Alterations of striatal phosphodiesterase 10 A and their association with recurrence rate in bipolar I disorder.


Journal

Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664

Informations de publication

Date de publication:
02 Oct 2024
Historique:
received: 23 07 2024
accepted: 20 09 2024
revised: 18 09 2024
medline: 3 10 2024
pubmed: 3 10 2024
entrez: 2 10 2024
Statut: epublish

Résumé

Phosphodiesterase 10 A (PDE10A), a pivotal element of the second messenger signaling downstream of the dopamine receptor stimulation, is conceived to be crucially involved in the mood instability of bipolar I disorder (BD-I) as a primary causal factor or in response to dysregulated dopaminergic tone. We aimed to determine whether striatal PDE10A availability is altered in patients with BD-I and assessed its relationship with the clinical characteristics of BD-I. This case-control study used positron emission tomography (PET) with 2-(2-(3-(4-(2-[

Identifiants

pubmed: 39358334
doi: 10.1038/s41398-024-03107-3
pii: 10.1038/s41398-024-03107-3
doi:

Substances chimiques

PDE10A protein, human EC 3.1.4.-
Phosphoric Diester Hydrolases EC 3.1.4.-
2-(2-(3-(4-(2-fluoroethoxy)phenyl)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione 0
Phthalimides 0
Quinazolinones 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

403

Subventions

Organisme : Japan Agency for Medical Research and Development (AMED)
ID : 20356533

Informations de copyright

© 2024. The Author(s).

Références

Murray CJL. The Global Burden of Disease Study at 30 years. Nat Med. 2022;28:2019–26.
pubmed: 36216939 doi: 10.1038/s41591-022-01990-1
Grande I, Goikolea JM, de Dios C, González-Pinto A, Montes JM, Saiz-Ruiz J, et al. Occupational disability in bipolar disorder: analysis of predictors of being on severe disablement benefit (PREBIS study data). Acta Psychiatr Scand. 2013;127:403–11.
pubmed: 22924855 doi: 10.1111/acps.12003
Grande I, Berk M, Birmaher B, Vieta E. Bipolar disorder. Lancet. 2016;387:1561–72.
pubmed: 26388529 doi: 10.1016/S0140-6736(15)00241-X
Speranza L, di Porzio U, Viggiano D, de Donato A, Volpicelli F. Dopamine: the neuromodulator of long-term synaptic plasticity, reward and movement control. Cells. 2021;10:735.
pubmed: 33810328 pmcid: 8066851 doi: 10.3390/cells10040735
Kishi T, Ikuta T, Matsuda Y, Sakuma K, Okuya M, Mishima K, et al. Mood stabilizers and/or antipsychotics for bipolar disorder in the maintenance phase: a systematic review and network meta-analysis of randomized controlled trials. Mol Psychiatry. 2021;26:4146–57.
pubmed: 33177610 doi: 10.1038/s41380-020-00946-6
Peet M, Peters S. Drug-induced mania. Drug Saf. 1995;12:146–53.
pubmed: 7766338 doi: 10.2165/00002018-199512020-00007
Coque L, Mukherjee S, Cao J-L, Spencer S, Marvin M, Falcon E, et al. Specific role of VTA dopamine neuronal firing rates and morphology in the reversal of anxiety-related, but not depression-related behavior in the ClockΔ19 mouse model of mania. Neuropsychopharmacology. 2011;36:1478–88.
pubmed: 21430648 pmcid: 3096816 doi: 10.1038/npp.2011.33
Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW, et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature. 2013;493:532–6.
pubmed: 23235832 doi: 10.1038/nature11713
Anand A, Barkay G, Dzemidzic M, Albrecht D, Karne H, Zheng Q-H, et al. Striatal dopamine transporter availability in unmedicated bipolar disorder. Bipolar Disord. 2011;13:406–13.
pubmed: 21843280 doi: 10.1111/j.1399-5618.2011.00936.x
Yatham LN, Liddle PF, Gonzalez M, Saraf G, Vafai N, Lam RW, et al. A positron emission tomography study of dopamine transporter density in patients with bipolar disorder with current mania and those with recently remitted mania. JAMA Psychiatry. 2022;79:1217–24.
pubmed: 36322065 pmcid: 9631223 doi: 10.1001/jamapsychiatry.2022.3541
Yatham LN, Liddle PF, Shiah I-S, Lam RW, Ngan E, Scarrow G, et al. PET study of [(
pubmed: 11986130 doi: 10.1176/appi.ajp.159.5.768
Jauhar S, Nour MM, Veronese M, Rogdaki M, Bonoldi I, Azis M, et al. A test of the transdiagnostic dopamine hypothesis of psychosis using positron emission tomographic imaging in bipolar affective disorder and schizophrenia. JAMA Psychiatry. 2017;74:1206–13.
pubmed: 29049482 pmcid: 6059355 doi: 10.1001/jamapsychiatry.2017.2943
Suhara T, Nakayama K, Inoue O, Fukuda H, Shimizu M, Mori A, et al. D1 dopamine receptor binding in mood disorders measured by positron emission tomography. Psychopharmacology (Berl). 1992;106:14–18.
pubmed: 1531387 doi: 10.1007/BF02253582
Yatham LN, Liddle PF, Lam RW, Shiah I-S, Lane C, Stoessl AJ, et al. PET study of the effects of valproate on dopamine D(2) receptors in neuroleptic- and mood-stabilizer-naive patients with nonpsychotic mania. Am J Psychiatry. 2002;159:1718–23.
pubmed: 12359678 doi: 10.1176/appi.ajp.159.10.1718
Perez J, Tardito D, Mori S, Racagni G, Smeraldi E, Zanardi R. Abnormalities of cAMP signaling in affective disorders: implication for pathophysiology and treatment. Bipolar Disord. 2000;2:27–36.
pubmed: 11254016 doi: 10.1034/j.1399-5618.2000.020104.x
Beaulieu J-M, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63:182–217.
pubmed: 21303898 doi: 10.1124/pr.110.002642
Coskran TM, Morton D, Menniti FS, Adamowicz WO, Kleiman RJ, Ryan AM, et al. Immunohistochemical localization of phosphodiesterase 10A in multiple mammalian species. J Histochem Cytochem. 2006;54:1205–13.
pubmed: 16864896 doi: 10.1369/jhc.6A6930.2006
MacMullen CM, Vick K, Pacifico R, Fallahi-Sichani M, Davis RL. Novel, primate-specific PDE10A isoform highlights gene expression complexity in human striatum with implications on the molecular pathology of bipolar disorder. Transl Psychiatry. 2016;6:e742.
pubmed: 26905414 pmcid: 4872433 doi: 10.1038/tp.2016.3
Perez J, Tardito D, Mori S, Racagni G, Smeraldi E, Zanardi R. Altered Rap1 endogenous phosphorylation and levels in platelets from patients with bipolar disorder. J Psychiatr Res. 2000;34:99–104.
pubmed: 10758250 doi: 10.1016/S0022-3956(99)00047-3
Hagihara H, Horikawa T, Nakamura HK, Umemori J, Shoji H, Kamitani Y, et al. Circadian gene circuitry predicts hyperactive behavior in a mood disorder mouse model. Cell Rep. 2016;14:2784–96.
pubmed: 27028761 doi: 10.1016/j.celrep.2016.02.067
Siuciak JA, McCarthy SA, Chapin DS, Martin AN, Harms JF, Schmidt CJ. Behavioral characterization of mice deficient in the phosphodiesterase-10A (PDE10A) enzyme on a C57/Bl6N congenic background. Neuropharmacology. 2008;54:417–27.
pubmed: 18061215 doi: 10.1016/j.neuropharm.2007.10.009
Kubota M, Takahata K, Matsuoka K, Sano Y, Yamamoto Y, Tagai K, et al. Positron emission tomography assessments of phosphodiesterase 10A in patients with schizophrenia. Schizophr Bull. 2023;49:688–96.
pubmed: 36458958 doi: 10.1093/schbul/sbac181
Barret O, Thomae D, Tavares A, Alagille D, Papin C, Waterhouse R, et al. In vivo assessment and dosimetry of 2 novel PDE10A PET radiotracers in humans:
pubmed: 24898025 doi: 10.2967/jnumed.113.122895
First M, Spitzer R, Miriam G, Williams J. Structured clinical interview of DSM-IV-TR Axis I disorders–patient edition. American Psychiatric Association Publishing: Washington, 2007.
Mori W, Takei M, Furutsuka K, Fujinaga M, Kumata K, Muto M, et al. Comparison between [
pubmed: 28972915 doi: 10.1016/j.nucmedbio.2017.08.002
Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996;4:153–8.
pubmed: 9345505 doi: 10.1006/nimg.1996.0066
Keefe RSE, Goldberg TE, Harvey PD, Gold JM, Poe MP, Coughenour L. The Brief Assessment of Cognition in Schizophrenia: reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophr Res. 2004;68:283–97.
pubmed: 15099610 doi: 10.1016/j.schres.2003.09.011
Kaneda Y, Sumiyoshi T, Keefe R, Ishimoto Y, Numata S, Ohmori T. Brief assessment of cognition in schizophrenia: validation of the Japanese version. Psychiatry Clin Neurosci. 2007;61:602–9.
pubmed: 18081619 doi: 10.1111/j.1440-1819.2007.01725.x
Hamilton M. Development of a rating scale for primary depressive illness. Br J Soc Clin Psychol. 1967;6:278–96.
pubmed: 6080235 doi: 10.1111/j.2044-8260.1967.tb00530.x
Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry. 1979;134:382–9.
pubmed: 444788 doi: 10.1192/bjp.134.4.382
Young RC, Biggs JT, Ziegler VE, Meyer DA. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry. 1978;133:429–35.
pubmed: 728692 doi: 10.1192/bjp.133.5.429
Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13:261–76.
pubmed: 3616518 doi: 10.1093/schbul/13.2.261
Tremain H, Fletcher K, Murray G. Number of episodes in bipolar disorder: The case for more thoughtful conceptualization and measurement. Bipolar Disord. 2020;22:231–44.
pubmed: 31730294 doi: 10.1111/bdi.12872
Martino DJ, Marengo E, Igoa A, Scápola M, Urtueta-Baamonde M, Strejilevich SA. Accuracy of the number of previous episodes reported by patients with bipolar disorder. Compr Psychiatry. 2016;65:122–7.
pubmed: 26774000 doi: 10.1016/j.comppsych.2015.11.005
Inada T, Inagaki A. Psychotropic dose equivalence in Japan. Psychiatry Clin Neurosci. 2015;69:440–7.
pubmed: 25601291 doi: 10.1111/pcn.12275
Fazio P, Schain M, Mrzljak L, Amini N, Nag S, Al-Tawil N, et al. Patterns of age related changes for phosphodiesterase type-10A in comparison with dopamine D2/3 receptors and sub-cortical volumes in the human basal ganglia: A PET study with
pubmed: 28254508 doi: 10.1016/j.neuroimage.2017.02.047
Ooms M, Attili B, Celen S, Koole M, Verbruggen A, Van Laere K, et al. [
pubmed: 27664396 doi: 10.1111/jnc.13855
Green MJ, Cahill CM, Malhi GS. The cognitive and neurophysiological basis of emotion dysregulation in bipolar disorder. J Affect Disord. 2007;103:29–42.
pubmed: 17328959 doi: 10.1016/j.jad.2007.01.024
Gotra MY, Hill SK, Gershon ES, Tamminga CA, Ivleva EI, Pearlson GD, et al. Distinguishing patterns of impairment on inhibitory control and general cognitive ability among bipolar with and without psychosis, schizophrenia, and schizoaffective disorder. Schizophr Res. 2020;223:148–57.
pubmed: 32674921 pmcid: 7704797 doi: 10.1016/j.schres.2020.06.033
Dlaboga D, Hajjhussein H, O’Donnell JM. Chronic haloperidol and clozapine produce different patterns of effects on phosphodiesterase-1B, -4B, and -10A expression in rat striatum. Neuropharmacology. 2008;54:745–54.
pubmed: 18222493 doi: 10.1016/j.neuropharm.2007.12.002
Tsai M, Chrones L, Xie J, Gevorkyan H, Macek TA. A phase 1 study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of TAK-063, a selective PDE10A inhibitor. Psychopharmacology (Berl). 2016;233:3787–95.
pubmed: 27572830 pmcid: 5063900 doi: 10.1007/s00213-016-4412-9
Ino H, Honda S, Yamada K, Horita N, Tsugawa S, Yoshida K, et al. Glutamatergic neurometabolite levels in bipolar disorder: A systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Biol Psychiatry Cogn Neurosci Neuroimaging. 2023;8:140–50.
pubmed: 36754485
Caravaggio F, Nakajima S, Plitman E, Gerretsen P, Chung JK, Iwata Y, et al. The effect of striatal dopamine depletion on striatal and cortical glutamate: A mini-review. Prog Neuropsychopharmacol Biol Psychiatry. 2016;65:49–53.
pubmed: 26334687 doi: 10.1016/j.pnpbp.2015.08.013
Jauhar S, McCutcheon R, Borgan F, Veronese M, Nour M, Pepper F, et al. The relationship between cortical glutamate and striatal dopamine in first-episode psychosis: a cross-sectional multimodal PET and magnetic resonance spectroscopy imaging study. Lancet Psychiatry. 2018;5:816–23.
pubmed: 30236864 pmcid: 6162342 doi: 10.1016/S2215-0366(18)30268-2
Gleich T, Deserno L, Lorenz RC, Boehme R, Pankow A, Buchert R, et al. Prefrontal and striatal glutamate differently relate to striatal dopamine: Potential regulatory mechanisms of striatal presynaptic dopamine function? J Neurosci. 2015;35:9615–21.
pubmed: 26134644 pmcid: 6605144 doi: 10.1523/JNEUROSCI.0329-15.2015
Samamé C, Cattaneo BL, Richaud MC, Strejilevich S, Aprahamian I. The long-term course of cognition in bipolar disorder: A systematic review and meta-analysis of patient-control differences in test-score changes. Psychol Med. 2022;52:217–28.
pubmed: 34763735 doi: 10.1017/S0033291721004517
Bourne C, Aydemir O, Balanzá-Martínez V, Bora E, Brissos S, Cavanagh JTO, et al. Neuropsychological testing of cognitive impairment in euthymic bipolar disorder: An individual patient data meta-analysis. Acta Psychiatr Scand. 2013;128:149–62.
pubmed: 23617548 doi: 10.1111/acps.12133
Fazio P, Fitzer-Attas CJ, Mrzljak L, Bronzova J, Nag S, Warner JH, et al. PET molecular imaging of phosphodiesterase 10A: an early biomarker of Huntington’s disease progression. Mov Disord. 2020;35:606–15.
pubmed: 31967355 doi: 10.1002/mds.27963

Auteurs

Yasunori Sano (Y)

Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.

Yasuharu Yamamoto (Y)

Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan.

Manabu Kubota (M)

Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan.
Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.

Sho Moriguchi (S)

Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan.

Kiwamu Matsuoka (K)

Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan.

Shin Kurose (S)

Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan.

Kenji Tagai (K)

Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan.

Hironobu Endo (H)

Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan.

Bun Yamagata (B)

Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.

Hisaomi Suzuki (H)

National Hospital Organization (NHO) Shimofusa Psychiatric Medical Center, 578 Heta-cho, Midori, Chiba, Chiba, 266-0007, Japan.

Ryosuke Tarumi (R)

Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.

Kie Nomoto (K)

Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.

Yuhei Takado (Y)

Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan.
Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, Chiba, 263-8555, Japan.

Kazunori Kawamura (K)

Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, Chiba, 263-8555, Japan.

Ming-Rong Zhang (MR)

Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, Chiba, 263-8555, Japan.

Hajime Tabuchi (H)

Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.

Masaru Mimura (M)

Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.

Hiroyuki Uchida (H)

Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.

Makoto Higuchi (M)

Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan.

Keisuke Takahata (K)

Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan. takahata.keisuke@qst.go.jp.
Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan. takahata.keisuke@qst.go.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH