FMRI speech tracking in primary and non-primary auditory cortex while listening to noisy scenes.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
30 Sep 2024
Historique:
received: 24 05 2023
accepted: 17 09 2024
medline: 1 10 2024
pubmed: 1 10 2024
entrez: 30 9 2024
Statut: epublish

Résumé

Invasive and non-invasive electrophysiological measurements during "cocktail-party"-like listening indicate that neural activity in the human auditory cortex (AC) "tracks" the envelope of relevant speech. However, due to limited coverage and/or spatial resolution, the distinct contribution of primary and non-primary areas remains unclear. Here, using 7-Tesla fMRI, we measured brain responses of participants attending to one speaker, in the presence and absence of another speaker. Through voxel-wise modeling, we observed envelope tracking in bilateral Heschl's gyrus (HG), right middle superior temporal sulcus (mSTS) and left temporo-parietal junction (TPJ), despite the signal's sluggish nature and slow temporal sampling. Neurovascular activity correlated positively (HG) or negatively (mSTS, TPJ) with the envelope. Further analyses comparing the similarity between spatial response patterns in the single speaker and concurrent speakers conditions and envelope decoding indicated that tracking in HG reflected both relevant and (to a lesser extent) non-relevant speech, while mSTS represented the relevant speech signal. Additionally, in mSTS, the similarity strength correlated with the comprehension of relevant speech. These results indicate that the fMRI signal tracks cortical responses and attention effects related to continuous speech and support the notion that primary and non-primary AC process ongoing speech in a push-pull of acoustic and linguistic information.

Identifiants

pubmed: 39349723
doi: 10.1038/s42003-024-06913-z
pii: 10.1038/s42003-024-06913-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1217

Subventions

Organisme : Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research)
ID : 451-17-033
Organisme : Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research)
ID : 406.20.GO.030

Informations de copyright

© 2024. The Author(s).

