The IgLON family of cell adhesion molecules expressed in developing neural circuits ensure the proper functioning of the sensory system in mice.
DRG
IgLON
LSAMP
NEGR1
PNS
Sensory processing
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
30 Sep 2024
30 Sep 2024
Historique:
received:
10
07
2024
accepted:
17
09
2024
medline:
1
10
2024
pubmed:
1
10
2024
entrez:
30
9
2024
Statut:
epublish
Résumé
Deletions and malfunctions of the IgLON family of cell adhesion molecules are associated with anatomical, behavioral, and metabolic manifestations of neuropsychiatric disorders. We have previously shown that IgLON genes are expressed in sensory nuclei/pathways and that IgLON proteins modulate sensory processing. Here, we examined the expression of IgLON alternative promoter-specific isoforms during embryonic development and studied the sensory consequences of the anatomical changes when one of the IgLON genes, Negr1, is knocked out. At the embryonal age of E12.5 and E13.5, various IgLONs were distributed differentially and dynamically in the developing sensory areas within the central and peripheral nervous system, as well as in limbs and mammary glands. Sensory tests showed that Negr1 deficiency causes differences in vestibular function and temperature sensitivity in the knockout mice. Sex-specific differences were noted across olfaction, vestibular functioning, temperature regulation, and mechanical sensitivity. Our findings highlight the involvement of IgLON molecules during sensory circuit formation and suggest Negr1's critical role in somatosensory processing.
Identifiants
pubmed: 39349721
doi: 10.1038/s41598-024-73358-z
pii: 10.1038/s41598-024-73358-z
doi:
Substances chimiques
Cell Adhesion Molecules
0
Cell Adhesion Molecules, Neuronal
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
22593Subventions
Organisme : European Regional Development Fund
ID : Project No. 2014-2020.4.01.15-0012
Organisme : Estonian Research Foundation
ID : PRG 685
Informations de copyright
© 2024. The Author(s).
Références
Catala, M. & Kubis, N. Gross anatomy and development of the peripheral nervous system. Handb. Clin. Neurol.115, 29–41. https://doi.org/10.1016/B978-0-444-52902-2.00003-5 (2013).
doi: 10.1016/B978-0-444-52902-2.00003-5
pubmed: 23931773
Baum, M. J. & Cherry, J. A. Processing by the main olfactory system of chemosignals that facilitate mammalian reproduction. Horm. Behav.68, 53–64. https://doi.org/10.1016/j.yhbeh.2014.06.003 (2015).
doi: 10.1016/j.yhbeh.2014.06.003
pubmed: 24929017
Burke, K. & Kobrina, A. Rodentia sensory systems. In Encyclopedia of Animal Cognition and Behavior (eds Vonk, J. & Shackelford, T. K.) (Springer, 2022). https://doi.org/10.1007/978-3-319-55065-7_765 .
doi: 10.1007/978-3-319-55065-7_765
Francis-West, P. H., Ladher, R. K. & Schoenwolf, G. C. Development of the sensory organs. Sci. Prog.85, 151–173. https://doi.org/10.3184/003685002783238852 (2002).
doi: 10.3184/003685002783238852
pubmed: 12216279
pmcid: 10361195
Collado, M. S. et al. The postnatal accumulation of junctional E-cadherin is inversely correlated with the capacity for supporting cells to convert directly into sensory hair cells in mammalian balance organs. J. Neurosci.31, 11855–11866. https://doi.org/10.1523/JNEUROSCI.2525-11.2011 (2011).
doi: 10.1523/JNEUROSCI.2525-11.2011
pubmed: 21849546
pmcid: 3164812
Liu, X. et al. Roles of neuroligins in central nervous system development: Focus on glial neuroligins and neuron neuroligins. J. Transl. Med.20, 418. https://doi.org/10.1186/s12967-022-03625-y (2022).
doi: 10.1186/s12967-022-03625-y
pubmed: 36088343
pmcid: 9463862
Velasques, B. et al. Sensorimotor integration and psychopathology: Motor control abnormalities related to psychiatric disorders. World J. Biol. Psychiatry12, 560–573. https://doi.org/10.3109/15622975.2010.551405 (2011).
doi: 10.3109/15622975.2010.551405
pubmed: 21428729
van den Boogert, F. et al. Sensory processing difficulties in psychiatric disorders: A meta-analysis. J. Psychiatr. Res.151, 173–180. https://doi.org/10.1016/j.jpsychires.2022.04.020 (2022).
doi: 10.1016/j.jpsychires.2022.04.020
pubmed: 35489177
Harrison, L. A., Kats, A., Williams, M. E. & Aziz-Zadeh, L. The importance of sensory processing in mental health: A proposed addition to the research domain criteria (RDoC) and suggestions for RDoC 2.0. Front. Psychol.10, 103. https://doi.org/10.3389/fpsyg.2019.00103 (2019).
doi: 10.3389/fpsyg.2019.00103
pubmed: 30804830
pmcid: 6370662
Philips, M. A. et al. Lsamp is implicated in the regulation of emotional and social behavior by use of alternative promoters in the brain. Brain Struct. Funct.220, 1381–1393. https://doi.org/10.1007/s00429-014-0732-x (2015).
doi: 10.1007/s00429-014-0732-x
pubmed: 24633737
Vanaveski, T. et al. Promoter-specific expression and genomic structure of IgLON family genes in mouse. Front. Neurosci.11, 38. https://doi.org/10.3389/fnins.2017.00038 (2018).
doi: 10.3389/fnins.2017.00038
Jagomäe, T. et al. Alternative promoter use governs the expression of IgLON cell adhesion molecules in histogenetic fields of the embryonic mouse brain. Int. J. Mol. Sci.22, 6955. https://doi.org/10.3390/ijms22136955 (2021).
doi: 10.3390/ijms22136955
pubmed: 34203377
pmcid: 8268470
Fearnley, S., Raja, R. & Cloutier, J. F. Spatiotemporal expression of IgLON family members in the developing mouse nervous system. Sci. Rep.11, 19536. https://doi.org/10.1038/s41598-021-97768-5 (2021).
doi: 10.1038/s41598-021-97768-5
pubmed: 34599206
pmcid: 8486791
Pan, Y., Wang, K. S. & Aragam, N. NTM and NR3C2 polymorphisms influencing intelligence: Family-based association studies. Prog. Neuropsychopharmacol. Biol. Psychiatry35, 154–160. https://doi.org/10.1016/j.pnpbp.2010.10.016 (2011).
doi: 10.1016/j.pnpbp.2010.10.016
pubmed: 21036197
Hyde, C. L. et al. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat. Genet.48, 1031–1036. https://doi.org/10.1038/ng.3623 (2016).
doi: 10.1038/ng.3623
pubmed: 27479909
pmcid: 5706769
Karis, K. et al. Altered expression profile of IgLON family of neural cell adhesion molecules in the dorsolateral prefrontal cortex of schizophrenic patients. Front. Mol. Neurosci.11, 8. https://doi.org/10.3389/fnmol.2018.00008 (2018).
doi: 10.3389/fnmol.2018.00008
pubmed: 29434535
pmcid: 5797424
Bernhard, F. et al. Functional relevance of genes implicated by obesity genome-wide association study signals for human adipocyte biology. Diabetologia56, 311–322. https://doi.org/10.1007/s00125-012-2773-0 (2013).
doi: 10.1007/s00125-012-2773-0
pubmed: 23229156
Viggiano, M. et al. Genomic analysis of 116 autism families strengthens known risk genes and highlights promising candidates. NPJ Genom. Med.9, 21. https://doi.org/10.1038/s41525-024-00411-1 (2024).
doi: 10.1038/s41525-024-00411-1
pubmed: 38519481
pmcid: 10959942
Raghavan, N. S., Vardarajan, B. & Mayeux, R. Genomic variation in educational attainment modifies Alzheimer disease risk. Neurol. Genet.5, e310. https://doi.org/10.1212/NXG.0000000000000310 (2019).
doi: 10.1212/NXG.0000000000000310
pubmed: 30863791
pmcid: 6395060
Abdi, I. Y. et al. Cross-sectional proteomic expression in Parkinson’s disease-related proteins in drug-naïve patients vs healthy controls with longitudinal clinical follow-up. Neurobiol. Dis.177, 105997. https://doi.org/10.1016/j.nbd.2023.105997 (2023).
doi: 10.1016/j.nbd.2023.105997
pubmed: 36634823
Lee, S. Y. et al. Phenotypic insights into anti-IgLON5 disease in IgLON5-deficient mice. Neurol. Neuroimmunol. Neuroinflamm.11, e200234. https://doi.org/10.1212/NXI.0000000000200234 (2024).
doi: 10.1212/NXI.0000000000200234
pubmed: 38657185
pmcid: 11087031
Innos, J. et al. Lower anxiety and a decrease in agonistic behaviour in Lsamp-deficient mice. Behav. Brain Res.217(1), 21–31. https://doi.org/10.1016/j.bbr.2010.09.019 (2011).
doi: 10.1016/j.bbr.2010.09.019
pubmed: 20888367
Mazitov, T., Bregin, A., Philips, M. A., Innos, J. & Vasar, E. Deficit in emotional learning in neurotrimin knockout mice. Behav. Brain Res.317, 311–318. https://doi.org/10.1016/j.bbr.2016.09.064 (2017).
doi: 10.1016/j.bbr.2016.09.064
pubmed: 27693610
Bregin, A. et al. Expression and impact of Lsamp neural adhesion molecule in the serotonergic neurotransmission system. Pharmacol. Biochem. Behav.198, 173017. https://doi.org/10.1016/j.pbb.2020.173017 (2020).
doi: 10.1016/j.pbb.2020.173017
pubmed: 32828972
Singh, K. et al. Neuronal growth and behavioral alterations in mice deficient for the psychiatric disease-associated Negr1 gene. Front. Mol. Neurosci.11, 30. https://doi.org/10.3389/fnmol.2018.00030 (2018).
doi: 10.3389/fnmol.2018.00030
pubmed: 29479305
pmcid: 5811522
Singh, K. et al. The combined impact of IgLON family proteins Lsamp and neurotrimin on developing neurons and behavioral profiles in mouse. Brain Res. Bull.140, 5–18. https://doi.org/10.1016/j.brainresbull.2018.03.013 (2018).
doi: 10.1016/j.brainresbull.2018.03.013
pubmed: 29605488
Singh, K. et al. Neural cell adhesion molecule Negr1 deficiency in mouse results in structural brain endophenotypes and behavioral deviations related to psychiatric disorders. Sci. Rep.9, 5457. https://doi.org/10.1038/s41598-019-41991-8 (2019).
doi: 10.1038/s41598-019-41991-8
pubmed: 30932003
pmcid: 6443666
Kaare, M. et al. High-fat diet induces pre-diabetes and distinct sex-specific metabolic alterations in Negr1-deficient mice. Biomedicines9, 1148. https://doi.org/10.3390/biomedicines9091148 (2021).
doi: 10.3390/biomedicines9091148
pubmed: 34572334
pmcid: 8466019
Kaare, M. et al. Depression-associated Negr1 gene-deficiency induces alterations in the monoaminergic neurotransmission enhancing time-dependent sensitization to amphetamine in male mice. Brain Sci.12, 1696. https://doi.org/10.3390/brainsci12121696 (2022).
doi: 10.3390/brainsci12121696
pubmed: 36552158
pmcid: 9776224
Kimura, Y., Katoh, A., Kaneko, T., Takahama, K. & Tanaka, H. Two members of the IgLON family are expressed in a restricted region of the developing chick brain and neural crest. Dev. Growth Differ.43(3), 257–263. https://doi.org/10.1046/j.1440-169x.2001.00570.x (2001).
doi: 10.1046/j.1440-169x.2001.00570.x
pubmed: 11422291
Martin, P. Tissue patterning in the developing mouse limb. Int. J. Dev. Biol.34(3), 323–336 (1990).
pubmed: 1702679
Kaufman MH. The atlas of mouse development. Third revised edition 1999, 525(Academic Press, San Diego, 1992).
Chen, V. S. et al. Histology atlas of the developing prenatal and postnatal mouse central nervous system, with emphasis on prenatal days E7.5 to E18.5. Toxicol. Pathol.45(6), 705–744. https://doi.org/10.1177/0192623317728134 (2017).
doi: 10.1177/0192623317728134
pubmed: 28891434
pmcid: 5754028
Rosenbaum, T., Morales-Lázaro, S. L. & Islas, L. D. TRP channels: A journey towards a molecular understanding of pain. Nat. Rev. Neurosci.23, 596–610. https://doi.org/10.1038/s41583-022-00611-7 (2022).
doi: 10.1038/s41583-022-00611-7
pubmed: 35831443
Perju-Dumbrava, L. & Kempster, P. Movement disorders in psychiatric patients. BMJ Neurol. Open2, e000057. https://doi.org/10.1136/bmjno-2020-000057 (2020).
doi: 10.1136/bmjno-2020-000057
pubmed: 33681793
pmcid: 7871724
Leighton, A. H. & Lohmann, C. The wiring of developing sensory circuits—From patterned spontaneous activity to synaptic plasticity mechanisms. Front. Neural Circuits10, 71. https://doi.org/10.3389/fncir.2016.00071 (2016).
doi: 10.3389/fncir.2016.00071
pubmed: 27656131
pmcid: 5011135
Vermeiren, S., Bellefroid, E. J. & Desiderio, S. Vertebrate sensory ganglia: Common and divergent features of the transcriptional programs generating their functional specialization. Front. Cell Dev. Biol.8, 587699. https://doi.org/10.3389/fcell.2020.587699 (2020).
doi: 10.3389/fcell.2020.587699
pubmed: 33195244
pmcid: 7649826
Baker, C. V. & Bronner-Fraser, M. Vertebrate cranial placodes I. Embryonic induction. Dev. Biol.232, 1–61. https://doi.org/10.1006/dbio.2001.0156 (2001).
doi: 10.1006/dbio.2001.0156
pubmed: 11254347
Butler, S. J. & Bronner, M. E. From classical to current: Analyzing peripheral nervous system and spinal cord lineage and fate. Dev. Biol.398, 135–146. https://doi.org/10.1016/j.ydbio.2014.09.033 (2015).
doi: 10.1016/j.ydbio.2014.09.033
pubmed: 25446276
Kimura, Y., Katoh, A., Kaneko, T., Takahama, K. & Tanaka, H. Two members of the IgLON family are expressed in a restricted region of the developing chick brain and neural crest. Dev. Growth Differ.43, 257–263. https://doi.org/10.1046/j.1440-169x.2001.00570.x (2001).
doi: 10.1046/j.1440-169x.2001.00570.x
pubmed: 11422291
Walker, H. K. Cranial nerve V: The trigeminal nerve. In Clinical Methods: The History, Physical, and Laboratory Examinations 3rd edn (eds Walker, H. K. et al.) (Butterworths, 1990).
Sanders, R. D. The trigeminal (V) and facial (VII) cranial nerves: Head and face sensation and movement. Psychiatry (Edgmont)7, 13–16 (2010).
pubmed: 20386632
Meltzer, S., Santiago, C., Sharma, N. & Ginty, D. D. The cellular and molecular basis of somatosensory neuron development. Neuron109, 3736–3757. https://doi.org/10.1016/j.neuron.2021.09.004 (2021).
doi: 10.1016/j.neuron.2021.09.004
pubmed: 34592169
pmcid: 8639614
Gil, O. D. et al. Complementary expression and heterophilic interactions between IgLON family members neurotrimin and LAMP. J. Neurobiol.51, 190–204. https://doi.org/10.1002/neu.10050 (2002).
doi: 10.1002/neu.10050
pubmed: 11984841
Sanz, R. L., Ferraro, G. B., Girouard, M. P. & Fournier, A. E. Ectodomain shedding of limbic system-associated membrane protein (LSAMP) by ADAM metallopeptidases promotes neurite outgrowth in DRG neurons. Sci. Rep.7, 7961. https://doi.org/10.1038/s41598-017-08315-0 (2017).
doi: 10.1038/s41598-017-08315-0
pubmed: 28801670
pmcid: 5554145
Smith-Anttila, C. J. A. et al. Identification of a sacral, visceral sensory transcriptome in embryonic and adult mice. ENeuro7, 0397. https://doi.org/10.1523/ENEURO.0397-19.2019 (2020).
doi: 10.1523/ENEURO.0397-19.2019
Kim, K. H., Noh, K., Lee, J., Lee, S. & Lee, S. J. Neuronal growth regulator 1 modulates mouse affective discrimination by regulating adult olfactory neurogenesis. Biol. Psychiatry Glob. Open Sci. https://doi.org/10.1016/j.bpsgos.2024.100355 (2024).
doi: 10.1016/j.bpsgos.2024.100355
pubmed: 39205794
pmcid: 11350498
Lee, A. W. et al. Functional inactivation of the genome-wide association study obesity gene neuronal growth regulator 1 in mice causes a body mass phenotype. PLoS ONE7, e41537. https://doi.org/10.1371/journal.pone.0041537 (2012).
doi: 10.1371/journal.pone.0041537
pubmed: 22844493
pmcid: 3402391
Irie, F., Badie-Mahdavi, H. & Yamaguchi, Y. Autism-like socio-communicative deficits and stereotypies in mice lacking heparan sulfate. Proc. Natl. Acad. Sci. U.S.A.109, 5052–5056. https://doi.org/10.1073/pnas.1117881109 (2012).
doi: 10.1073/pnas.1117881109
pubmed: 22411800
pmcid: 3323986
Shi, M., Qi, W.-J., Gao, G., Wang, J.-Y. & Luo, F. Increased thermal and mechanical nociceptive thresholds in rats with depressive-like behaviors. Brain Res.1353, 225–233. https://doi.org/10.1016/j.brainres.2010.07.023 (2010).
doi: 10.1016/j.brainres.2010.07.023
pubmed: 20637742
pmcid: 2933300
Han, Q. et al. SHANK3 deficiency impairs heat hyperalgesia and TRPV1 signaling in primary sensory neurons. Neuron92, 1279–1293. https://doi.org/10.1016/j.neuron.2016.11.007 (2016).
doi: 10.1016/j.neuron.2016.11.007
pubmed: 27916453
pmcid: 5182147
Innos, J. et al. Deletion of the Lsamp gene lowers sensitivity to stressful environmental manipulations in mice. Behav. Brain Res.228, 74–81. https://doi.org/10.1016/j.bbr.2011.11.033 (2012).
doi: 10.1016/j.bbr.2011.11.033
pubmed: 22155487
Iivonen, K. S. et al. Relationship between fundamental motor skills and physical activity in 4-year-old preschool children. Percept. Mot. Skills117, 627–646. https://doi.org/10.2466/10.06.PMS.117x22z7 (2013).
doi: 10.2466/10.06.PMS.117x22z7
pubmed: 24611263
Kaikaew, K., Steenbergen, J., Themmen, A. P. N., Visser, J. A. & Grefhorst, A. Sex difference in thermal preference of adult mice does not depend on presence of the gonads. Biol. Sex Differ.8, 24. https://doi.org/10.1186/s13293-017-0145-7 (2017).
doi: 10.1186/s13293-017-0145-7
pubmed: 28693572
pmcid: 5504804
Martins, D., Tavares, I. & Morgado, C. “Hotheaded”: The role OF TRPV1 in brain functions. Neuropharmacology85, 151–157. https://doi.org/10.1016/j.neuropharm.2014.05.034 (2014).
doi: 10.1016/j.neuropharm.2014.05.034
pubmed: 24887171
Hudson, A. S., Kunstetter, A. C., Damasceno, W. C. & Wanner, S. P. Involvement of the TRPV1 channel in the modulation of spontaneous locomotor activity, physical performance and physical exercise-induced physiological responses. Braz. J. Med. Biol. Res.49(6), e5183. https://doi.org/10.1590/1414-431X20165183 (2016).
doi: 10.1590/1414-431X20165183
pubmed: 27191606
pmcid: 4869825
Serra, G. P., Guillaumin, A., Dumas, S., Vlcek, B. & Wallén-Mackenzie, Å. Midbrain dopamine neurons defined by TrpV1 modulate psychomotor behavior. Front. Neural Circuits15, 726893. https://doi.org/10.3389/fncir.2021.726893 (2021).
doi: 10.3389/fncir.2021.726893
pubmed: 34858142
pmcid: 8632262
Tavares-Ferreira, D. et al. Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors. Sci. Transl. Med.14, eabj8186. https://doi.org/10.1126/scitranslmed.abj8186 (2022).
doi: 10.1126/scitranslmed.abj8186
pubmed: 35171654
pmcid: 9272153
González-Ramírez, R., Chen, Y., Liedtke, W. B. & Morales-Lázaro, S. L. TRP channels and pain. In Neurobiology of TRP Channels (CRC Press/Taylor & Francis, 2017)
Koivisto, A. P., Belvisi, M. G., Gaudet, R. & Szallasi, A. Advances in TRP channel drug discovery: From target validation to clinical studies. Nat. Rev. Drug Discov.21, 41–59. https://doi.org/10.1038/s41573-021-00268-4 (2022).
doi: 10.1038/s41573-021-00268-4
pubmed: 34526696
Seppa, K. et al. Liraglutide, 7,8-DHF and their co-treatment prevents loss of vision and cognitive decline in a Wolfram syndrome rat model. Sci. Rep.11, 2275. https://doi.org/10.1038/s41598-021-81768-6 (2021).
doi: 10.1038/s41598-021-81768-6
pubmed: 33500541
pmcid: 7838169