Crosslinking of Ly6a metabolically reprograms CD8 T cells for cancer immunotherapy.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
27 Sep 2024
Historique:
received: 13 06 2023
accepted: 25 08 2024
medline: 28 9 2024
pubmed: 28 9 2024
entrez: 27 9 2024
Statut: epublish

Résumé

T cell inhibitory mechanisms prevent autoimmune reactions, while cancer immunotherapy aims to remove these inhibitory signals. Chronic ultraviolet (UV) exposure attenuates autoimmunity through promotion of poorly understood immune-suppressive mechanisms. Here we show that mice with subcutaneous melanoma are not responsive to anti-PD1 immunotherapy following chronic UV irradiation, given prior to tumor injection, due to the suppression of T cell killing ability in skin-draining lymph nodes. Using mass cytometry and single-cell RNA-sequencing analyzes, we discover that skin-specific, UV-induced suppression of T-cells killing activity is mediated by upregulation of a Ly6a

Identifiants

pubmed: 39333093
doi: 10.1038/s41467-024-52079-x
pii: 10.1038/s41467-024-52079-x
doi:

Substances chimiques

Antigens, Ly 0
Programmed Cell Death 1 Receptor 0
Interferon Type I 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8354

Informations de copyright

© 2024. The Author(s).

Références

Roelandts, R. The history of phototherapy: something new under the sun? J. Am. Acad. Dermatol. 46, 926–930 (2002).
pubmed: 12063493 doi: 10.1067/mjd.2002.121354
Romerdahl, C. A., Donawho, C., Fidler, I. J. & Kripke, M. L. Effect of ultraviolet-B radiation on the in vivo growth of murine melanoma cells. Cancer Res 48, 4007–4010 (1988).
pubmed: 3383194
Donawho, C. K. & Kripke, M. L. Evidence that the local effect of ultraviolet radiation on the growth of murine melanomas is immunologically mediated. Cancer Res 51, 4176–4181 (1991).
pubmed: 1678311
Hart, P. H. et al. Dermal mast cells determine susceptibility to ultraviolet B-induced systemic suppression of contact hypersensitivity responses in mice. J. Exp. Med. 187, 2045–2053 (1998).
pubmed: 9625764 pmcid: 2212357 doi: 10.1084/jem.187.12.2045
Damiani, E. & Ullrich, S. E. Understanding the connection between platelet-activating factor, a UV-induced lipid mediator of inflammation, immune suppression and skin cancer. Prog. Lipid Res. 63, 14–27 (2016).
pubmed: 27073146 pmcid: 4975990 doi: 10.1016/j.plipres.2016.03.004
Noonan, F. P., De Fabo, E. C. & Morrison, H. Cis-urocanic acid, a product formed by ultraviolet B irradiation of the skin, initiates an antigen presentation defect in splenic dendritic cells in vivo. J. Invest. Dermatol. 90, 92–99 (1988).
pubmed: 2448393 doi: 10.1111/1523-1747.ep12462045
Hart, P. H., Gorman, S. & Finlay-Jones, J. J. Modulation of the immune system by UV radiation: more than just the effects of vitamin D? Nat. Rev. Immunol. 11, 584–596 (2011).
pubmed: 21852793 doi: 10.1038/nri3045
Moodycliffe, A. M., Kimber, I. & Norval, M. Role of tumour necrosis factor-alpha in ultraviolet B light-induced dendritic cell migration and suppression of contact hypersensitivity. Immunology 81, 79–84 (1994).
pubmed: 8132224 pmcid: 1422292
Ullrich, S. E. The effect of ultraviolet radiation-induced suppressor cells on T-cell activity. Immunology 60, 353–360 (1987).
pubmed: 2952584 pmcid: 1453241
Sakowska, J. et al. Autoimmunity and cancer-two sides of the same coin. Front. Immunol. 13, 793234 (2022).
pubmed: 35634292 pmcid: 9140757 doi: 10.3389/fimmu.2022.793234
Robert, C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat. Commun. 11, 3801 (2020).
pubmed: 32732879 pmcid: 7393098 doi: 10.1038/s41467-020-17670-y
Harel, M. et al. Proteomics of melanoma response to immunotherapy reveals mitochondrial dependence. Cell 179, 236–250 (2019).
pubmed: 31495571 pmcid: 7993352 doi: 10.1016/j.cell.2019.08.012
González Maglio, D. H., Paz, M. L. & Leoni, J. Sunlight effects on immune system: is there something else in addition to UV-induced immunosuppression? Biomed. Res. Int. 2016, 1934518 (2016).
pubmed: 28070504 pmcid: 5187459 doi: 10.1155/2016/1934518
Schade, N., Esser, C. & Krutmann, J. Ultraviolet B radiation-induced immunosuppression: molecular mechanisms and cellular alterations. Photochem. Photobiol. Sci. 4, 699–708 (2005).
pubmed: 16121280 doi: 10.1039/b418378a
Schwarz, T. Mechanisms of UV-induced immunosuppression. Keio J. Med. 54, 165–171 (2005).
pubmed: 16452825 doi: 10.2302/kjm.54.165
Skopelja-Gardner, S. et al. Acute skin exposure to ultraviolet light triggers neutrophil-mediated kidney inflammation. Proc. Natl Acad. Sci. USA 118, e2019097118 (2021).
pubmed: 33397815 pmcid: 7826360 doi: 10.1073/pnas.2019097118
Simon, J. C., Tigelaar, R. E., Bergstresser, P. R., Edelbaum, D. & Cruz, P. D. Ultraviolet B radiation converts Langerhans cells from immunogenic to tolerogenic antigen-presenting cells. Induction of specific clonal anergy in CD4+ T helper 1 cells. J. Immunol. 146, 485–491 (1991).
pubmed: 1670944 doi: 10.4049/jimmunol.146.2.485
Hart, P. H. & Norval, M. More than effects in skin: ultraviolet radiation-induced changes in immune cells in human blood. Front. Immunol. 12, 694086 (2021).
pubmed: 34177957 pmcid: 8222718 doi: 10.3389/fimmu.2021.694086
Garssen, J. et al. UVB exposure-induced systemic modulation of Th1- and Th2-mediated immune responses. Immunology 97, 506–514 (1999).
pubmed: 10447774 pmcid: 2326852 doi: 10.1046/j.1365-2567.1999.00801.x
Taniguchi, M. et al. Establishment and characterization of a malignant melanocytic tumor cell line expressing the ret oncogene. Oncogene 7, 1491–1496 (1992).
pubmed: 1630812
Kato, M. et al. Transgenic mouse model for skin malignant melanoma. Oncogene 17, 1885–1888 (1998).
pubmed: 9778055 doi: 10.1038/sj.onc.1202077
Sharma, M. R., Werth, B. & Werth, V. P. Animal models of acute photodamage: comparisons of anatomic, cellular and molecular responses in C57BL/6J, SKH1 and Balb/c mice. Photochem. Photobiol. 87, 690–698 (2011).
pubmed: 21332482 pmcid: 3928020 doi: 10.1111/j.1751-1097.2011.00911.x
Hogquist, K. A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).
pubmed: 8287475 doi: 10.1016/0092-8674(94)90169-4
Gattinoni, L., Speiser, D. E., Lichterfeld, M. & Bonini, C. T memory stem cells in health and disease. Nat. Med. 23, 18–27 (2017).
pubmed: 28060797 pmcid: 6354775 doi: 10.1038/nm.4241
DeLong, J. H. et al. Cytokine- and TCR-mediated regulation of T cell expression of Ly6C and Sca-1. J. Immunol. 200, 1761–1770 (2018).
pubmed: 29358280 doi: 10.4049/jimmunol.1701154
Holmes, C. & Stanford, W. L. Concise review: stem cell antigen-1: expression, function, and enigma. Stem Cells 25, 1339–1347 (2007).
pubmed: 17379763 doi: 10.1634/stemcells.2006-0644
Cui, A. et al. Dictionary of immune responses to cytokines at single-cell resolution. Nature 625, 377–384 (2024).
pubmed: 38057668 doi: 10.1038/s41586-023-06816-9
Elyahu, Y. et al. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. Sci. Adv. 5, eaaw8330 (2019).
pubmed: 31457092 pmcid: 6703865 doi: 10.1126/sciadv.aaw8330
Toichi, E., Lu, K. Q., Swick, A. R., McCormick, T. S. & Cooper, K. D. Skin-infiltrating monocytes/macrophages migrate to draining lymph nodes and produce IL-10 after contact sensitizer exposure to UV-irradiated skin. J. Invest. Dermatol. 128, 2705–2715 (2008).
pubmed: 18509360 pmcid: 3910256 doi: 10.1038/jid.2008.137
Davidson, S. et al. Single-cell RNA sequencing reveals a dynamic stromal niche that supports tumor growth. Cell Rep. 31, 107628 (2020).
pubmed: 32433953 pmcid: 7242909 doi: 10.1016/j.celrep.2020.107628
Shmerling, M. et al. LY6S, a new IFN-inducible human member of the ly6a subfamily expressed by spleen cells and associated with inflammation and viral resistance. Immunohorizons 6, 253–272 (2022).
pubmed: 35440514 doi: 10.4049/immunohorizons.2200018
Upadhyay, G. Emerging role of lymphocyte antigen-6 family of genes in cancer and immune cells. Front. Immunol. 10, 819 (2019).
pubmed: 31068932 pmcid: 6491625 doi: 10.3389/fimmu.2019.00819
Zhang, Y. et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell 39, 1578–1593 (2021).
pubmed: 34653365 doi: 10.1016/j.ccell.2021.09.010
Jerby-Arnon, L. et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175, 984–997 (2018).
pubmed: 30388455 pmcid: 6410377 doi: 10.1016/j.cell.2018.09.006
Zheng, L. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 374, abe6474 (2021).
pubmed: 34914499 doi: 10.1126/science.abe6474
Overwijk, W. W. et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J. Exp. Med. 198, 569–580 (2003).
pubmed: 12925674 pmcid: 2194177 doi: 10.1084/jem.20030590
Bamezai, A. & Rock, K. L. Overexpressed Ly-6A.2 mediates cell-cell adhesion by binding a ligand expressed on lymphoid cells. Proc. Natl Acad. Sci. USA 92, 4294–4298 (1995).
pubmed: 7753800 pmcid: 41930 doi: 10.1073/pnas.92.10.4294
Willinger, T. et al. Human naive CD8 T cells down-regulate expression of the WNT pathway transcription factors lymphoid enhancer binding factor 1 and transcription factor 7 (T cell factor-1) following antigen encounter in vitro and in vivo. J. Immunol. 176, 1439–1446 (2006).
pubmed: 16424171 doi: 10.4049/jimmunol.176.3.1439
Richards, H., Longhi, M. P., Wright, K., Gallimore, A. & Ager, A. CD62L (L-selectin) down-regulation does not affect memory T cell distribution but failure to shed compromises anti-viral immunity. J. Immunol. 180, 198–206 (2008).
pubmed: 18097020 doi: 10.4049/jimmunol.180.1.198
Tan, T. C. J. et al. Suboptimal T-cell receptor signaling compromises protein translation, ribosome biogenesis, and proliferation of mouse CD8 T cells. Proc. Natl Acad. Sci. USA 114, E6117–E6126 (2017).
pubmed: 28696283 pmcid: 5544288 doi: 10.1073/pnas.1700939114
Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).
pubmed: 22195744 pmcid: 3248798 doi: 10.1016/j.immuni.2011.09.021
Gratton, M. A., Schmiedt, R. A. & Schulte, B. A. Age-related decreases in endocochlear potential are associated with vascular abnormalities in the stria vascularis. Hear. Res. 102, 181–190 (1996).
pubmed: 8951461 doi: 10.1016/S0378-5955(96)90017-9
Pollizzi, K. N. et al. mTORC1 and mTORC2 selectively regulate CD8
pubmed: 25893604 pmcid: 4463194 doi: 10.1172/JCI77746
Saravia, J. et al. Homeostasis and transitional activation of regulatory T cells require c-Myc. Sci. Adv. 6, eaaw6443 (2020).
pubmed: 31911938 pmcid: 6938709 doi: 10.1126/sciadv.aaw6443
Tan, H. et al. Integrative proteomics and phosphoproteomics profiling reveals dynamic signaling networks and bioenergetics pathways underlying T cell activation. Immunity 46, 488–503 (2017).
pubmed: 28285833 pmcid: 5466820 doi: 10.1016/j.immuni.2017.02.010
Sontheimer, C., Liggitt, D. & Elkon, K. B. Ultraviolet B irradiation causes stimulator of interferon genes-dependent production of protective Type I interferon in mouse skin by recruited inflammatory monocytes. Arthritis Rheumatol. 69, 826–836 (2017).
pubmed: 27863141 pmcid: 5659322 doi: 10.1002/art.39987
Ostkamp, P. et al. Sunlight exposure exerts immunomodulatory effects to reduce multiple sclerosis severity. Proc. Natl Acad. Sci. USA 118, e2018457118 (2021).
pubmed: 33376202 doi: 10.1073/pnas.2018457118
Sim, J. H. et al. Immune cell-stromal circuitry in lupus photosensitivity. J. Immunol. 206, 302–309 (2021).
pubmed: 33397744 doi: 10.4049/jimmunol.2000905
Iwata, S. et al. The transcription factor T-bet limits amplification of type I IFN transcriptome and circuitry in T helper 1 cells. Immunity 46, 983–991 (2017).
pubmed: 28623086 pmcid: 5523825 doi: 10.1016/j.immuni.2017.05.005
Crawford, A. et al. Molecular and transcriptional basis of CD4
pubmed: 24530057 pmcid: 3990591 doi: 10.1016/j.immuni.2014.01.005
Chen, W. et al. Chronic type I interferon signaling promotes lipid-peroxidation-driven terminal CD8+ T cell exhaustion and curtails anti-PD-1 efficacy. Cell Rep. 41, 111647 (2022).
pubmed: 36384131 doi: 10.1016/j.celrep.2022.111647
Meier, S. L., Satpathy, A. T. & Wells, D. K. Bystander T cells in cancer immunology and therapy. Nat. Cancer 3, 143–155 (2022).
pubmed: 35228747 doi: 10.1038/s43018-022-00335-8
Herzinger, T. et al. S1-Guidelines on UV phototherapy and photochemotherapy. J. Dtsch Dermatol Ges. 14, 853–876 (2016).
pubmed: 27509435 doi: 10.1111/ddg.12912
Fell, G. L., Robinson, K. C., Mao, J., Woolf, C. J. & Fisher, D. E. Skin β-endorphin mediates addiction to UV light. Cell 157, 1527–1534 (2014).
pubmed: 24949966 pmcid: 4117380 doi: 10.1016/j.cell.2014.04.032
Shaked, Y. et al. Evidence implicating immunological host effects in the efficacy of metronomic low-dose chemotherapy. Cancer Res 76, 5983–5993 (2016).
pubmed: 27569209 doi: 10.1158/0008-5472.CAN-16-0136
Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2018).
doi: 10.1038/nbt.4314
Van Gassen, S. et al. FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. Cytom. A 87, 636–645 (2015).
doi: 10.1002/cyto.a.22625
Monteran, L. et al. Chemotherapy-induced complement signaling modulates immunosuppression and metastatic relapse in breast cancer. Nat. Commun. 13, 5797 (2022).
pubmed: 36184683 pmcid: 9527249 doi: 10.1038/s41467-022-33598-x
Hughes, C. S. et al. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 10, 757 (2014).
pubmed: 25358341 doi: 10.15252/msb.20145625
Bache, N. et al. A novel LC system embeds analytes in pre-formed gradients for rapid, ultra-robust proteomics. Mol. Cell. Proteom. 17, 2284–2296 (2018).
doi: 10.1074/mcp.TIR118.000853
Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).
pubmed: 31768060 doi: 10.1038/s41592-019-0638-x
Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
pubmed: 28091601 pmcid: 5241818 doi: 10.1038/ncomms14049
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).
pubmed: 34062119 pmcid: 8238499 doi: 10.1016/j.cell.2021.04.048
Kurtulus, S. et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1-CD8+ tumor-infiltrating T cells. Immunity 50, 181–194 (2019).
pubmed: 30635236 pmcid: 6336113 doi: 10.1016/j.immuni.2018.11.014

Auteurs

Avishai Maliah (A)

Department of Human Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Nadine Santana-Magal (N)

Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Shivang Parikh (S)

The Ragon Institute of Mass General, MIT and Harvard 600/625 Main Street, Cambridge, MA, USA.

Sagi Gordon (S)

Department of Human Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.

Keren Reshef (K)

Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Yuval Sade (Y)

Department of Human Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Aseel Khateeb (A)

Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Alon Richter (A)

Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Amit Gutwillig (A)

Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Roma Parikh (R)

Department of Human Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Tamar Golan (T)

Department of Human Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Matan Krissi (M)

Department of Human Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Manho Na (M)

Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Gal Binshtok (G)

Department of Human Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Paulee Manich (P)

Department of Human Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Nadav Elkoshi (N)

Department of Human Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Sharon Grisaru-Tal (S)

Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Valentina Zemser-Werner (V)

Institute of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.

Ronen Brenner (R)

Institute of Oncology, E. Wolfson Medical Center, Holon, Israel.

Hananya Vaknine (H)

Institute of Pathology, E. Wolfson Medical Center, Holon, Israel.

Eran Nizri (E)

Peritoneal Surface Malignancies and Melanoma Unit, Department of Surgery A, Tel-Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel.

Lilach Moyal (L)

Felsenstein Medical Research Center, Tel-Aviv University and the Division of Dermatology, Rabin Medical Center, Petach Tikva, Israel.

Iris Amitay-Laish (I)

Felsenstein Medical Research Center, Tel-Aviv University and the Division of Dermatology, Rabin Medical Center, Petach Tikva, Israel.

Luiza Rosemberg (L)

School of Zoology, Tel Aviv University, Tel Aviv-Yafo, Israel.

Ariel Munitz (A)

Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Noga Kronfeld-Schor (N)

School of Zoology, Tel Aviv University, Tel Aviv-Yafo, Israel.

Eric Shifrut (E)

Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel.
Dotan Center for Advanced Therapies, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.

Oren Kobiler (O)

Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Asaf Madi (A)

Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Tamar Geiger (T)

Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.

Yaron Carmi (Y)

Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. yaroncarmi@tauex.tau.ac.il.

Carmit Levy (C)

Department of Human Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. carmitlevy@tauex.tau.ac.il.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH