Enzymatic modification of cotton fibre polysaccharides as an enabler of sustainable laundry detergents.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
27 Sep 2024
Historique:
received: 08 03 2024
accepted: 13 09 2024
medline: 28 9 2024
pubmed: 28 9 2024
entrez: 27 9 2024
Statut: epublish

Résumé

Cotton is the most common natural fibre used in textile manufacture, used alone or with other fibres to create a wide range of fashion clothing and household textiles. Most of these textiles are cleaned using detergents and domestic or commercial washing machines using processes that require many chemicals and large quantities of water and energy. Enzymes can reduce this environmental footprint by enabling effective detergency at reduced temperatures, mostly by directly attacking substrates present in the soils. In the present study, we report the contribution of a cleaning cellulase enzyme based on the family 44 glycoside hydrolase (GH) endo-beta-1,4-glucanase from Paenibacillus polymyxa. The action of this enzyme on textile fibres improves laundry detergent performance in several vectors including soil anti-redeposition, dye transfer inhibition and stain removal. Molecular probes are used to study how this enzyme is targeting both amorphous cellulose and xyloglucan on textile fibres and the relationship between textile surface effects and observed performance benefits.

Identifiants

pubmed: 39333324
doi: 10.1038/s41598-024-73128-x
pii: 10.1038/s41598-024-73128-x
doi:

Substances chimiques

Detergents 0
Polysaccharides 0
Cellulase EC 3.2.1.4
Cellulose 9004-34-6
Xylans 0
Glucans 0
xyloglucan 37294-28-3

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

22049

Informations de copyright

© 2024. The Author(s).

Références

Hsieh, Y. L. 1 – Chemical structure and properties of cotton. (Woodhead Publishing, 2007).
Huang, G., Huang, J. Q., Chen, X. Y. & Zhu, Y. X. Recent Advances and Future Perspectives in Cotton Research. Annu. Rev. Plant Biol.72, 437–462. https://doi.org/10.1146/annurev-arplant-080720-113241 (2021).
doi: 10.1146/annurev-arplant-080720-113241 pubmed: 33428477
Hu, Y. et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat. Genet.51, 739–748. https://doi.org/10.1038/s41588-019-0371-5 (2019).
doi: 10.1038/s41588-019-0371-5 pubmed: 30886425
Wang, L. & Wang, X. in Fatigue Failure of Textile Fibres (ed Mohsen Miraftab) 95–132 (Woodhead Publishing, 2009).
Hosseini Ravandi, S. A. & Valizadeh, M. in Improving Comfort in Clothing (ed Guowen Song) 61–78 (Woodhead Publishing, 2011).
Dochia, M., Sirghie, C., Kozłowski, R. M. & Roskwitalski, Z. in Handbook of Natural Fibres Vol. 1 (ed Ryszard M. Kozłowski) 11–23 (Woodhead Publishing, 2012).
Haigler, C. H., Betancur, L., Stiff, M. R. & Tuttle, J. R. Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front. Plant Sci.3, 104. https://doi.org/10.3389/fpls.2012.00104 (2012).
doi: 10.3389/fpls.2012.00104 pubmed: 22661979 pmcid: 3356883
Calvimontes, A., Lant, N. J. & Dutschk, V. Cleanability improvement of cotton fabrics through their topographical changes due to the conditioning with cellulase enzyme. J. Surfactants Deterg.15, 131–137. https://doi.org/10.1007/s11743-011-1293-0 (2012).
doi: 10.1007/s11743-011-1293-0
Calvimontes, A., Lant, N. J. & Dutschk, V. Cooperative action of cellulase enzyme and carboxymethyl cellulose on cotton fabric cleanability from a topographical standpoint. J. Surfactants Deterg.14, 307–316 (2011).
doi: 10.1007/s11743-011-1248-5
Obendorf, S. K., Varanasi, A., Mejldal, R. & Nielsen, V. S. Lipid distribution on cotton textiles in relation to washing with cellulase. J. Surfactants Deterg.6, 1–5. https://doi.org/10.1007/s11743-003-0241-x (2003).
doi: 10.1007/s11743-003-0241-x
Hoshino, E., Chiwaki, M., Suzuki, A. & Murata, M. Improvement of cotton cloth soil removal by inclusion of alkaline cellulase from Bacillussp. KSM-635 in detergents. J. Surfactants Deterg.3, 317–326. https://doi.org/10.1007/s11743-000-0135-y (2000).
doi: 10.1007/s11743-000-0135-y
Sankarraj, N. & Nallathambi, G. Enzymatic biopolishing of cotton fabric with free/immobilized cellulase. Carbohyd. Polym.191, 95–102. https://doi.org/10.1016/j.carbpol.2018.02.067 (2018).
doi: 10.1016/j.carbpol.2018.02.067
Murata, M., Hoshino, E., Yokosuka, M. & Suzuki, A. New detergent mechanism with use of novel alkaline cellulose. J. Am. Oil Chem. Soc.68, 553–558. https://doi.org/10.1007/BF02663833 (1991).
doi: 10.1007/BF02663833
Shin, S., Warren, P. B. & Stone, H. A. Cleaning by surfactant gradients: particulate removal from porous materials and the significance of rinsing in laundry detergency. Phys. Rev. Appl.9, 034012. https://doi.org/10.1103/PhysRevApplied.9.034012 (2018).
doi: 10.1103/PhysRevApplied.9.034012
Caparrós, C. et al. Treatment of cotton with an alkaline Bacillus spp cellulase: Activity towards crystalline cellulose. Biotechnol. J.7, 275–283. https://doi.org/10.1002/biot.201000352 (2012).
doi: 10.1002/biot.201000352 pubmed: 21953804
Cowan, D. Industrial enzyme technology. Trends Biotechnol.14, 177–178. https://doi.org/10.1016/0167-7799(96)30009-7 (1996).
doi: 10.1016/0167-7799(96)30009-7
Starace, C. A. Detergent enzymes — past, present and future. J. Am. Oil. Chem. Soc.60, 1025–1027. https://doi.org/10.1007/BF02660225 (1983).
doi: 10.1007/BF02660225
Ito, S. Alkaline cellulases from alkaliphilic Bacillus: enzymatic properties, genetics, and application to detergents. Extremophiles1, 61–66. https://doi.org/10.1007/s007920050015 (1997).
doi: 10.1007/s007920050015 pubmed: 9680303
Zhang, J., Zhang, Y., Li, W., Li, X. & Lian, X. Optimizing detergent formulation with enzymes. J. Surfactants Deterg.17, 1059–1067. https://doi.org/10.1007/s11743-014-1626-x (2014).
doi: 10.1007/s11743-014-1626-x
Bhat, M. K. Cellulases and related enzymes in biotechnology. Biotechnol. Adv.18, 355–383. https://doi.org/10.1016/S0734-9750(00)00041-0 (2000).
doi: 10.1016/S0734-9750(00)00041-0 pubmed: 14538100
Beauchemin, K. A., Rode, L. M. & Sewalt, V. J. H. Fibrolytic enzymes increase fiber digestibility and growth rate of steers fed dry forages. Can. J. Anim. Sci.75, 641–644. https://doi.org/10.4141/cjas95-096 (1995).
doi: 10.4141/cjas95-096
Oksanen, T., Pere, J., Buchert, J. & Viikari, L. The effect of Trichoderma reesei cellulases and hemicellulases on the paper technical properties of never-dried bleached kraft pulp. Cellulose4, 329–339. https://doi.org/10.1023/A:1018456411031 (1997).
doi: 10.1023/A:1018456411031
Levy, I. & Shoseyov, O. Cellulose-binding domains: Biotechnological applications. Biotechnol. Adv.20, 191–213. https://doi.org/10.1016/S0734-9750(02)00006-X (2002).
doi: 10.1016/S0734-9750(02)00006-X pubmed: 14550028
Runavot, J.-L. et al. Non-cellulosic polysaccharides from cotton fibre are differently impacted by textile processing. PLOS ONE9, e115150. https://doi.org/10.1371/journal.pone.0115150 (2014).
doi: 10.1371/journal.pone.0115150 pubmed: 25517975 pmcid: 4269390
Hebeish, A. et al. New development for combined bioscouring and bleaching of cotton-based fabrics. Carbohydrate Polymers78, 961–972. https://doi.org/10.1016/j.carbpol.2009.07.019 (2009).
doi: 10.1016/j.carbpol.2009.07.019
Park, Y. B. & Cosgrove, D. J. Xyloglucan and its Interactions with other components of the growing cell wall. Plant Cell Physiol.56, 180–194. https://doi.org/10.1093/pcp/pcu204 (2015).
doi: 10.1093/pcp/pcu204 pubmed: 25613914
Hayashi, T. Xyloglucans in the primary cell wall. Ann. Rev. Plant Physiol. Plant Mol. Biol.40, 139–168. https://doi.org/10.1146/annurev.pp.40.060189.001035 (1989).
doi: 10.1146/annurev.pp.40.060189.001035
Pauly, M., Albersheim, P., Darvill, A. & York, W. S. Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J. : Cell Mol. Boil.20, 629–639. https://doi.org/10.1046/j.1365-313x.1999.00630.x (1999).
doi: 10.1046/j.1365-313x.1999.00630.x
Ariza, A. et al. Structure and Activity of Paenibacillus polymyxa Xyloglucanase from Glycoside Hydrolase Family 44. J. Biol. Chem.286, 33890–33900. https://doi.org/10.1074/jbc.M111.262345 (2011).
doi: 10.1074/jbc.M111.262345 pubmed: 21795708 pmcid: 3190823
Warner, C. D., Go, R. M., García-Salinas, C., Ford, C. & Reilly, P. J. Kinetic characterization of a glycoside hydrolase family 44 xyloglucanase/endoglucanase from Ruminococcus flavefaciens FD-1. Enzyme Microb. Technol.48, 27–32. https://doi.org/10.1016/j.enzmictec.2010.08.009 (2011).
doi: 10.1016/j.enzmictec.2010.08.009 pubmed: 22112767
Eklöf, J. M., Ruda, M. C. & Brumer, H. Distinguishing xyloglucanase activity in endo-β(1→4)glucanases. Methods Enzymol.510, 97–120. https://doi.org/10.1016/b978-0-12-415931-0.00006-9 (2012).
doi: 10.1016/b978-0-12-415931-0.00006-9 pubmed: 22608723
Julian, J. D. & Zabotina, O. A. Xyloglucan biosynthesis: From genes to proteins and their functions. Front. Plant Sci.13, 920494. https://doi.org/10.3389/fpls.2022.920494 (2022).
doi: 10.3389/fpls.2022.920494 pubmed: 35720558 pmcid: 9201394
Schnorr, K., Joergensen, P., Linaa & Martin, S. Family 44 xyloglucanases. WO01/62903 (2001).
Lant, N., Joseph, Besenmatter, W., Friis, E., Peter, Gibson, K., Rasmussen, F., Winther & SkØjT, M. Detergent composition comprising a variant of a family 44 xyloglucanase (2009).
Poulsen, T., Agersten, Deshpande, A., Sainathan, R., Kulothungan, Cassland, B., Lennart, Pierre, Alexander, Venkatakrishnan, B., Shukla, J., Kaushikkumar, Bhattacharaya, S., Ramanand, S. & Krishna, S. Variants of a family 44 xyloglucanase (2022).
Billmeyer, F. W. Jr. Commission internationale de l’Éclairage, standard on colorimetric illuminants publication CIE No S 001. Color Res. Appl.13, 65–66. https://doi.org/10.1002/col.5080130116 (1988).
doi: 10.1002/col.5080130116
Benkhaya, S., M’rabet, S. & El Harfi, A. A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chem. Commun.115, 107891. https://doi.org/10.1016/j.inoche.2020.107891 (2020).
doi: 10.1016/j.inoche.2020.107891
Gürses, A., Açıkyıldız, M., Güneş, K. & Gürses, M. S. in Dyes and Pigments (eds Ahmet Gürses, Metin Açıkyıldız, Kübra Güneş, & M. Sadi Gürses) 31–45 (Springer International Publishing, 2016).
Nieuwenhuis, K. J. Improvement of the dirt suspending power of CMC. J. Polymer Sci.12, 237–252. https://doi.org/10.1002/pol.1954.120120120 (1954).
doi: 10.1002/pol.1954.120120120
Neiditch, O. W., Mills, K. L. & Gladstone, G. The stain removal index (SRI): A new reflectometer method for measuring and reporting stain removal effectiveness. J. Am. Oil Chem. Soc.57, 426–429. https://doi.org/10.1007/BF02678931 (1980).
doi: 10.1007/BF02678931
Najmudin, S. et al. Xyloglucan is recognized by carbohydrate-binding modules that interact with beta-glucan chains. J. Biol. Chem.281, 8815–8828. https://doi.org/10.1074/jbc.M510559200 (2006).
doi: 10.1074/jbc.M510559200 pubmed: 16314409
Pedersen, H. L. et al. Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research. J. Biol. Chem.287, 39429–39438. https://doi.org/10.1074/jbc.M112.396598 (2012).
doi: 10.1074/jbc.M112.396598 pubmed: 22988248 pmcid: 3501085
Marcus, S. E. et al. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biol.8, 60. https://doi.org/10.1186/1471-2229-8-60 (2008).
doi: 10.1186/1471-2229-8-60 pubmed: 18498625 pmcid: 2409341
Zhao, F. et al. Xyloglucans and microtubules synergistically maintain meristem geometry and phyllotaxis. Plant Physiol.181, 1191–1206. https://doi.org/10.1104/pp.19.00608 (2019).
doi: 10.1104/pp.19.00608 pubmed: 31537749 pmcid: 6836833
Kawakubo, T. et al. Analysis of exposed cellulose surfaces in pretreated wood biomass using carbohydrate-binding module (CBM)-cyan fluorescent protein (CFP). Biotechnol. Bioeng.105, 499–508. https://doi.org/10.1002/bit.22550 (2010).
doi: 10.1002/bit.22550 pubmed: 19777599
McLean, B. W. et al. Carbohydrate-binding modules recognize fine substructures of cellulose. J. Biol. Chem.277, 50245–50254. https://doi.org/10.1074/jbc.M204433200 (2002).
doi: 10.1074/jbc.M204433200 pubmed: 12191997
Goldstein, M. A. et al. Characterization of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A. J. Bacteriol.175, 5762–5768. https://doi.org/10.1128/jb.175.18.5762-5768.1993 (1993).
doi: 10.1128/jb.175.18.5762-5768.1993 pubmed: 8376323 pmcid: 206653
Głazowska, S. & Mravec, J. An aptamer highly specific to cellulose enables the analysis of the association of cellulose with matrix cell wall polymers in vitro and in muro. Plant J.108, 579–599. https://doi.org/10.1111/tpj.15442 (2021).
doi: 10.1111/tpj.15442 pubmed: 34314513
Hernandez-Gomez, M. C. et al. Recognition of xyloglucan by the crystalline cellulose-binding site of a family 3a carbohydrate-binding module. FEBS Lett.589, 2297–2303. https://doi.org/10.1016/j.febslet.2015.07.009 (2015).
doi: 10.1016/j.febslet.2015.07.009 pubmed: 26193423 pmcid: 5877785
Hirano, K. et al. Enzymatic diversity of the Clostridium thermocellum cellulosome is crucial for the degradation of crystalline cellulose and plant biomass. Sci. Rep.6, 35709. https://doi.org/10.1038/srep35709 (2016).
doi: 10.1038/srep35709 pubmed: 27759119 pmcid: 5069625
Jamal, S., Nurizzo, D., Boraston, A. B. & Davies, G. J. X-ray crystal structure of a non-crystalline cellulose-specific carbohydrate-binding module: CBM28. J. Mol. Biol.339, 253–258. https://doi.org/10.1016/j.jmb.2004.03.069 (2004).
doi: 10.1016/j.jmb.2004.03.069 pubmed: 15136030
Hernandez-Gomez, M. C. et al. Heteromannan and heteroxylan cell wall polysaccharides display different dynamics during the elongation and secondary cell wall deposition phases of cotton fiber cell development. Plant Cell Physiol.56, 1786–1797. https://doi.org/10.1093/pcp/pcv101 (2015).
doi: 10.1093/pcp/pcv101 pubmed: 26187898 pmcid: 4562070
Meinert, M. C. & Delmer, D. P. Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiol.59, 1088–1097. https://doi.org/10.1104/pp.59.6.1088 (1977).
doi: 10.1104/pp.59.6.1088 pubmed: 16660000 pmcid: 542513
Laitala, K. Consumers’ clothing disposal behaviour – a synthesis of research results. Int. J. Consum. Stud.38, 444–457. https://doi.org/10.1111/ijcs.12088 (2014).
doi: 10.1111/ijcs.12088
Akram, F., Fatima, T. & Ul Haq, I. Auto-induction, biochemical characterization and application of a novel thermo-alkaline and detergent-stable lipase (S9 peptidase domain) from Thermotoga petrophila as cleaning additive and degrading oil/fat wastes. Bioorganic Chem.151, 107658. https://doi.org/10.1016/j.bioorg.2024.107658 (2024).
doi: 10.1016/j.bioorg.2024.107658
Elaine Mankge, M., Penistacia Maela, M., Mark Abrahams, A. & Hope Serepa-Dlamini, M. Screening of Bacillus spp. bacterial endophytes for protease production, and application in feather degradation and bio-detergent additive. Heliyon10, e30736. https://doi.org/10.1016/j.heliyon.2024.e30736 (2024).
doi: 10.1016/j.heliyon.2024.e30736 pubmed: 38765083 pmcid: 11098850
Marcus, S. E. et al. Restricted access of proteins to mannan polysaccharides in intact plant cell walls. Plant J.64, 191–203. https://doi.org/10.1111/j.1365-313X.2010.04319.x (2010).
doi: 10.1111/j.1365-313X.2010.04319.x pubmed: 20659281
Boraston, A. B., Revett, T. J., Boraston, C. M., Nurizzo, D. & Davies, G. J. Structural and thermodynamic dissection of specific mannan recognition by a carbohydrate binding module, TmCBM27. Structure London, England 199311, 665–675. https://doi.org/10.1016/s0969-2126(03)00100-x (2003).
doi: 10.1016/s0969-2126(03)00100-x pubmed: 12791255
Yau, H. C. L. et al. Removal of eDNA from fabrics using a novel laundry DNase revealed using high-resolution imaging. Sci. Rep.11, 21542. https://doi.org/10.1038/s41598-021-98939-0 (2021).
doi: 10.1038/s41598-021-98939-0 pubmed: 34728780 pmcid: 8563969

Auteurs

Hamish C L Yau (HCL)

Procter & Gamble, Newcastle Innovation Centre, Whitley Road, Newcastle upon Tyne, NE12 9BZ, UK. Yau.h@pg.com.

James Byard (J)

School of Natural and Environmental Sciences, Newcastle University, Devonshire Building, Newcastle upon Tyne, NE1 7RU, UK.

Lily E Thompson (LE)

Procter & Gamble, Newcastle Innovation Centre, Whitley Road, Newcastle upon Tyne, NE12 9BZ, UK.

Adam K Malekpour (AK)

Procter & Gamble, Newcastle Innovation Centre, Whitley Road, Newcastle upon Tyne, NE12 9BZ, UK.

Timothy Robson (T)

Procter & Gamble, Newcastle Innovation Centre, Whitley Road, Newcastle upon Tyne, NE12 9BZ, UK.

Cassie R Bakshani (CR)

School of Natural and Environmental Sciences, Newcastle University, Devonshire Building, Newcastle upon Tyne, NE1 7RU, UK.
Institute of Microbiology and infection, University of Birmingham, Birmingham, B15 2TT, UK.

Ieva Lelanaite (I)

School of Natural and Environmental Sciences, Newcastle University, Devonshire Building, Newcastle upon Tyne, NE1 7RU, UK.

William G T Willats (WGT)

School of Natural and Environmental Sciences, Newcastle University, Devonshire Building, Newcastle upon Tyne, NE1 7RU, UK.

Neil J Lant (NJ)

Procter & Gamble, Newcastle Innovation Centre, Whitley Road, Newcastle upon Tyne, NE12 9BZ, UK.

Articles similaires

Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
Animals Flax Chickens Dietary Supplements Endo-1,4-beta Xylanases
Plant Diseases Paenibacillus Paenibacillus polymyxa Biological Control Agents Fusarium
Inclusion Bodies Solubility Recombinant Proteins Detergents Protein Denaturation

Classifications MeSH