservoirs of antimicrobial resistant bacteria. Microb Pathog. 2021;155:104891.
pubmed: 33878397
doi: 10.1016/j.micpath.2021.104891
Pomba C, Rantala M, Greko C, Baptiste KE, Catry B, van Duijkeren E, et al. Public health risk of antimicrobial resistance transfer from companion animals. J Antimicrob Chemother. 2016;72(4):957–68.
Van Belkum A, Tassios P, Dijkshoorn L, Haeggman S, Cookson B, Fry N, et al. Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect. 2007;13:1–46.
pubmed: 17716294
doi: 10.1111/j.1469-0691.2007.01786.x
Uelze L, Grützke J, Borowiak M, Hammerl JA, Juraschek K, Deneke C, et al. Typing methods based on whole genome sequencing data. One Health Outlook. 2020;2:1–19.
doi: 10.1186/s42522-020-0010-1
Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences. 1998;95(6):3140-5.
European Centre for Disease Prevention and Control. ECDC Roadmap for Integration of Molecular and genomic typing into european-level surveillance and epidemic preparedness–version 2.1, 2016-19. ECDC Stockholm; 2016.
Klare I, Bender JK, Werner G, Koppe U, Abu Sin M, Eckmanns T, Eigenschaften. Häufigkeit und Verbreitung von Vancomycinresistenten Enterokokken (VRE) in Deutschland. 2017.
Hackmann C, Genath A, Weber A, Maechler F, Kola A, Schwab F et al. The transmission risk of multidrug-resistant organisms (MDRO) between hospital patients and their pets – a case control study Submitted for publication.
Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas M, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–81.
pubmed: 21793988
doi: 10.1111/j.1469-0691.2011.03570.x
Hackmann C, Gastmeier P, Genath A, Schwarz S, Lübke-Becker A, Leistner R. The transmission risk of multidrug-resistant organisms between pets and humans. ECCMID. 2023; Copenhagen, Denmark2023.
Andrews S. FastQC: a quality control tool for high throughput sequence data. Cambridge, United Kingdom: Babraham Bioinformatics, Babraham Institute; 2010.
De Been M, Pinholt M, Top J, Bletz S, Mellmann A, Van Schaik W, et al. Core genome multilocus sequence typing scheme for high-resolution typing of Enterococcus faecium. J Clin Microbiol. 2015;53(12):3788–97.
pubmed: 26400782
pmcid: 4652124
doi: 10.1128/JCM.01946-15
Zhou Z, Alikhan N-F, Mohamed K, Fan Y, Achtman M, Brown D, et al. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 2020;30(1):138–52.
pubmed: 31809257
pmcid: 6961584
doi: 10.1101/gr.251678.119
Rossen J, Harmsen D. Klebsiella pneumoniae/variicola/quasipneumoniae cgMLST. 2023. https://www.cgmlst.org/ncs/schema/Kpneumoniae578/
Leopold SR, Goering RV, Witten A, Harmsen D, Mellmann A. Bacterial whole-genome sequencing revisited: portable, scalable, and standardized analysis for typing and detection of virulence and antibiotic resistance genes. J Clin Microbiol. 2014;52(7):2365–70.
pubmed: 24759713
pmcid: 4097726
doi: 10.1128/JCM.00262-14
Carlsen L, Büttner H, Christner M, Franke G, Indenbirken D, Knobling B, et al. High burden and diversity of carbapenemase-producing Enterobacterales observed in wastewater of a tertiary care hospital in Germany. Int J Hyg Environ Health. 2022;242:113968.
pubmed: 35390565
doi: 10.1016/j.ijheh.2022.113968
Falgenhauer L, Fritzenwanker M, Imirzalioglu C, Steul K, Scherer M, Heudorf U, et al. Near-ubiquitous presence of a Vancomycin-resistant Enterococcus faecium ST117/CT71/van B–clone in the Rhine-Main metropolitan area of Germany. Antimicrob Resist Infect Control. 2019;8:1–6.
doi: 10.1186/s13756-019-0573-8
Weber A, Maechler F, Schwab F, Gastmeier P, Kola A. Increase of Vancomycin-resistant Enterococcus faecium strain type ST117 CT71 at Charité-Universitätsmedizin Berlin, 2008 to 2018. Antimicrob Resist Infect Control. 2020;9(1):1–9.
doi: 10.1186/s13756-020-00754-1
Maechler F, Weber A, Schwengers O, Schwab F, Denkel L, Behnke M, et al. Split k-mer analysis compared to cgMLST and SNP-based core genome analysis for detecting transmission of Vancomycin-resistant enterococci: results from routine outbreak analyses across different hospitals and hospitals networks in Berlin, Germany. Microb Genomics. 2023;9(1):000937.
doi: 10.1099/mgen.0.000937
Werner G, Neumann B, Weber RE, Kresken M, Wendt C, Bender JK, et al. Thirty years of VRE in Germany–expect the unexpected: the view from the National Reference Centre for Staphylococci and Enterococci. Drug Resist Updates. 2020;53:100732.
doi: 10.1016/j.drup.2020.100732
Wada Y, Irekeola AA, EAR ENS, Yusof W, Lih Huey L, Ladan Muhammad S, et al. Prevalence of Vancomycin-resistant Enterococcus (VRE) in companion animals: the first meta-analysis and systematic review. Antibiotics. 2021;10(2):138.
pubmed: 33572528
pmcid: 7911405
doi: 10.3390/antibiotics10020138
El-Razik KAA, Ibrahim ES, Arafa AA, Hedia RH, Younes AM, Hasanain MH. Molecular characterization of tetracycline and Vancomycin-resistant Enterococcus faecium isolates from healthy dogs in Egypt: a public health threat. BMC Genomics. 2023;24(1):610.
pubmed: 37828442
pmcid: 10568815
doi: 10.1186/s12864-023-09708-4
Pillay S, Zishiri OT, Adeleke MA. Prevalence of virulence genes in Enterococcus species isolated from companion animals and livestock. Onderstepoort J Vet Res. 2018;85(1):1–8.
doi: 10.4102/ojvr.v85i1.1583
Sevilla E, Mainar-Jaime RC, Moreno B, Martín-Burriel I, Morales M, Andrés-Lasheras S et al. Antimicrobial resistance among canine enteric Escherichia coli isolates and prevalence of attaching–effacing and extraintestinal pathogenic virulence factors in Spain. Acta Veterinaria Hungarica. 2020.
Shaheen B, Boothe D, Oyarzabal O, Smaha T. Antimicrobial resistance profiles and clonal relatedness of canine and feline Escherichia coli pathogens expressing multidrug resistance in the United States. J Vet Intern Med. 2010;24(2):323–30.
pubmed: 20102505
doi: 10.1111/j.1939-1676.2009.0468.x
Fayez M, Elmoslemany A, Al Romaihi AA, Azzawi AY, Almubarak A, Elsohaby I. Prevalence and risk factors Associated with Multidrug Resistance and extended-spectrum beta-lactamase Producing E. Coli isolated from healthy and diseased cats. Antibiotics-Basel. 2023;12(2).
Antibiotic Resistance Surveillance. Erregerstatistik. 2023. https://ars.rki.de/Content/Database/PathogenOverview.aspx
Hans JB, Pfennigwerth N, Neumann B, Pfeifer Y, Fischer MA, Eisfeld J, et al. Molecular surveillance reveals the emergence and dissemination of NDM-5-producing Escherichia coli high-risk clones in Germany, 2013 to 2019. Eurosurveillance. 2023;28(10):2200509.
pubmed: 36892470
pmcid: 9999457
doi: 10.2807/1560-7917.ES.2023.28.10.2200509
Pietsch M, Irrgang A, Roschanski N, Brenner Michael G, Hamprecht A, Rieber H, et al. Whole genome analyses of CMY-2-producing Escherichia coli isolates from humans, animals and food in Germany. BMC Genomics. 2018;19:1–17.
doi: 10.1186/s12864-018-4976-3
Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD, Pitout JD. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin Microbiol Rev. 2019;32(3). https://doi.org/10.1128/cmr . 00135 – 18.
Pietsch M, Eller C, Wendt C, Holfelder M, Falgenhauer L, Fruth A, et al. Molecular characterisation of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates from hospital and ambulatory patients in Germany. Vet Microbiol. 2017;200:130–7.
pubmed: 26654217
doi: 10.1016/j.vetmic.2015.11.028
Kocsis B, Gulyás D, Szabó D. Emergence and dissemination of extraintestinal pathogenic high-risk international clones of Escherichia coli. Life. 2022;12(12):2077.
pubmed: 36556442
pmcid: 9780897
doi: 10.3390/life12122077
Elankumaran P, Cummins ML, Browning GF, Marenda MS, Reid CJ, Djordjevic SP. Genomic and temporal trends in canine ExPEC reflect those of human ExPEC. Microbiol Spectr. 2022;10(3):e01291–22.
pubmed: 35674442
pmcid: 9241711
doi: 10.1128/spectrum.01291-22
Ewers C, Bethe A, Semmler T, Guenther S, Wieler L. Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clin Microbiol Infect. 2012;18(7):646–55.
pubmed: 22519858
doi: 10.1111/j.1469-0691.2012.03850.x
Ljungquist O, Ljungquist D, Myrenås M, Rydén C, Finn M, Bengtsson B. Evidence of household transfer of ESBL-/pAmpC-producing Enterobacteriaceae between humans and dogs - a pilot study. Infect Ecol Epidemiol. 2016;6:31514.
pubmed: 27330043
Johnson JR, Clabots C. Sharing of virulent Escherichia coli clones among household members of a woman with acute cystitis. Clin Infect Dis. 2006;43(10):e101–8.
pubmed: 17051483
doi: 10.1086/508541
Johnson JR, Clabots C, Kuskowski MA. Multiple-host sharing, long-term persistence, and virulence of Escherichia coli clones from human and animal household members. J Clin Microbiol. 2008;46(12):4078–82.
pubmed: 18945846
pmcid: 2593269
doi: 10.1128/JCM.00980-08
Maiden MC, Van Rensburg MJJ, Bray JE, Earle SG, Ford SA, Jolley KA, et al. MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol. 2013;11(10):728–36.
pubmed: 23979428
pmcid: 3980634
doi: 10.1038/nrmicro3093
de Been M, Lanza VF, de Toro M, Scharringa J, Dohmen W, Du Y, et al. Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLoS Genet. 2014;10(12):e1004776.
pubmed: 25522320
pmcid: 4270446
doi: 10.1371/journal.pgen.1004776
Grönthal T, Österblad M, Eklund M, Jalava J, Nykäsenoja S, Pekkanen K, et al. Sharing more than friendship–transmission of NDM-5 ST167 and CTX-M-9 ST69 Escherichia coli between dogs and humans in a family, Finland, 2015. Eurosurveillance. 2018;23(27):1700497.
pubmed: 29991384
pmcid: 6152158
doi: 10.2807/1560-7917.ES.2018.23.27.1700497
Skurnik D, Ruimy R, Andremont A, Amorin C, Rouquet P, Picard B, et al. Effect of human vicinity on antimicrobial resistance and integrons in animal faecal Escherichia coli. J Antimicrob Chemother. 2006;57(6):1215–9.
pubmed: 16581916
doi: 10.1093/jac/dkl122
Hamprecht A, Rohde AM, Behnke M, Feihl S, Gastmeier P, Gebhardt F, et al. Colonization with third-generation cephalosporin-resistant Enterobacteriaceae on hospital admission: prevalence and risk factors. J Antimicrob Chemother. 2016;71(10):2957–63.
pubmed: 27317445
doi: 10.1093/jac/dkw216
Xanthopoulou K, Imirzalioglu C, Walker SV, Behnke M, Dinkelacker AG, Eisenbeis S, et al. Surveillance and genomic analysis of third-generation cephalosporin-resistant and carbapenem-resistant Klebsiella pneumoniae Complex in Germany. Antibiotics. 2022;11(10):1286.
pubmed: 36289942
pmcid: 9598256
doi: 10.3390/antibiotics11101286
Gagliotti C, Ciccarese V, Sarti M, Giordani S, Barozzi A, Braglia C, et al. Active surveillance for asymptomatic carriers of carbapenemase-producing Klebsiella pneumoniae in a hospital setting. J Hosp Infect. 2013;83(4):330–2.
pubmed: 23415499
doi: 10.1016/j.jhin.2012.11.024
Koppe U, von Laer A, Kroll LE, Noll I, Feig M, Schneider M, et al. Carbapenem non-susceptibility of Klebsiella pneumoniae isolates in hospitals from 2011 to 2016, data from the German Antimicrobial Resistance Surveillance (ARS). Antimicrob Resist Infect Control. 2018;7(1):1–12.
doi: 10.1186/s13756-018-0362-9
Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol. 2005;43(8):4178–82.
pubmed: 16081970
pmcid: 1233940
doi: 10.1128/JCM.43.8.4178-4182.2005
Klaper K, Hammerl JA, Rau J, Pfeifer Y, Werner G. Genome-based analysis of Klebsiella spp. isolates from animals and food products in Germany, 2013–2017. Pathogens. 2021;10(5):573.
pubmed: 34066734
pmcid: 8170897
doi: 10.3390/pathogens10050573
Peirano G, Chen L, Kreiswirth BN, Pitout JD. Emerging antimicrobial-resistant high-risk Klebsiella pneumoniae clones ST307 and ST147. Antimicrob Agents Chemother. 2020;64(10):01148–20. https://doi.org/10.1128/aac .
doi: 10.1128/aac
David S, Reuter S, Harris SR, Glasner C, Feltwell T, Argimon S, et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol. 2019;4(11):1919–29.
pubmed: 31358985
pmcid: 7244338
doi: 10.1038/s41564-019-0492-8
Haller S, Kramer R, Becker K, Bohnert JA, Eckmanns T, Hans JB, et al. Extensively drug-resistant Klebsiella pneumoniae ST307 outbreak, north-eastern Germany, June to October 2019. Eurosurveillance. 2019;24(50):1900734.
pubmed: 31847948
pmcid: 6918589
doi: 10.2807/1560-7917.ES.2019.24.50.1900734
Marques C, Belas A, Aboim C, Cavaco-Silva P, Trigueiro G, Gama LT, et al. Evidence of sharing of Klebsiella pneumoniae strains between healthy companion animals and cohabiting humans. J Clin Microbiol. 2019;57(6):01537–18. https://doi.org/10.1128/jcm .
doi: 10.1128/jcm
Schmiedel J, Falgenhauer L, Domann E, Bauerfeind R, Prenger-Berninghoff E, Imirzalioglu C, et al. Multiresistant extended-spectrum β-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiol. 2014;14(1):1–13.
doi: 10.1186/1471-2180-14-187
Xiong Z, Zhang C, Sarbandi K, Liang Z, Mai J, Liang B, et al. Clinical and molecular epidemiology of carbapenem-resistant Enterobacteriaceae in pediatric inpatients in South China. Microbiol Spectr. 2023;11(6):e02839–23.
pubmed: 37819092
pmcid: 10714942
doi: 10.1128/spectrum.02839-23
Robert Koch-Institut. Epidemiologisches Bulletin 36/2021. Berlin: Robert Koch-Institut; 2021.
Mezzatesta ML, Gona F, Stefani S. Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. Future Microbiol. 2012;7(7):887–902.
pubmed: 22827309
doi: 10.2217/fmb.12.61
Haenni M, Saras E, Ponsin C, Dahmen S, Petitjean M, Hocquet D, et al. High prevalence of international ESBL CTX-M-15-producing Enterobacter cloacae ST114 clone in animals. J Antimicrob Chemother. 2016;71(6):1497–500.
pubmed: 26850718
doi: 10.1093/jac/dkw006
Loncaric I, Misic D, Szostak MP, Künzel F, Schäfer-Somi S, Spergser J. Broad-spectrum cephalosporin-resistant and/or fluoroquinolone-resistant enterobacterales associated with canine and feline urogenital infections. Antibiotics. 2020;9(7):387.
pubmed: 32645942
pmcid: 7399855
doi: 10.3390/antibiotics9070387
Hoffmann H, Roggenkamp A. Population genetics of the nomenspecies Enterobacter cloacae. Appl Environ Microbiol. 2003;69(9):5306–18.
pubmed: 12957918
pmcid: 194928
doi: 10.1128/AEM.69.9.5306-5318.2003
Girlich D, Poirel L, Nordmann P. Clonal distribution of multidrug-resistant Enterobacter cloacae. Diagn Microbiol Infect Dis. 2015;81(4):264–8.
pubmed: 25680336
doi: 10.1016/j.diagmicrobio.2015.01.003
Vogt S, Löffler K, Dinkelacker AG, Bader B, Autenrieth IB, Peter S, et al. Fourier-transform infrared (FTIR) spectroscopy for typing of clinical Enterobacter cloacae complex isolates. Front Microbiol. 2019;10:2582.
pubmed: 31781074
pmcid: 6851243
doi: 10.3389/fmicb.2019.02582
Börjesson S, Greko C, Myrenås M, Landén A, Nilsson O, Pedersen K. A link between the newly described colistin resistance gene mcr-9 and clinical Enterobacteriaceae isolates carrying blaSHV-12 from horses in Sweden. J Global Antimicrob Resist. 2020;20:285–9.
doi: 10.1016/j.jgar.2019.08.007
Manandhar S, Nguyen Q, Nguyen Thi Nguyen T, Pham DT, Rabaa MA, Dongol S, et al. Genomic epidemiology, antimicrobial resistance and virulence factors of Enterobacter cloacae complex causing potential community-onset bloodstream infections in a tertiary care hospital of Nepal. JAC-Antimicrobial Resist. 2022;4(3):dlac050.
doi: 10.1093/jacamr/dlac050
Wiese-Posselt M, Saydan S, Schwab F, Behnke M, Kola A, Kramer TS, et al. Screening for Methicillin-Resistant Staphylococcus aureus: an analysis based on findings from the hospital infection Surveillance System (KISS), 2006–2021. Deutsches Ärzteblatt International. 2023;120(26):447.
pubmed: 37199029
pmcid: 10481939
Schubert M, Kämpf D, Wahl M, Hofmann S, Girbig M, Jatzwauk L, et al. MRSA point prevalence among health care workers in German rehabilitation centers: a multi-center, cross-sectional study in a non-outbreak setting. Int J Environ Res Public Health. 2019;16(9):1660.
pubmed: 31086069
pmcid: 6539477
doi: 10.3390/ijerph16091660
Köck R, Cuny C. Multiresistente Erreger bei Tier und Mensch. Medizinische Klinik – Intensivmedizin und Notfallmedizin. 2018;10.
Strommenger B, Kehrenberg C, Kettlitz C, Cuny C, Verspohl J, Witte W, et al. Molecular characterization of methicillin-resistant Staphylococcus aureus strains from pet animals and their relationship to human isolates. J Antimicrob Chemother. 2006;57(3):461–5.
pubmed: 16387748
doi: 10.1093/jac/dki471
Nienhoff U, Kadlec K, Chaberny IF, Verspohl J, Gerlach G-F, Schwarz S, et al. Transmission of methicillin-resistant Staphylococcus aureus strains between humans and dogs: two case reports. J Antimicrob Chemother. 2009;64(3):660–2.
pubmed: 19608580
doi: 10.1093/jac/dkp243
Lagos AC, Sundqvist M, Dyrkell F, Stegger M, Söderquist B, Mölling P. Evaluation of within-host evolution of methicillin-resistant Staphylococcus aureus (MRSA) by comparing cgMLST and SNP analysis approaches. Sci Rep. 2022;12(1):10541.
pubmed: 35732699
pmcid: 9214674
doi: 10.1038/s41598-022-14640-w
Kinnevey P, Kearney A, Shore A, Earls M, Brennan G, Poovelikunnel T, et al. Meticillin-resistant Staphylococcus aureus transmission among healthcare workers, patients and the environment in a large acute hospital under non-outbreak conditions investigated using whole-genome sequencing. J Hosp Infect. 2021;118:99–107.
pubmed: 34428508
doi: 10.1016/j.jhin.2021.08.020
Köck R, Ballhausen B, Bischoff M, Cuny C, Eckmanns T, Fetsch A, et al. The impact of zoonotic MRSA colonization and infection in Germany. Berliner Und Münchener. Tierärztliche Wochenschrift. 2014;127(9–10):384–98.
Schaumburg F, Köck R, Mellmann A, Richter L, Hasenberg F, Kriegeskorte A, et al. Population dynamics among methicillin-resistant Staphylococcus aureus isolates in Germany during a 6-year period. J Clin Microbiol. 2012;50(10):3186–92.
pubmed: 22814464
pmcid: 3457438
doi: 10.1128/JCM.01174-12
Vincze S, Stamm I, Kopp PA, Hermes J, Adlhoch C, Semmler T, et al. Alarming proportions of methicillin-resistant Staphylococcus aureus (MRSA) in wound samples from companion animals, Germany 2010–2012. PLoS ONE. 2014;9(1):e85656.
pubmed: 24465637
pmcid: 3896405
doi: 10.1371/journal.pone.0085656
Haag AF, Fitzgerald JR, Penadés JR. Staphylococcus aureus in animals. Microbiol Spectr. 2019;7(3). https://doi.org/10.1128/microbiolspec.gpp3-0060-2019 .
Rynhoud H, Forde BM, Beatson SA, Abraham S, Meler E, Soares Magalhaes RJ, et al. Molecular epidemiology of clinical and colonizing methicillin-resistant Staphylococcus isolates in companion animals. Front Veterinary Sci. 2021;8:620491.
doi: 10.3389/fvets.2021.620491
David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev. 2010;23(3):616–87.
pubmed: 20610826
pmcid: 2901661
doi: 10.1128/CMR.00081-09
Silva V, Caniça M, Manageiro V, Vieira-Pinto M, Pereira JE, Maltez L, et al. Antimicrobial resistance and molecular epidemiology of Staphylococcus aureus from hunters and hunting dogs. Pathogens. 2022;11(5):548.
pubmed: 35631069
pmcid: 9143024
doi: 10.3390/pathogens11050548
Zhu F, Zhuang H, Ji S, Xu E, Di L, Wang Z, et al. Household transmission of community-associated methicillin-resistant Staphylococcus aureus. Front Public Health. 2021;9:658638.
pubmed: 34136453
pmcid: 8200482
doi: 10.3389/fpubh.2021.658638
Cuny C, Layer-Nicolaou F, Weber R, Köck R, Witte W. Colonization of dogs and their owners with Staphylococcus aureus and Staphylococcus pseudintermedius in households, Veterinary practices, and Healthcare Facilities. Microorganisms. 2022;10(4).