Références

Crosse, M. J., Di Liberto, G. M., Bednar, A. & Lalor, E. C. The multivariate temporal response function (mTRF) toolbox: a MATLAB toolbox for relating neural signals to continuous stimuli. Front. Hum. Neurosci. 10, 604 (2016).
pubmed: 27965557 pmcid: 5127806 doi: 10.3389/fnhum.2016.00604
Obleser, J. & Kayser, C. Neural entrainment and attentional selection in the listening brain. Trends Cogn. Sci. 23, 913–926 (2019).
pubmed: 31606386 doi: 10.1016/j.tics.2019.08.004
Brodbeck, C. & Simon, J. Z. Continuous speech processing. Curr. Opin. Physiol. 18, 25–31 (2020).
pubmed: 33225119 pmcid: 7673294 doi: 10.1016/j.cophys.2020.07.014
Wöstmann, M., Fiedler, L. & Obleser, J. Tracking the signal, cracking the code: speech and speech comprehension in non-invasive human electrophysiology. Lang. Cogn. Neurosci. 32, 855–869 (2017).
doi: 10.1080/23273798.2016.1262051
Ding, N. & Simon, J. Z. Emergence of neural encoding of auditory objects while listening to competing speakers. Proc. Natl Acad. Sci. USA 109, 11854–11859 (2012).
pubmed: 22753470 pmcid: 3406818 doi: 10.1073/pnas.1205381109
Zion Golumbic, E. M. et al. Mechanisms underlying selective neuronal tracking of attended speech at a “cocktail party”. Neuron 77, 980–991 (2013).
pubmed: 23473326 pmcid: 3891478 doi: 10.1016/j.neuron.2012.12.037
O’Sullivan, J. A. et al. Attentional selection in a cocktail party environment can be decoded from single-trial EEG. Cereb. Cortex 25, 1697–1706 (2015).
pubmed: 24429136 doi: 10.1093/cercor/bht355
Rimmele, J. M., Zion Golumbic, E., Schröger, E. & Poeppel, D. The effects of selective attention and speech acoustics on neural speech-tracking in a multi-talker scene. Cortex 68, 144–154 (2015).
pubmed: 25650107 pmcid: 4475476 doi: 10.1016/j.cortex.2014.12.014
Petersen, E. B., Wöstmann, M., Obleser, J. & Lunner, T. Neural tracking of attended versus ignored speech is differentially affected by hearing loss. J. Neurophysiol. 117, 18–27 (2017).
pubmed: 27707813 doi: 10.1152/jn.00527.2016
Ding, N. & Simon, J. Z. Neural coding of continuous speech in auditory cortex during monaural and dichotic listening. J. Neurophysiol. 107, 78–89 (2012).
pubmed: 21975452 doi: 10.1152/jn.00297.2011
O’Sullivan, J. et al. Hierarchical encoding of attended auditory objects in multi-talker speech perception. Neuron 104, 1195–1209.e3 (2019).
pubmed: 31648900 pmcid: 8082956 doi: 10.1016/j.neuron.2019.09.007
Brodbeck, C., Hong, L. E. & Simon, J. Z. Rapid transformation from auditory to linguistic representations of continuous speech. Curr. Biol. 28, 3976–3983.e5 (2018).
pubmed: 30503620 pmcid: 6339854 doi: 10.1016/j.cub.2018.10.042
Forte, A. E., Etard, O. & Reichenbach, T. The human auditory brainstem response to running speech reveals a subcortical mechanism for selective attention. Elife 6, e27203 (2017).
pubmed: 28992445 pmcid: 5634786 doi: 10.7554/eLife.27203
Maddox, R. K. & Lee, A. K. C. Auditory brainstem responses to continuous natural speech in human listeners. eNeuro 5, ENEURO.0441–17.2018 (2018).
pubmed: 29435487 doi: 10.1523/ENEURO.0441-17.2018
Puschmann, S. et al. The right temporoparietal junction supports speech tracking during selective listening: evidence from concurrent EEG-fMRI. J. Neurosci. 37, 11505–11516 (2017).
pubmed: 29061698 pmcid: 6596752 doi: 10.1523/JNEUROSCI.1007-17.2017
Friston, K. J. et al. Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210 (1994).
doi: 10.1002/hbm.460020402
Peelen, M. V., Fei-Fei, L. & Kastner, S. Neural mechanisms of rapid natural scene categorization in human visual cortex. Nature 460, 94–97 (2009).
pubmed: 19506558 pmcid: 2752739 doi: 10.1038/nature08103
Hausfeld, L., Riecke, L. & Formisano, E. Acoustic and higher-level representations of naturalistic auditory scenes in human auditory and frontal cortex. Neuroimage 173, 472–483 (2018).
pubmed: 29518569 doi: 10.1016/j.neuroimage.2018.02.065
Formisano, E., De Martino, F., Bonte, M. & Goebel, R. ‘Who’ is saying ‘what’? brain-based decoding of human voice and speech. Science 322, 970–973 (2008).
pubmed: 18988858 doi: 10.1126/science.1164318
Mesgarani, N. & Chang, E. F. Selective cortical representation of attended speaker in multi-talker speech perception. Nature 485, 233–236 (2012).
pubmed: 22522927 doi: 10.1038/nature11020
Pasley, B. N. et al. Reconstructing speech from human auditory cortex. PLoS Biol. 10, e1001251 (2012).
pubmed: 22303281 pmcid: 3269422 doi: 10.1371/journal.pbio.1001251
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
doi: 10.1111/j.2517-6161.1995.tb02031.x
Mirkovic, B., Debener, S., Jaeger, M. & De Vos, M. Decoding the attended speech stream with multi-channel EEG: implications for online, daily-life applications. J. Neural Eng. 12, 046007 (2015).
pubmed: 26035345 doi: 10.1088/1741-2560/12/4/046007
Das, N., Bertrand, A. & Francart, T. EEG-based auditory attention detection: boundary conditions for background noise and speaker positions. J. Neural Eng. 15, 066017 (2018).
pubmed: 30207293 doi: 10.1088/1741-2552/aae0a6
Hamilton, L. S., Edwards, E. & Chang, E. F. A spatial map of onset and sustained responses to speech in the human superior temporal gyrus. Curr. Biol. 28, 1860–1871.e4 (2018).
pubmed: 29861132 doi: 10.1016/j.cub.2018.04.033
De Martino, F. et al. The impact of ultra-high field MRI on cognitive and computational neuroimaging. Neuroimage 168, 366–382 (2018).
pubmed: 28396293 doi: 10.1016/j.neuroimage.2017.03.060
Haufe, S. et al. Elucidating relations between fMRI, ECoG, and EEG through a common natural stimulus. Neuroimage 179, 79–91 (2018).
pubmed: 29902585 doi: 10.1016/j.neuroimage.2018.06.016
Kayser, C. A comparison of hemodynamic and neural responses in cat visual cortex using complex stimuli. Cereb. Cortex 14, 881–891 (2004).
pubmed: 15084493 doi: 10.1093/cercor/bhh047
Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).
pubmed: 11449264 doi: 10.1038/35084005
Hickok, G. & Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 8, 393–402 (2007).
pubmed: 17431404 doi: 10.1038/nrn2113
Wilson, S. M., Bautista, A. & McCarron, A. Convergence of spoken and written language processing in the superior temporal sulcus. Neuroimage 171, 62–74 (2018).
pubmed: 29277646 doi: 10.1016/j.neuroimage.2017.12.068
Quillen, I. A., Yen, M. & Wilson, S. M. Distinct neural correlates of linguistic and non-linguistic demand. Neurobiol. Lang. 2, 202–225 (2021).
doi: 10.1162/nol_a_00031
de Heer, W. A., Huth, A. G., Griffiths, T. L., Gallant, J. L. & Theunissen, F. E. The hierarchical cortical organization of human speech processing. J. Neurosci. 37, 6539–6557 (2017).
pubmed: 28588065 pmcid: 5511884 doi: 10.1523/JNEUROSCI.3267-16.2017
Matchin, W. & Hickok, G. The cortical organization of syntax. Cereb. Cortex 30, 1481–1498 (2020).
pubmed: 31670779 doi: 10.1093/cercor/bhz180
Luo, H. & Poeppel, D. Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron 54, 1001–1010 (2007).
pubmed: 17582338 pmcid: 2703451 doi: 10.1016/j.neuron.2007.06.004
Poeppel, D. The analysis of speech in different temporal integration windows: cerebral lateralization as ‘asymmetric sampling in time. Speech Commun. 41, 245–255 (2003).
doi: 10.1016/S0167-6393(02)00107-3
Ding, N. & Simon, J. Z. Adaptive temporal encoding leads to a background-insensitive cortical representation of speech. J. Neurosci. 33, 5728–5735 (2013).
pubmed: 23536086 pmcid: 3643795 doi: 10.1523/JNEUROSCI.5297-12.2013
Lesenfants, D., Vanthornhout, J., Verschueren, E., Decruy, L. & Francart, T. Predicting individual speech intelligibility from the cortical tracking of acoustic- and phonetic-level speech representations. Hear. Res. 380, 1–9 (2019).
pubmed: 31167150 doi: 10.1016/j.heares.2019.05.006
Etard, O. & Reichenbach, T. Neural speech tracking in the theta and in the delta frequency band differentially encode clarity and comprehension of speech in noise. J. Neurosci. 39, 5750–5759 (2019).
pubmed: 31109963 pmcid: 6636082 doi: 10.1523/JNEUROSCI.1828-18.2019
Fiedler, L., Wöstmann, M., Herbst, S. K. & Obleser, J. Late cortical tracking of ignored speech facilitates neural selectivity in acoustically challenging conditions. Neuroimage 186, 33–42 (2019).
pubmed: 30367953 doi: 10.1016/j.neuroimage.2018.10.057
Broderick, M. P., Anderson, A. J., Di Liberto, G. M., Crosse, M. J. & Lalor, E. C. Electrophysiological correlates of semantic dissimilarity reflect the comprehension of natural, narrative speech. Curr. Biol. 28, 803–809.e3 (2018).
pubmed: 29478856 doi: 10.1016/j.cub.2018.01.080
Brodbeck, C., Jiao, A., Hong, L. E. & Simon, J. Z. Neural speech restoration at the cocktail party: auditory cortex recovers masked speech of both attended and ignored speakers. PLoS Biol. 18, 1–22 (2020).
doi: 10.1371/journal.pbio.3000883
Hausfeld, L., Riecke, L., Valente, G. & Formisano, E. Cortical tracking of multiple streams outside the focus of attention in naturalistic auditory scenes. Neuroimage 181, 617–626 (2018).
pubmed: 30048749 doi: 10.1016/j.neuroimage.2018.07.052
Khalighinejad, B., Herrero, J. L., Mehta, A. D. & Mesgarani, N. Adaptation of the human auditory cortex to changing background noise. Nat. Commun. 10, 2509 (2019).
pubmed: 31175304 pmcid: 6555798 doi: 10.1038/s41467-019-10611-4
Puvvada, K. C. & Simon, J. Z. Cortical representations of speech in a multitalker auditory scene. J. Neurosci. 37, 9189–9196 (2017).
pubmed: 28821680 pmcid: 5607465 doi: 10.1523/JNEUROSCI.0938-17.2017
Varnet, L., Ortiz-Barajas, M. C., Erra, R. G., Gervain, J. & Lorenzi, C. A cross-linguistic study of speech modulation spectra. J. Acoust. Soc. Am. 142, 1976–1989 (2017).
pubmed: 29092595 doi: 10.1121/1.5006179
Lewis, L. D., Setsompop, K., Rosen, B. R. & Polimeni, J. R. Fast fMRI can detect oscillatory neural activity in humans. Proc. Natl Acad. Sci. 113, E6679–E6685 (2016).
pubmed: 27729529 pmcid: 5087037 doi: 10.1073/pnas.1608117113
Di Liberto, G. M., O’Sullivan, J. A. & Lalor, E. C. Low-frequency cortical entrainment to speech reflects phoneme-level processing. Curr. Biol. 25, 2457–2465 (2015).
pubmed: 26412129 doi: 10.1016/j.cub.2015.08.030
Heilbron, M., Armeni, K., Schoffelen, J.-M., Hagoort, P. & de Lange, F. P. A hierarchy of linguistic predictions during natural language comprehension. Proc. Natl Acad. Sci. USA 119, e2201968119 (2022).
pubmed: 35921434 pmcid: 9371745 doi: 10.1073/pnas.2201968119
Shain, C., Blank, I. A., Fedorenko, E., Gibson, E. & Schuler, W. Robust effects of working memory demand during naturalistic language comprehension in language-selective cortex. J. Neurosci. 42, 7412–7430 (2022).
pubmed: 36002263 pmcid: 9525168 doi: 10.1523/JNEUROSCI.1894-21.2022
de Cheveigné, A. & Kawahara, H. YIN, a fundamental frequency estimator for speech and music. J. Acoust. Soc. Am. 111, 1917–1930 (2002).
pubmed: 12002874 doi: 10.1121/1.1458024
Boersma, P. & Weenink, D. Praat: doing phonetics by computer. Ear. Hear. 32, 266 (2019).
Marques, J. P. et al. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 49, 1271–1281 (2010).
pubmed: 19819338 doi: 10.1016/j.neuroimage.2009.10.002
Cumming, G. Understanding the New Statistics: Effect Sizes, Confidence Intervals, and Meta-Analysis 1st edn, Vol. 536 (Routledge, 2012).
Jezzard, P. & Balaban, R. S. Correction for geometric distortion in echo planar images from B0 field variations. Magn. Reson. Med. 34, 65–73 (1995).
pubmed: 7674900 doi: 10.1002/mrm.1910340111
Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System—an Approach to Cerebral Imaging 1st edn, Vol. 132 (Thieme Medical Publishers, 1988).
Goebel, R., Esposito, F. & Formisano, E. Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: from single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Hum. Brain Mapp. 27, 392–401 (2006).
pubmed: 16596654 pmcid: 6871277 doi: 10.1002/hbm.20249
Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. F. & Baker, C. I. Circular analysis in systems neuroscience: the dangers of double dipping. Nat. Neurosci. 12, 535–540 (2009).
pubmed: 19396166 pmcid: 2841687 doi: 10.1038/nn.2303
Hausfeld, L., Hamers, I. M. H. & Formisano, E. Data from: FMRI speech tracking in primary and non-primary auditory cortex while listening to noisy scenes [Data set]. Zenodo https://doi.org/10.5281/zenodo.13359542 (2024).

Auteurs

Lars Hausfeld (L)

Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands. lars.hausfeld@maastrichtuniversity.nl.
Maastricht Brain Imaging Centre, 6200 MD, Maastricht, The Netherlands. lars.hausfeld@maastrichtuniversity.nl.

Iris M H Hamers (IMH)

Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands.
Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

Elia Formisano (E)

Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands.
Maastricht Brain Imaging Centre, 6200 MD, Maastricht, The Netherlands.
Maastricht Centre for Systems Biology, Faculty of Science and Engineering, 6200 MD, Maastricht, The Netherlands.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH