Somatosensory stimulation on the wrist enhances the subsequent hand-choice by biasing toward the stimulated hand.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
30 Sep 2024
Historique:
received: 09 11 2023
accepted: 16 09 2024
medline: 1 10 2024
pubmed: 1 10 2024
entrez: 30 9 2024
Statut: epublish

Résumé

Hand choice is an unconscious decision frequently made in daily life. The electroencephalogram before target presentation correlates with hand choice for the target where hand choice probability reaches equilibrium. However, whether neurophysiological interventions before target presentation influence hand choice remains unknown. Therefore, this study determined whether instantaneous somatosensory electrical stimulation administered to the unilateral wrist at 0, 300, or 600 ms before the target presentation facilitates or inhibits stimulated hand choice for targets around the hand selection equilibrium point. A single electrical stimulation comprised five trains of 1 ms electrical pulses, with a 20 ms inter-pulse interval. The stimulus intensity was set at 80% of the motor threshold. This study included 14 right-handed healthy adults (five females and nine males; mean age, 25.1 ± 4.64 years). Unilateral wrist stimulation significantly increased the probability of choosing the stimulated hand and led to a faster reaction time than bilateral wrist stimulation and no-stimulation conditions. The results suggest that prior somatosensory stimulation significantly affects the hand-choice process, effectively promoting the selection of the stimulated hand. These findings highlight the potential application of this stimulation method in stroke rehabilitation to facilitate the use of the paretic hand.

Identifiants

pubmed: 39349935
doi: 10.1038/s41598-024-73245-7
pii: 10.1038/s41598-024-73245-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

22726

Subventions

Organisme : Japan Society for the Promotion of Science
ID : 21K20293
Organisme : Japan Society for the Promotion of Science
ID : 21H04425

Informations de copyright

© 2024. The Author(s).

Références

Schweighofer, N. et al. Effort, success, and nonuse determine arm choice. J. Neurophysiol.114, 551–559 (2015).
doi: 10.1152/jn.00593.2014 pubmed: 25948869 pmcid: 4509397
Stoloff, R. H., Taylor, J. A., Xu, J., Ridderikhoff, A. & Ivry, R. B. Effect of reinforcement history on hand choice in an unconstrained reaching task. Front. Neurosci.5, 41 (2011).
doi: 10.3389/fnins.2011.00041 pubmed: 21472031 pmcid: 3066466
Oliveira, F. T., Diedrichsen, J., Verstynen, T., Duque, J. & Ivry, R. B. Transcranial magnetic stimulation of posterior parietal cortex affects decisions of hand choice. Proc. Natl. Acad. Sci. U. S. A.107, 17751–17756 (2010).
doi: 10.1073/pnas.1006223107 pubmed: 20876098 pmcid: 2955129
Hirayama, K., Ito, Y., Takahashi, T. & Osu, R. Relevant factors for arm choice in reaching movement: A scoping review. J. Phys. Ther. Sci.34, 804–812 (2022).
doi: 10.1589/jpts.34.804 pubmed: 36507080 pmcid: 9711969
Cisek, P. Cortical mechanisms of action selection: The affordance competition hypothesis. Philos. Trans. R Soc. Lond. B Biol. Sci.362, 1585–1599 (2007).
doi: 10.1098/rstb.2007.2054 pubmed: 17428779 pmcid: 2440773
Siebner, H. R. & Rothwell, J. Transcranial magnetic stimulation: New insights into representational cortical plasticity. Exp. Brain Res.148, 1–16 (2003).
doi: 10.1007/s00221-002-1234-2 pubmed: 12478392
Siebner, H. R., Hartwigsen, G., Kassuba, T. & Rothwell, J. C. How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition. Cortex45, 1035–1042 (2009).
doi: 10.1016/j.cortex.2009.02.007 pubmed: 19371866 pmcid: 2997692
Hesselmann, G., Kell, C. A., Eger, E. & Kleinschmidt, A. Spontaneous local variations in ongoing neural activity bias perceptual decisions. Proc. Natl. Acad. Sci.105, 10984–10989 (2008).
doi: 10.1073/pnas.0712043105 pubmed: 18664576 pmcid: 2504783
Bode, S. et al. Predicting perceptual decision biases from early brain activity. J. Neurosci.32, 12488–12498 (2012).
doi: 10.1523/JNEUROSCI.1708-12.2012 pubmed: 22956839 pmcid: 6621270
Hamel-Thibault, A., Thénault, F., Whittingstall, K. & Bernier, P. M. Delta-band oscillations in motor regions predict hand selection for reaching. Cereb. Cortex28, 574–584 (2018).
pubmed: 27999125
Hirayama, K., Koga, T., Takahashi, T. & Osu, R. Transcranial direct current stimulation of the posterior parietal cortex biases human hand choice. Sci. Rep.11, 204 (2021).
doi: 10.1038/s41598-020-80611-8 pubmed: 33420316 pmcid: 7794501
Fujii, M. et al. The effects of stimulus rates upon median, ulnar and radial nerve somatosensory evoked potentials. Electroencephalogr. Clin. Neurophysiol.92, 518–526 (1994).
doi: 10.1016/0168-5597(94)90136-8 pubmed: 7527770
Forss, N. et al. Activation of the human posterior parietal cortex by median nerve stimulation. Exp. Brain Res.99, 309–315 (1994).
doi: 10.1007/BF00239597 pubmed: 7925811
Mauguière, F. et al. Somatosensory evoked potentials. The international federation of clinical neurophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl.52, 79–90 (1999).
pubmed: 10590978
Wiesendanger, M., Hummelsheim, H. & Bianchetti, M. Sensory input to the motor fields of the agranular frontal cortex: A comparison of the precentral, supplementary motor and premotor cortex. Behav. Brain Res.18, 89–94 (1985).
doi: 10.1016/0166-4328(85)90065-8 pubmed: 3938286
Walsh, P., Kane, N. & Butler, S. The clinical role of evoked potentials. J. Neurol. Neurosurg. Psychiatry. https://doi.org/10.1136/jnnp.2005.068130 (2005).
doi: 10.1136/jnnp.2005.068130 pubmed: 15961863 pmcid: 1765695
Di Russo, F., Martínez, A., Sereno, M. I., Pitzalis, S. & Hillyard, S. A. Cortical sources of the early components of the visual evoked potential. Hum. Brain Mapp.15, 95–111 (2002).
doi: 10.1002/hbm.10010 pubmed: 11835601
Beck, E. C., Swanson, C. & Dustman, R. E. Long latency components of the visually evoked potential in man: Effects of aging. Exp. Aging Res.6, 523–545 (1980).
doi: 10.1080/03610738008258385 pubmed: 7215409
Taub, E., Uswatte, G., Mark, V. W. & Morris, D. M. The learned nonuse phenomenon: Implications for rehabilitation. Eur. Medicophys.42, 241–256 (2006).
Hidaka, Y., Han, C. E., Wolf, S. L., Winstein, C. J. & Schweighofer, N. Use it and improve it or lose it: Interactions between arm function and use in humans post-stroke. PLoS Comput. Biol.8, e1002343 (2012).
doi: 10.1371/journal.pcbi.1002343 pubmed: 22761551 pmcid: 3385844
Ballester, B. R., Winstein, C. & Schweighofer, N. Virtuous and vicious cycles of arm use and function post-stroke. Front. Neurol.13, 804211 (2022).
doi: 10.3389/fneur.2022.804211 pubmed: 35422752 pmcid: 9004626
Han, C. E. et al. Quantifying arm nonuse in individuals poststroke. Neurorehabil. Neural. Repair.27, 439–447 (2013).
doi: 10.1177/1545968312471904 pubmed: 23353185 pmcid: 3922644
Fitzpatrick, A. M., Dundon, N. M. & Valyear, K. F. The neural basis of hand choice: An fMRI investigation of the posterior parietal interhemispheric competition model. Neuroimage185, 208–221 (2019).
doi: 10.1016/j.neuroimage.2018.10.039 pubmed: 30342238
Julie, D., David, L., Riccardo, M., Etienne, O. & Richard, B. I. Evidence for two concurrent inhibitory mechanisms during response preparation. J. Neurosci.30, 3793 (2010).
doi: 10.1523/JNEUROSCI.5722-09.2010
Christopoulos, V. & Schrater, P. R. Dynamic integration of value information into a common probability currency as a theory for flexible decision making. PLOS Comput. Biol.11, e1004402 (2015).
doi: 10.1371/journal.pcbi.1004402
Ratcliff, R. & McKoon, G. The diffusion decision model: Theory and data for two-choice decision tasks. Neural. Comput.20, 873–922 (2008).
doi: 10.1162/neco.2008.12-06-420 pubmed: 18085991 pmcid: 2474742
Cisek, P. & Kalaska, J. F. Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron45, 801–814 (2005).
doi: 10.1016/j.neuron.2005.01.027 pubmed: 15748854
Cui, H. & Andersen, R. A. Posterior parietal cortex encodes autonomously selected motor plans. Neuron56, 552–559 (2007).
doi: 10.1016/j.neuron.2007.09.031 pubmed: 17988637 pmcid: 2651089
Posner, M. I. Orienting of attention. Q. J. Exp. Psychol.32, 3–25 (1980).
doi: 10.1080/00335558008248231 pubmed: 7367577
Butter, C. M., Buchtel, H. A. & Santucci, R. Spatial attentional shifts: further evidence for the role of polysensory mechanisms using visual and tactile stimuli. Neuropsychologia27, 1231–1240 (1989).
doi: 10.1016/0028-3932(89)90035-3 pubmed: 2594169
Ridding, M. C., McKay, D. R., Thompson, P. D. & Miles, T. S. Changes in corticomotor representations induced by prolonged peripheral nerve stimulation in humans. Clin. Neurophysiol.112, 1461–1469 (2001).
doi: 10.1016/S1388-2457(01)00592-2 pubmed: 11459686
Kaelin-Lang, A. et al. Modulation of human corticomotor excitability by somatosensory input. J. Physiol.540, 623–633 (2002).
doi: 10.1113/jphysiol.2001.012801 pubmed: 11956348 pmcid: 2290238
Wu, C. W., van Gelderen, P., Hanakawa, T., Yaseen, Z. & Cohen, L. G. Enduring representational plasticity after somatosensory stimulation. Neuroimage27, 872–884 (2005).
doi: 10.1016/j.neuroimage.2005.05.055 pubmed: 16084740
Javadi, A. H., Beyko, A., Walsh, V. & Kanai, R. Transcranial direct current stimulation of the motor cortex biases action choice in a perceptual decision task. J. Cogn. Neurosci.27, 2174–2185 (2015).
doi: 10.1162/jocn_a_00848 pubmed: 26151605 pmcid: 4745131
Kinney, A. R., Eakman, A. M. & Graham, J. E. Novel effect size interpretation guidelines and an evaluation of statistical power in rehabilitation research. Arch. Phys. Med. Rehabil.101, 2219–2226 (2020).
doi: 10.1016/j.apmr.2020.02.017 pubmed: 32272106
Cohen, L. G. Uniform requirements for manuscripts submitted to biomedical journals. International committee of medical journal editors. JAMA277, 927–934 (1997).
doi: 10.1001/jama.1997.03540350077040
Maharjan, A., Peng, M. & Cakmak, Y. O. Non-invasive high frequency median nerve stimulation effectively suppresses olfactory intensity perception in healthy males. Front. Hum. Neurosci.12, 533 (2018).
doi: 10.3389/fnhum.2018.00533 pubmed: 30719001
Hoshiyama, M. & Kakigi, R. Changes in somatosensory evoked responses by repetition of the median nerve stimulation. Clin. Neurophysiol.114, 2251–2257 (2003).
doi: 10.1016/S1388-2457(03)00285-2 pubmed: 14652084

Auteurs

Kento Hirayama (K)

Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan.
Division of Biokinesiology and Physical Therapy, University of Southern California, 1540 Alcazar St., Los Angeles, CA, 90089, USA.

Toru Takahashi (T)

Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan.

Xiang Yan (X)

Graduate School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan.

Takayuki Koga (T)

Graduate School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan.

Rieko Osu (R)

Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan. r.osu@waseda.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH