Internet of things (IoT) based saffron cultivation system in greenhouse.
Agronomical factors
Architecture
Greenhouse
Internet of things
IoT sensors
Saffron
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 Sep 2024
29 Sep 2024
Historique:
received:
25
12
2023
accepted:
06
08
2024
medline:
30
9
2024
pubmed:
30
9
2024
entrez:
29
9
2024
Statut:
epublish
Résumé
Saffron is the world's most expensive and legendary crop that is widely used in cuisine, drugs, and cosmetics. Therefore, the demand for saffron is increasing globally day by day. Despite its massive demand the cultivation of saffron has dramatically decreased and grown in only a few countries. Saffron is an environment-sensitive crop that is affected by various factors including rapid change in climate, light intensity, pH level, soil moisture, salinity level, and inappropriate cultivation techniques. It is not possible to control many of these environmental factors in traditional farming. Although, many innovative technologies like Artificial Intelligence and Internet of Things (IoT) have been used to enhance the growth of saffron still, there is a dire need for a system that can overcome primary issues related to saffron growth. In this research, we have proposed an IoT-based system for the greenhouse to control the numerous agronomical variables such as corm size, temperature, humidity, pH level, soil moisture, salinity, and water availability. The proposed architecture monitors and controls environmental factors automatically and sends real-time data from the greenhouse to the microcontroller. The sensed values of various agronomical variables are compared with threshold values and saved at cloud for sending to the farm owner for efficient management. The experiment results reveal that the proposed system is capable to maximize saffron production in the greenhouse by controlling environmental factors as per crop needs.
Identifiants
pubmed: 39343800
doi: 10.1038/s41598-024-69513-1
pii: 10.1038/s41598-024-69513-1
doi:
Substances chimiques
Soil
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
22589Informations de copyright
© 2024. The Author(s).
Références
Bragaglio, A. et al. A comparison between two specialized dairy cattle farms in the upper Po Valley. Precision agriculture as a strategy to improve sustainability. Clean. Environ. Syst. 11(October), 100146. https://doi.org/10.1016/j.cesys.2023.100146 (2023).
doi: 10.1016/j.cesys.2023.100146
Zhao, W., Wang, X., Qi, B. & Runge, T. Ground-level mapping and navigating for agriculture based on IoT and computer vision. IEEE Access https://doi.org/10.1109/ACCESS.2020.3043662 (2020).
doi: 10.1109/ACCESS.2020.3043662
pubmed: 34812352
pmcid: 7996631
Xu, J., Gu, B. & Tian, G. Review of agricultural IoT technology. Artif. Intell. Agric. 6, 10–22. https://doi.org/10.1016/j.aiia.2022.01.001 (2022).
doi: 10.1016/j.aiia.2022.01.001
Alzubi, A. A. & Galyna, K. Artificial intelligence and internet of things for sustainable farming and smart agriculture. IEEE Access 11(June), 78686–78692. https://doi.org/10.1109/ACCESS.2023.3298215 (2023).
doi: 10.1109/ACCESS.2023.3298215
“2023-Machine learning‑based optimal.pdf.”
Mowla, M. N., Mowla, N., Shah, A. F. M. S., Rabie, K. M. & Shongwe, T. Internet of things and wireless sensor networks for smart agriculture applications: A survey. IEEE Access 11(November), 145813–145852. https://doi.org/10.1109/access.2023.3346299 (2023).
doi: 10.1109/access.2023.3346299
Thakur, D., Kumar, Y., Kumar, A., Singh, P. K. Applicability of Wireless Sensor Networks in Precision Agriculture: A Review (Springer US, 2019). https://doi.org/10.1007/s11277-019-06285-2 .
Kaur, B. et al. Insights into the harvesting tools and equipment’s for horticultural crops: From then to now. J. Agric. Food Res. 14(June), 100814. https://doi.org/10.1016/j.jafr.2023.100814 (2023).
doi: 10.1016/j.jafr.2023.100814
Coll-Ribes, G., Torres-Rodríguez, I. J., Grau, A., Guerra, E. & Sanfeliu, A. Accurate detection and depth estimation of table grapes and peduncles for robot harvesting, combining monocular depth estimation and CNN methods. Comput. Electron. Agric. 215(October), 108362. https://doi.org/10.1016/j.compag.2023.108362 (2023).
doi: 10.1016/j.compag.2023.108362
Rabak, A. et al. Sensor system for precision agriculture smart watering can. Results Eng. 19(July), 101297. https://doi.org/10.1016/j.rineng.2023.101297 (2023).
doi: 10.1016/j.rineng.2023.101297
Rashid, R., Aslam, W. & Aziz, R. An early and smart detection of corn plant leaf diseases using IoT and deep learning multi-models. IEEE Access https://doi.org/10.1109/ACCESS.2024.3357099 (2024).
doi: 10.1109/ACCESS.2024.3357099
Medel-Jiménez, F., Krexner, T., Gronauer, A. & Kral, I. Life cycle assessment of four different precision agriculture technologies and comparison with a conventional scheme. J. Clean. Prod. 434(June 2023), 140198. https://doi.org/10.1016/j.jclepro.2023.140198 (2024).
doi: 10.1016/j.jclepro.2023.140198
Condran, S., Bewong, M., Islam, M. Z., Maphosa, L. & Zheng, L. Machine learning in precision agriculture: A survey on trends, applications and evaluations over two decades. IEEE Access 10, 73786–73803. https://doi.org/10.1109/ACCESS.2022.3188649 (2022).
doi: 10.1109/ACCESS.2022.3188649
Sayem, N. S. et al. IoT-based smart protection system to address agro-farm security challenges in Bangladesh. Smart Agric. Technol. 6(October), 100358. https://doi.org/10.1016/j.atech.2023.100358 (2023).
doi: 10.1016/j.atech.2023.100358
Turukmane, A. V. et al. Smart farming using cloud-based Iot data analytics. Meas. Sens. 27(March), 100806. https://doi.org/10.1016/j.measen.2023.100806 (2023).
doi: 10.1016/j.measen.2023.100806
Debauche, O., Mahmoudi, S., Manneback, P. & Lebeau, F. Cloud and distributed architectures for data management in agriculture 4.0: Review and future trends. J. King Saud Univ. Comput. Inf. Sci. 34(9), 7494–7514. https://doi.org/10.1016/j.jksuci.2021.09.015 (2022).
doi: 10.1016/j.jksuci.2021.09.015
Kaplun, D. et al. An intelligent agriculture management system for rainfall prediction and fruit health monitoring. Sci. Rep. 14(1), 1–23. https://doi.org/10.1038/s41598-023-49186-y (2024).
doi: 10.1038/s41598-023-49186-y
Khajeh-Hosseini, M., Fallahpour, F. Emerging Innovation in Saffron Production, no. 1. INC, 2020. https://doi.org/10.1016/B978-0-12-818638-1.00012-5 .
Cardone, L., Castronuovo, D., Perniola, M., Cicco, N. & Candido, V. Saffron (Crocus sativus L.), the king of spices: An overview. Sci. Hortic. (Amsterdam) https://doi.org/10.1016/j.scienta.2020.109560 (2020).
doi: 10.1016/j.scienta.2020.109560
Abu-Izneid, T. et al. Nutritional and health beneficial properties of saffron (Crocus sativus L): A comprehensive review. Crit. Rev. Food Sci. Nutr. 62(10), 2683–2706. https://doi.org/10.1080/10408398.2020.1857682 (2022).
doi: 10.1080/10408398.2020.1857682
pubmed: 33327732
Su, X. et al. The beneficial effects of saffron extract on potential oxidative stress in cardiovascular diseases. Oxid. Med. Cell. Longev. https://doi.org/10.1155/2021/6699821 (2021).
doi: 10.1155/2021/6699821
pubmed: 34970415
pmcid: 8714344
Yang, W. et al. Active constituents of saffron (Crocus sativus L.) and their prospects in treating neurodegenerative diseases (review). Exp. Ther. Med. 25(5), 1–14. https://doi.org/10.3892/etm.2023.11934 (2023).
doi: 10.3892/etm.2023.11934
Ghaffari, S. & Roshanravan, N. Saffron; An updated review on biological properties with special focus on cardiovascular effects. Biomed. Pharmacother. 109(October 2018), 21–27. https://doi.org/10.1016/j.biopha.2018.10.031 (2019).
doi: 10.1016/j.biopha.2018.10.031
pubmed: 30391705
Kothari, D., Thakur, R. & Kumar, R. Saffron (Crocus sativus L.): gold of the spices—A comprehensive review. Hortic. Environ. Biotechnol. 62(5), 661–677. https://doi.org/10.1007/s13580-021-00349-8 (2021).
doi: 10.1007/s13580-021-00349-8
Amin, A. et al. Saffron and its major ingredients’ effect on colon cancer cells with mismatch repair deficiency and microsatellite instability. Molecules https://doi.org/10.3390/molecules26133855 (2021).
doi: 10.3390/molecules26133855
pubmed: 34946662
pmcid: 8706567
Ashktorab, H. et al. Saffron : The golden spice with therapeutic. Nutrients 11, 1–16 (2019).
doi: 10.3390/nu11050943
Maqbool, Z. et al. Potential role of phytochemical extract from saffron in development of functional foods and protection of brain-related disorders. Oxid. Med. Cell. Longev. https://doi.org/10.1155/2022/6480590 (2022).
doi: 10.1155/2022/6480590
pubmed: 36193081
pmcid: 9526642
El Midaoui, A. et al. Saffron (Crocus sativus L.): A source of nutrients for health and for the treatment of neuropsychiatric and age-related diseases. Nutrients https://doi.org/10.3390/nu14030597 (2022).
doi: 10.3390/nu14030597
pubmed: 36079915
pmcid: 9460917
Xing, B. et al. Phytochemistry, pharmacology, and potential clinical applications of saffron: A review. J. Ethnopharmacol. 281(March), 114555. https://doi.org/10.1016/j.jep.2021.114555 (2021).
doi: 10.1016/j.jep.2021.114555
pubmed: 34438035
Heitmar, R., Brown, J. & Kyrou, I. Saffron (Crocus sativus L.) in ocular diseases: A narrative review of the existing evidence from clinical studies. Nutrients 11(3), 10–13. https://doi.org/10.3390/nu11030649 (2019).
doi: 10.3390/nu11030649
Nassiri-Asl, M., Hosseinzadeh, H. Neuropharmacology Effects of Saffron (Crocus sativus) and Its Active Constituents (Elsevier Inc., 2015). https://doi.org/10.1016/B978-0-12-411462-3.00003-5 .
Ghani, S. et al. Design challenges of agricultural greenhouses in hot and arid environments—A review. Eng. Agric. Environ. Food 12(1), 48–70. https://doi.org/10.1016/j.eaef.2018.09.004 (2019).
doi: 10.1016/j.eaef.2018.09.004
Fanzo, J. Healthy and sustainable diets and food systems: The key to achieving sustainable development goal 2?. Food Ethics 4(2), 159–174. https://doi.org/10.1007/s41055-019-00052-6 (2019).
doi: 10.1007/s41055-019-00052-6
Li, Y., Sun, F., Shi, W., Liu, X. & Li, T. Numerical simulation of ventilation performance in mushroom solar greenhouse design. Energies https://doi.org/10.3390/en15165899 (2022).
doi: 10.3390/en15165899
Hoy, M. A. Insect population ecology and molecular. Genetics. https://doi.org/10.1016/b978-0-12-815230-0.00013-3 (2019).
doi: 10.1016/b978-0-12-815230-0.00013-3
Kushwah, A., Gaur, M. K., Kumar, A. & Singh, P. Application of ANN and prediction of drying behavior of mushroom drying in side hybrid greenhouse solar dryer: An experimental validation. J. Therm. Eng. 8(2), 221–234. https://doi.org/10.18186/THERMAL.1086189 (2022).
doi: 10.18186/THERMAL.1086189
Appolloni, E. et al. Winter Greenhouse Tomato Cultivation : Matching Leaf Pruning and Supplementary Lighting for Improved Yield and Precocity 1–12 (2023).
Li, Y. et al. Soil moisture and nitrate-nitrogen dynamics and economic yield in the greenhouse cultivation of tomato and cucumber under negative pressure irrigation in the North China Plain. Sci. Rep. 9(1), 1–9. https://doi.org/10.1038/s41598-019-38695-4 (2019).
doi: 10.1038/s41598-019-38695-4
Kour, K. et al. Controlling agronomic variables of saffron crop using IoT for sustainable agriculture. Sustain. https://doi.org/10.3390/su14095607 (2022).
doi: 10.3390/su14095607
Shahandeh, H. Soil Conditions for Sustainable Saffron Production, vol. 2. (INC, 2020). https://doi.org/10.1016/B978-0-12-818638-1.00005-8 .
Pirasteh-Anosheh, H. et al. Feasibility study of saffron cultivation using a semi-saline water by managing planting date, a new statement. Environ. Res. 203(August 2021), 111853. https://doi.org/10.1016/j.envres.2021.111853 (2022).
doi: 10.1016/j.envres.2021.111853
pubmed: 34370989
Molina, R. V., Valero, M., Navarro, Y., Guardiola, J. L. & García-Luis, A. Temperature effects on flower formation in saffron (Crocus sativus L.). Sci. Hortic. (Amsterdam) 103(3), 361–379. https://doi.org/10.1016/j.scienta.2004.06.005 (2005).
doi: 10.1016/j.scienta.2004.06.005
Maleki, F., Kazemi, H., Siahmarguee, A. & Kamkar, B. Development of a land use suitability model for saffron (Crocus sativus L.) cultivation by multi-criteria evaluation and spatial analysis. Ecol. Eng. 106, 140–153. https://doi.org/10.1016/j.ecoleng.2017.05.050 (2017).
doi: 10.1016/j.ecoleng.2017.05.050
Daneshmandi, M. S. & Seyyedi, S. M. Nutrient availability and saffron corms growth affected by composted pistachio residues and commercial poultry manure in a calcareous soil. Commun. Soil Sci. Plant Anal. 50(12), 1465–1475. https://doi.org/10.1080/00103624.2019.1626871 (2019).
doi: 10.1080/00103624.2019.1626871
Sepaskhah, A. R., Dehbozorgi, F. & Kamgar-Haghighi, A. A. Optimal irrigation water and saffron corm planting intensity under two cultivation practices in a semi-arid region. Biosyst. Eng. 101(4), 452–462. https://doi.org/10.1016/j.biosystemseng.2008.09.014 (2008).
doi: 10.1016/j.biosystemseng.2008.09.014
Yarami, N. & Sepaskhah, A. R. Physiological growth and gas exchange response of saffron (Crocus sativus L.) to irrigation water salinity, manure application and planting method. Agric. Water Manag. 154, 43–51. https://doi.org/10.1016/j.agwat.2015.03.003 (2015).
doi: 10.1016/j.agwat.2015.03.003
Koocheki, A. & Seyyedi, S. M. Relationship between nitrogenand phosphorus use efficiency in saffron (Crocus sativus L.) as affected by mother corm size and fertilization. Ind. Crops Prod. 71, 128–137. https://doi.org/10.1016/j.indcrop.2015.03.085 (2015).
doi: 10.1016/j.indcrop.2015.03.085
Esmaeilian, Y., Amiri, M. B., Tavassoli, A., Caballero-Calvo, A. & Rodrigo-Comino, J. Replacing chemical fertilizers with organic and biological ones in transition to organic farming systems in saffron (Crocus sativus) cultivation. Chemosphere https://doi.org/10.1016/j.chemosphere.2022.135537 (2022).
doi: 10.1016/j.chemosphere.2022.135537
pubmed: 35850217
Koocheki, A., Fallahi, H. R., Jami-Al-Ahmadi, M. Saffron Water Requirements (INC, 2020). https://doi.org/10.1016/B978-0-12-818638-1.00006-X .
Askari-Khorasgani, O. & Pessarakli, M. Shifting saffron (Crocus sativus L.) culture from traditional farmland to controlled environment (greenhouse) condition to avoid the negative impact of climate changes and increase its productivity. J. Plant Nutr. 42(19), 2642–2665. https://doi.org/10.1080/01904167.2019.1659348 (2019).
doi: 10.1080/01904167.2019.1659348
Del Carmen Salas, M. et al. Defining optimal strength of the nutrient solution for soilless cultivation of saffron in the mediterranean. Agronomy https://doi.org/10.3390/agronomy10091311 (2020).
doi: 10.3390/agronomy10091311
Kumar, A., Devi, M., Kumar, R. & Kumar, S. Introduction of high-value Crocus sativus (saffron) cultivation in non-traditional regions of India through ecological modelling. Sci. Rep. 12(1), 1–11. https://doi.org/10.1038/s41598-022-15907-y (2022).
doi: 10.1038/s41598-022-15907-y
Stelluti, S. et al. Beneficial microorganisms: a sustainable horticultural solution to improve the quality of saffron in hydroponics. Sci. Hortic. (Amsterdam) https://doi.org/10.1016/j.scienta.2023.112155 (2023).
doi: 10.1016/j.scienta.2023.112155
Aghhavani Shajari, M., Rezvani Moghaddam, P., Ghorbani, R. & Koocheki, A. The possibility of improving saffron (Crocus sativus L.) flower and corm yield through the irrigation and soil texture managements. Sci. Hortic. (Amsterdam). 271(May), 109485. https://doi.org/10.1016/j.scienta.2020.109485 (2020).
doi: 10.1016/j.scienta.2020.109485
Gerkani Nezhad Moshizi, Z., Bazrafshan, O., Ramezani Etedali, H., Esmaeilpour, Y. & Collins, B. Application of inclusive multiple model for the prediction of saffron water footprint. Agric. Water Manag. 277(August 2022), 108125. https://doi.org/10.1016/j.agwat.2022.108125 (2023).
doi: 10.1016/j.agwat.2022.108125
Cardone, L., Candido, V., Castronuovo, D., Perniola, M. & Cicco, N. Comparing annual and biennial crop cycle on the growth, yield and quality of saffron using three corm dimensions. Sci. Hortic. (Amsterdam) 288(November 2020), 110393. https://doi.org/10.1016/j.scienta.2021.110393 (2021).
doi: 10.1016/j.scienta.2021.110393
Kothari, D., Thakur, M., Joshi, R., Kumar, A. & Kumar, R. Agro-climatic suitability evaluation for saffron production in areas of Western Himalaya. Front. Plant Sci. https://doi.org/10.3389/fpls.2021.657819 (2021).
doi: 10.3389/fpls.2021.657819
pubmed: 33790932
pmcid: 8005729
Chaouqi, S. et al. Effect of soil composition on secondary metabolites of moroccan saffron (Crocus sativus L.). Plants https://doi.org/10.3390/plants12040711 (2023).
doi: 10.3390/plants12040711
pubmed: 36840059
pmcid: 9959755
Hashemi, S. E., Madahhosseini, S., Pirasteh-Anosheh, H., Sedaghati, E. & Race, M. The role of nitrogen in inducing salt stress tolerance in Crocus sativus L.: Assessment based on plant growth and ions distribution in leaves. Sustain. https://doi.org/10.3390/su15010567 (2023).
doi: 10.3390/su15010567
Gao, D. et al. Thermal management and energy efficiency analysis of planar-array LED water-cooling luminaires in vertical farming systems for saffron. Case Stud. Therm. Eng. 51(September), 103535. https://doi.org/10.1016/j.csite.2023.103535 (2023).
doi: 10.1016/j.csite.2023.103535
Kour, K. et al. Smart-hydroponic-based framework for saffron cultivation: A precision smart agriculture perspective. Sustain. 14(3), 1–19. https://doi.org/10.3390/su14031120 (2022).
doi: 10.3390/su14031120
Cardone, L. et al. The influence of soil physical and chemical properties on saffron (Crocus sativus L.) growth, yield and quality. Agronomy 10(8), 1–22. https://doi.org/10.3390/agronomy10081154 (2020).
doi: 10.3390/agronomy10081154
Tashakkori, F., Mohammadi Torkashvand, A., Ahmadi, A. & Esfandiari, M. Prediction of saffron yield based on soil properties using artificial neural networks as a way to identify susceptible lands of saffron. Commun. Soil Sci. Plant Anal. 52(11), 1326–1337. https://doi.org/10.1080/00103624.2021.1879128 (2021).
doi: 10.1080/00103624.2021.1879128
Kour, K. et al. Monitoring ambient parameters in the IoT precision agriculture scenario: An approach to sensor selection and hydroponic saffron cultivation. Sensors https://doi.org/10.3390/s22228905 (2022).
doi: 10.3390/s22228905
pubmed: 36433502
pmcid: 9697548
Kour, K. et al. Smart framework for quality check and determination of adulterants in saffron using sensors and aquacrop. Agric. https://doi.org/10.3390/agriculture13040776 (2023).
doi: 10.3390/agriculture13040776
Ahmed, K., Khan, J. M., Ali, S., Nasreen, S., Noureen, A. Hydroponically growth of saffron (Flow ebb Vertical System 530x155) concept to design related papers.
Lykhovyd, P. et al. Short Communication Article A Preliminary Study on the Effects of Pre-planting Heating o Saffron Corms Germination Speed and Number of Sprouts in Greenhouse Conditions 2020–2022 (2022). https://doi.org/10.5281/zenodo.200121 .
Kumar, R., Singh, V., Devi, K., Sharma, M., Singh, M. K., Ahuja, P. S. State of Art of Saffron (Crocus sativus L.) Agronomy: A Comprehensive Review, vol. 25, no. 1. (2009). https://doi.org/10.1080/87559120802458503 .
Bañón, S., Álvarez, S., Bañón, D., Ortuño, M. F. & Sánchez-Blanco, M. J. Assessment of soil salinity indexes using electrical conductivity sensors. Sci. Hortic. (Amsterdam) https://doi.org/10.1016/j.scienta.2021.110171 (2021).
doi: 10.1016/j.scienta.2021.110171
Zamani, A., Sharifi, A., Felegari, S., Tariq, A. & Zhao, N. Agro climatic zoning of saffron culture in Miyaneh city by using WLC method and remote sensing data. Agric. 12(1), 1–15. https://doi.org/10.3390/agriculture12010118 (2022).
doi: 10.3390/agriculture12010118
Jami, N., Rahimi, A., Naghizadeh, M. & Sedaghati, E. Investigating the use of different levels of Mycorrhiza and Vermicompost on quantitative and qualitative yield of saffron (Crocus sativus L.). Sci. Hortic. (Amsterdam) 262(May), 109027. https://doi.org/10.1016/j.scienta.2019.109027 (2020).
doi: 10.1016/j.scienta.2019.109027
Koocheki, A., Ebrahimian, E. & Seyyedi, S. M. How irrigation rounds and mother corm size control saffron yield, quality, daughter corms behavior and phosphorus uptake. Sci. Hortic. (Amsterdam) 213, 132–143. https://doi.org/10.1016/j.scienta.2016.10.028 (2016).
doi: 10.1016/j.scienta.2016.10.028
Kouzegaran, S., Mousavi Baygi, M., Babaeian, I. & Khashei-Siuki, A. Modeling of the saffron yield in Central Khorasan region based on meteorological extreme events. Theor. Appl. Climatol. 139(3–4), 1207–1217. https://doi.org/10.1007/s00704-019-03028-y (2020).
doi: 10.1007/s00704-019-03028-y
Dastranj, M. & Sepaskhah, A. R. Saffron response to irrigation regime, salinity and planting method. Sci. Hortic. (Amsterdam) 251(March), 215–224. https://doi.org/10.1016/j.scienta.2019.03.027 (2019).
doi: 10.1016/j.scienta.2019.03.027