Autophagy plays an antiviral defence role against tomato spotted wilt orthotospovirus and is counteracted by viral effector NSs.
TSWV
antiviral defence
autophagy
counterdefence
nonstructural protein NSs
nucleocapsid protein
Journal
Molecular plant pathology
ISSN: 1364-3703
Titre abrégé: Mol Plant Pathol
Pays: England
ID NLM: 100954969
Informations de publication
Date de publication:
Oct 2024
Oct 2024
Historique:
revised:
27
08
2024
received:
06
06
2024
accepted:
18
09
2024
medline:
1
10
2024
pubmed:
1
10
2024
entrez:
1
10
2024
Statut:
ppublish
Résumé
Autophagy, an intracellular degradation process, has emerged as a crucial innate immune response against various plant pathogens, including viruses. Tomato spotted wilt orthotospovirus (TSWV) is a highly destructive plant pathogen that infects over 1000 plant species and poses a significant threat to global food security. However, the role of autophagy in defence against the TSWV pathogen, and whether the virus counteracts this defence, remains unknown. In this study, we report that autophagy plays an important role in antiviral defence against TSWV infection; however, this autophagy-mediated defence is counteracted by the viral effector NSs. Transcriptome profiling revealed the up-regulation of autophagy-related genes (ATGs) upon TSWV infection. Blocking autophagy induction by chemical treatment or knockout/down of ATG5/ATG7 significantly enhanced TSWV accumulation. Notably, the TSWV nucleocapsid (N) protein, a major component of the viral replication unit, strongly induced autophagy. However, the TSWV nonstructural protein NSs was able to effectively suppress N-induced autophagy in a dose-dependent manner. Further investigation revealed that NSs inhibited ATG6-mediated autophagy induction. These findings provide new insights into the defence role of autophagy against TSWV, a representative segmented negative-strand RNA virus, as well as the tospoviral pathogen counterdefence mechanism.
Substances chimiques
Viral Nonstructural Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e70012Subventions
Organisme : National Natural Science Foundation of China
ID : 31630062
Organisme : National Natural Science Foundation of China
ID : 32220103008
Organisme : National Natural Science Foundation of China
ID : 32430088
Organisme : Jiangsu Key Technology R & D Program and International Science and Technology Cooperation Project
ID : BZ2023030
Organisme : Jiangsu Provincial Key Research and Development Plan
ID : BE2022369
Organisme : Funds from the Independent Innovation of Agricultural Science and Technology of Jiangsu Province
ID : CX (22)2039
Organisme : Key Projects of YNTC
ID : 2021530000241015
Organisme : Key Research Program for Science and Technology of Hainan Province
ID : ZDKJ2021007
Organisme : Sanya Institute of Nanjing Agricultural University
ID : NAUSY-MS09
Informations de copyright
© 2024 The Author(s). Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.
Références
Adams, M.J., Lefkowitz, E.J., King, A.M.Q., Harrach, B., Harrison, R.L., Knowles, N.J. et al. (2017) Changes to taxonomy and the international code of virus classification and nomenclature ratified by the International Committee on Taxonomy of Viruses. Archives of Virology, 162, 2505–2538.
Adkins, S., Quadt, R., Choi, T.J., Ahlquist, P. & German, T. (1995) An RNA‐dependent RNA polymerase activity associated with virions of tomato spotted wilt virus, a plant‐ and insect‐infecting bunyavirus. Virology, 207, 308–311.
Boya, P., Reggiori, F. & Codogno, P. (2013) Emerging regulation and functions of autophagy. Nature Cell Biology, 15, 713–720.
Bucher, E., Sijen, T., De Haan, P., Goldbach, R. & Prins, M. (2003) Negative‐strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. Journal of Virology, 77, 1329–1336.
Cao, B., Ge, L., Zhang, M., Li, F. & Zhou, X. (2023) Geminiviral C2 proteins inhibit active autophagy to facilitate virus infection by impairing the interaction of ATG7 and ATG8. Journal of Integrative Plant Biology, 65, 1328–1343.
Contento, A.L., Xiong, Y. & Bassham, D.C. (2005) Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP‐AtATG8e fusion protein. The Plant Journal, 42, 598–608.
Ding, S.W. (2010) RNA‐based antiviral immunity. Nature Reviews Immunology, 10, 632–644.
Feng, M., Cheng, R., Chen, M., Guo, R., Li, L., Feng, Z. et al. (2020) Rescue of tomato spotted wilt virus entirely from complementary DNA clones. Proceedings of the National Academy of Sciences of the United States of America, 117, 1181–1190.
Feng, Z., Xue, F., Xu, M., Chen, X., Zhao, W., Garcia‐Murria, M.J. et al. (2016) The ER‐membrane transport system is critical for intercellular trafficking of the NSm movement protein and tomato spotted wilt tospovirus. PLoS Pathogens, 12, e1005443.
Funderburk, S.F., Wang, Q.J. & Yue, Z. (2010) The Beclin 1‐VPS34 complex—at the crossroads of autophagy and beyond. Trends in Cell Biology, 20, 355–362.
Guo, Y., Liu, B., Ding, Z., Li, G., Liu, M., Zhu, D. et al. (2017) Distinct mechanism for the formation of the ribonucleoprotein complex of tomato spotted wilt virus. Journal of Virology, 91, e00892.
Hafrén, A. & Hofius, D. (2017) NBR1‐mediated antiviral xenophagy in plant immunity. Autophagy, 13, 2000–2001.
Hafrén, A., Macia, J.L., Love, A.J., Milner, J.J., Drucker, M. & Hofius, D. (2017) Selective autophagy limits cauliflower mosaic virus infection by NBR1‐mediated targeting of viral capsid protein and particles. Proceedings of the National Academy of Sciences of the United States of America, 114, e2026–e2035.
Hafrén, A., Üstün, S., Hochmuth, A., Svenning, S., Johansen, T. & Hofius, D. (2018) Turnip mosaic virus counteracts selective autophagy of the viral silencing suppressor HCpro. Plant Physiology, 176, 649–662.
Haxim, Y., Ismayil, A., Jia, Q., Wang, Y., Zheng, X., Chen, T. et al. (2017) Autophagy functions as an antiviral mechanism against geminiviruses in plants. eLife, 6, e23897.
Hong, H., Wang, C., Huang, Y., Xu, M., Yan, J., Feng, M. et al. (2021) Antiviral RISC mainly targets viral mRNA but not genomic RNA of tospovirus. PLoS Pathogens, 17, e1009757.
Ismayil, A., Yang, M., Haxim, Y., Wang, Y., Li, J., Han, L. et al. (2020) Cotton leaf curl Multan virus βC1 protein induces autophagy by disrupting the interaction of autophagy‐related protein 3 with glyceraldehyde‐3‐phosphate dehydrogenases. The Plant Cell, 32, 1124–1135.
Jiang, L., Lu, Y., Zheng, X., Yang, X., Chen, Y., Zhang, T. et al. (2021) The plant protein NbP3IP directs degradation of rice stripe virus p3 silencing suppressor protein to limit virus infection through interaction with the autophagy‐related protein NbATG8. New Phytologist, 229, 1036–1051.
Kellner, R., De la Concepcion, J.C., Maqbool, A., Kamoun, S. & Dagdas, Y.F. (2017) ATG8 expansion: a driver of selective autophagy diversification? Trends in Plant Science, 22, 204–214.
Kikkert, M., Van Lent, J., Storms, M., Bodegom, P., Kormelink, R. & Goldbach, R. (1999) Tomato spotted wilt virus particle morphogenesis in plant cells. Journal of Virology, 73, 2288–2297.
Komoda, K., Narita, M., Yamashita, K., Tanaka, I. & Yao, M. (2017) Asymmetric trimeric ring structure of the nucleocapsid protein of tospovirus. Journal of Virology, 91, e01002–e01017.
Kormelink, R., Garcia, M.L., Goodin, M., Sasaya, T. & Haenni, A.L. (2011) Negative‐strand RNA viruses: the plant‐infecting counterparts. Virus Research, 162, 184–202.
Kormelink, R., Storms, M., Van Lent, J., Peters, D. & Goldbach, R. (1994) Expression and subcellular location of the NSm protein of tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology, 200, 56–65.
Kormelink, R., Verchot, J., Tao, X. & Desbiez, C. (2021) The Bunyavirales: the plant‐infecting counterparts. Viruses, 13, 842.
Li, F., Zhang, C., Li, Y., Wu, G., Hou, X., Zhou, X. et al. (2018) Beclin1 restricts RNA virus infection in plants through suppression and degradation of the viral polymerase. Nature Communications, 9, 1268.
Li, F., Zhang, M., Zhang, C. & Zhou, X. (2020) Nuclear autophagy degrades a geminivirus nuclear protein to restrict viral infection in solanaceous plants. New Phytologist, 225, 1746–1761.
Ma, Z., Song, T., Zhu, L., Ye, W., Wang, Y., Shao, Y. et al. (2015) A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. The Plant Cell, 27, 2057–2072.
Ma, Z., Zhu, L., Song, T., Wang, Y., Zhang, Q., Xia, Y. et al. (2017) A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science, 355, 710–714.
Mandadi, K.K. & Scholthof, K.B. (2013) Plant immune responses against viruses: how does a virus cause disease? The Plant Cell, 25, 1489–1505.
Meier, N., Hatch, C., Nagalakshmi, U. & Dinesh‐Kumar, S.P. (2019) Perspectives on intracellular perception of plant viruses. Molecular Plant Pathology, 20, 1185–1190.
Mizushima, N. & Komatsu, M. (2011) Autophagy: renovation of cells and tissues. Cell, 147, 728–741.
Mizushima, N., Levine, B., Cuervo, A.M. & Klionsky, D.J. (2008) Autophagy fights disease through cellular self‐digestion. Nature, 451, 1069–1075.
Niu, E., Ye, C., Zhao, W., Kondo, H., Wu, Y., Chen, J. et al. (2022) Coat protein of Chinese wheat mosaic virus upregulates and interacts with cytosolic glyceraldehyde‐3‐phosphate dehydrogenase, a negative regulator of plant autophagy, to promote virus infection. Journal of Integrative Plant Biology, 64, 1631–1645.
Ohsumi, Y. (2001) Molecular dissection of autophagy: two ubiquitin‐like systems. Nature Reviews Molecular Cell Biology, 2, 211–216.
Qi, H., Xia, F.N. & Xiao, S. (2021) Autophagy in plants: physiological roles and post‐translational regulation. Journal of Integrative Plant Biology, 63, 161–179.
Qian, X., Xiang, Q., Yang, T., Ma, H., Ding, X.S. & Tao, X. (2018) Molecular co‐chaperone SGT1 is critical for cell‐to‐cell movement and systemic infection of tomato spotted wild virus in Nicotiana benthamiana. Viruses, 10, 647.
Schnettler, E., Hemmes, H., Huismann, R., Goldbach, R., Prins, M. & Kormelink, R. (2010) Diverging affinity of tospovirus RNA silencing suppressor proteins, NSs, for various RNA duplex molecules. Journal of Virology, 84, 11542–11554.
Scholthof, K.B., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T. et al. (2011) Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12, 938–954.
Sin, S.H., McNulty, B.C., Kennedy, G.G. & Moyer, J.W. (2005) Viral genetic determinants for thrips transmission of tomato spotted wilt virus. Proceedings of the National Academy of Sciences of the United States of America, 102, 5168–5173.
Soellick, T., Uhrig, J.F., Bucher, G.L., Kellmann, J.W. & Schreier, P.H. (2000) The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proceedings of the National Academy of Sciences of the United States of America, 97, 2373–2378.
Storms, M.M., Kormelink, R., Peters, D., Van Lent, J.W. & Goldbach, R.W. (1995) The nonstructural NSm protein of tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology, 214, 485–493.
Storms, M.M.H., Va, C., De, N., Schoot, R., Prins, M., Kormelink, R. et al. (1998) A comparison of two methods of microinjection for assessing altered plasmodesmal gating in tissues expressing viral movement proteins. The Plant Journal, 13, 131–140.
Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K. et al. (2002) Identification of a novel RNA silencing suppressor, NSs protein of tomato spotted wilt virus. FEBS Letters, 532, 75–79.
Walter, C.T., Bento, D.F., Alonso, A.G. & Barr, J.N. (2011) Amino acid changes within the Bunyamwera virus nucleocapsid protein differentially affect the mRNA transcription and RNA replication activities of assembled ribonucleoprotein templates. Journal of General Virology, 92, 80–84.
Wen, X. & Klionsky, D.J. (2016) An overview of macroautophagy in yeast. Journal of Molecular Biology, 428, 1681–1699.
Xu, M., Chen, J., Huang, Y., Shen, D., Sun, P., Xu, Y. et al. (2020) Dynamic transcriptional profiles of Arabidopsis thaliana infected by tomato spotted wilt virus. Phytopathology, 110, 153–163.
Yang, M., Zhang, Y., Xie, X., Yue, N., Li, J., Wang, X.B. et al. (2018) Barley stripe mosaic virus γb protein subverts autophagy to promote viral infection by disrupting the ATG7‐ATG8 interaction. The Plant Cell, 30, 1582–1595.
Zhang, X., Yin, Y., Su, Y., Jia, Z., Jiang, L., Lu, Y. et al. (2021) eIF4A, a target of siRNA derived from rice stripe virus, negatively regulates antiviral autophagy by interacting with ATG5 in Nicotiana benthamiana. PLoS Pathogens, 17, e1009963.
Zhao, W., Wang, L., Li, L., Zhou, T., Yan, F., Zhang, H. et al. (2023) Coat protein of rice stripe virus enhances autophagy activity through interaction with cytosolic glyceraldehyde‐3‐phosphate dehydrogenases, a negative regulator of plant autophagy. Stress Biology, 3, 3.
Zhou, T., Zhang, M., Gong, P., Li, F. & Zhou, X. (2021) Selective autophagic receptor NbNBR1 prevents NbRFP1‐mediated UPS‐dependent degradation of βC1 to promote geminivirus infection. PLoS Pathogens, 17, e1009956.