Differential impacts of body composition on oxygen kinetics and exercise tolerance of HFrEF and HFpEF patients.
Exercise Test [Mesh]
Exercise Tolerance [Mesh]
Heart failure [Mesh]
Oxygen consumption [Mesh]
Oxygen uptake kinetics [All fields]
Tissue oxygenation index [All fields]
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
28 Sep 2024
28 Sep 2024
Historique:
received:
01
03
2024
accepted:
12
09
2024
medline:
29
9
2024
pubmed:
29
9
2024
entrez:
28
9
2024
Statut:
epublish
Résumé
This study aims to (1) compare the kinetics of pulmonary oxygen uptake (VO2p), skeletal muscle deoxygenation ([HHb]), and microvascular O
Identifiants
pubmed: 39341902
doi: 10.1038/s41598-024-72965-0
pii: 10.1038/s41598-024-72965-0
doi:
Substances chimiques
Oxygen
S88TT14065
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
22505Informations de copyright
© 2024. The Author(s).
Références
Poole, D. C., Richardson, R. S., Haykowsky, M. J., Hirai, D. M. & Musch, T. I. Exercise limitations in heart failure with reduced and preserved ejection fraction. J. Appl. Physiol. 124, 208–224. (1985).
Whipp, B. J., Davis, J. A., Torres, F. & Wasserman, K. A test to determine parameters of aerobic function during exercise. J. Appl. Physiol. Respir Environ. Exerc. Physiol. 50, 217–221 (1981).
pubmed: 6782055
Sperandio, P. A. et al. Microvascular oxygen delivery-to-utilization mismatch at the onset of heavy-intensity exercise in optimally treated patients with CHF. Am. J. Physiol. Heart Circ. Physiol. 297, H1720–H1728 (2009).
doi: 10.1152/ajpheart.00596.2009
pubmed: 19734359
Hughson, R. L. Kinetics of VO(2) with very high intensity exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R681–R682 (2001).
doi: 10.1152/ajpregu.2001.281.2.R681
pubmed: 11488269
Grassi, B. et al. Muscle oxygenation and pulmonary gas exchange kinetics during cycling exercise on-transitions in humans. J. Appl. Physiol. (1985). 95, 149–158 (2003).
doi: 10.1152/japplphysiol.00695.2002
pubmed: 12611769
Fonarow, G. C. et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: A report from the OPTIMIZE-HF Registry. J. Am. Coll. Cardiol. 50, 768–777 (2007).
doi: 10.1016/j.jacc.2007.04.064
pubmed: 17707182
Giamouzis, G., Schelbert, E. B. & Butler, J. Growing evidence linking Microvascular Dysfunction with Heart failure with preserved ejection fraction. J. Am. Heart Assoc. 5, e003259 (2016).
doi: 10.1161/JAHA.116.003259
pubmed: 26908416
pmcid: 4802456
Bhella, P. S. et al. Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. Eur. J. Heart Fail. 13, 1296–1304 (2011).
doi: 10.1093/eurjhf/hfr133
pubmed: 21979991
pmcid: 3220394
Packer, M. & Kitzman, D. W. Obesity-related heart failure with a preserved ejection fraction: The mechanistic rationale for combining inhibitors of Aldosterone, Neprilysin, and sodium-glucose Cotransporter-2. JACC Heart Fail. 6, 633–639 (2018).
doi: 10.1016/j.jchf.2018.01.009
pubmed: 29525327
Haykowsky, M. J. et al. Regional Adipose distribution and its relationship to Exercise Intolerance in older obese patients who have heart failure with preserved ejection fraction. JACC Heart Fail. 6, 640–649 (2018).
doi: 10.1016/j.jchf.2018.06.002
pubmed: 30007558
pmcid: 6086374
Kitzman, D. W. et al. Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction. Am. J. Physiol. Heart Circ. Physiol. 306, H1364–H1370 (2014).
doi: 10.1152/ajpheart.00004.2014
pubmed: 24658015
pmcid: 4010668
Keteyian, S. J. et al. Variables measured during Cardiopulmonary Exercise Testing as predictors of Mortality in Chronic Systolic Heart failure. J. Am. Coll. Cardiol. 67, 780–789 (2016).
doi: 10.1016/j.jacc.2015.11.050
pubmed: 26892413
pmcid: 4761107
Koike, A. et al. Oxygen uptake kinetics are determined by cardiac function at onset of exercise rather than peak exercise in patients with prior myocardial infarction. Circulation. 90, 2324–2332 (1994).
doi: 10.1161/01.CIR.90.5.2324
pubmed: 7955190
Chatterjee, N. A. et al. Prolonged mean VO2 response time in systolic heart failure: An indicator of impaired right ventricular-pulmonary vascular function. Circ. Heart Fail. 6, 499–507 (2013).
doi: 10.1161/CIRCHEARTFAILURE.112.000157
pubmed: 23572493
pmcid: 5935663
Poole, D. C. & Jones, A. M. Oxygen uptake kinetics. Compr. Physiol. 2, 933–996 (2012).
doi: 10.1002/cphy.c100072
pubmed: 23798293
Hirai, D. M., Musch, T. I. & Poole, D. C. Exercise training in chronic heart failure: Improving skeletal muscle O2 transport and utilization. Am. J. Physiol. Heart Circ. Physiol. 309, H1419–H1439 (2015).
doi: 10.1152/ajpheart.00469.2015
pubmed: 26320036
pmcid: 4666971
Hearon, C. M. Jr., Sarma, S., Dias, K. A., Hieda, M. & Levine, B. D. Impaired oxygen uptake kinetics in heart failure with preserved ejection fraction. Heart. 105, 1552–1558 (2019).
doi: 10.1136/heartjnl-2019-314797
pubmed: 31208971
von Elm, E. et al. The strengthening the reporting of Observational studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. PLoS Med. 4, e296 (2007).
doi: 10.1371/journal.pmed.0040296
Ponikowski, P. et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 37, 2129–2200 (2016).
doi: 10.1093/eurheartj/ehw128
pubmed: 27206819
Beaver, W. L., Wasserman, K. & Whipp, B. J. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 1986;60:2020-7. (1985).
Guazzi, M. et al. EACPR/AHA Joint Scientific Statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Eur. Heart J. 33, 2917–2927 (2012).
doi: 10.1093/eurheartj/ehs221
pubmed: 22952138
Quaresima, V. & Ferrari, M. Muscle oxygenation by near-infrared-based tissue oximeters. J. Appl. Physiol. (1985). 107, 371 (2009). author reply 372-3.
doi: 10.1152/japplphysiol.00215.2009
pubmed: 19567814
Chiappa, G. R. et al. Kinetics of muscle deoxygenation are accelerated at the onset of heavy-intensity exercise in patients with COPD: Relationship to central cardiovascular dynamics. J Appl Physiol 2008;104:1341-50. (1985).
Belardinelli, R., Barstow, T. J., Nguyen, P. & Wasserman, K. Skeletal muscle oxygenation and oxygen uptake kinetics following constant work rate exercise in chronic congestive heart failure. Am. J. Cardiol. 80, 1319–1324 (1997).
doi: 10.1016/S0002-9149(97)00672-3
pubmed: 9388106
Sietsema, K. E., Ben-Dov, I., Zhang, Y. Y., Sullivan, C. & Wasserman, K. Dynamics of oxygen uptake for submaximal exercise and recovery in patients with chronic heart failure. Chest. 105, 1693–1700 (1994).
doi: 10.1378/chest.105.6.1693
pubmed: 8205862
Taniguchi, Y. et al. A new method using pulmonary gas-exchange kinetics to evaluate efficacy of beta-blocking agents in patients with dilated cardiomyopathy. Chest. 124, 954–961 (2003).
doi: 10.1378/chest.124.3.954
pubmed: 12970023
Mettauer, B. et al. VO(2) kinetics reveal a central limitation at the onset of subthreshold exercise in heart transplant recipients. J Appl Physiol 2000;88:1228-38. (1985).
Sullivan, M. J., Knight, J. D., Higginbotham, M. B. & Cobb, F. R. Relation between central and peripheral hemodynamics during exercise in patients with chronic heart failure. Muscle blood flow is reduced with maintenance of arterial perfusion pressure. Circulation. 80, 769–781 (1989).
doi: 10.1161/01.CIR.80.4.769
pubmed: 2791242
Nakamura, M. Pharmacological modulations of the renin-angiotensin-aldosterone system in human congestive heart failure: Effects on peripheral vascular endothelial function. Curr. Vasc. Pharmacol. 2, 65–70 (2004).
doi: 10.2174/1570161043476537
pubmed: 15320834
Bauersachs, J. & Widder, J. D. Endothelial dysfunction in heart failure. Pharmacol. Rep. 60, 119–126 (2008).
pubmed: 18276993
Musch, T. I. & Terrell, J. A. Skeletal muscle blood flow abnormalities in rats with a chronic myocardial infarction: Rest and exercise. Am. J. Physiol. 262, H411–H419 (1992).
pubmed: 1539701
Tschakovsky, M. E. & Hughson, R. L. Rapid blunting of sympathetic vasoconstriction in the human forearm at the onset of exercise. J Appl Physiol 2003;94:1785-92. (1985).
Sarma, S. & Levine, B. D. Soothing the sleeping giant: Improving skeletal muscle oxygen kinetics and exercise intolerance in HFpEF. J. Appl. Physiol. 119, 734–738. (1985).
Hughson, R. L. & Kowalchuk, J. M. Beta-blockade and oxygen delivery to muscle during exercise. Can. J. Physiol. Pharmacol. 69, 285–289 (1991).
doi: 10.1139/y91-044
pubmed: 1675930
Gianrossi, R. et al. Effect of Beta-blockade on Postexercise Oxygen Uptake Kinetics in patients with chronic heart failure. Heart Drug. 1, 148–154 (2001).
doi: 10.1159/000048952
Witte, K. K., Thackray, S., Nikitin, N. P., Cleland, J. G. & Clark, A. L. The effects of long-term beta-blockade on the ventilatory responses to exercise in chronic heart failure. Eur. J. Heart Fail. 7, 612–617 (2005).
doi: 10.1016/j.ejheart.2004.05.006
pubmed: 15921802
Puente-Maestu, L. et al. Reproducibility of the parameters of the on-transient cardiopulmonary responses during moderate exercise in patients with chronic obstructive pulmonary disease. Eur. J. Appl. Physiol. 85, 434–441 (2001).
doi: 10.1007/s004210100486
pubmed: 11606012