A high-efficiency and selective fluorescent assay for the detection of tetracyclines.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
02 Oct 2024
Historique:
received: 30 05 2024
accepted: 25 09 2024
medline: 3 10 2024
pubmed: 3 10 2024
entrez: 2 10 2024
Statut: epublish

Résumé

Tetracyclines (TCs) rank second globally in the use of animal infection therapy and animal husbandry as growth promoters among all antibiotics. However, large amounts of TCs residue in food products and more than 75% of TCs are excreted into the environment, causing adverse effects on the ecological system and human health. It has been challenging to simultaneously realize low-cost, rapid, and highly selective detection of TCs. Here, inspired by the fluorogenic reactions between resorcinol and catecholamines, we find the fluorescence quenching ability of tetracycline (TC) and firstly propose a fluorescent "turn-off" detection of TC using dopamine and 4-fluororesorcinol. The optimal reaction condition for the fluorescent assay is investigated and the optimized probe showed a good limit of detection (LOD of 1.7 µM) and a wide linear range (10 µM to 350 µM). Moreover, this fluorescent assay proved to be an effective tool for detecting TC in river, Sprite, and beer samples, which represent the aquatic environments and food and may contain tetracyclines residues. Finally, the high selectivity of the method for TC has been confirmed by eliminating the interference from common substances. The proposed strategy provides a high-efficiency and selective solution for the detection of TCs in environment and food and the application fields of this fluorescent assay could be further expanded in the future.

Identifiants

pubmed: 39358472
doi: 10.1038/s41598-024-74411-7
pii: 10.1038/s41598-024-74411-7
doi:

Substances chimiques

Tetracyclines 0
Fluorescent Dyes 0
Dopamine VTD58H1Z2X
Anti-Bacterial Agents 0
Water Pollutants, Chemical 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

22918

Subventions

Organisme : Shandong Provincial Natural Science Foundation
ID : ZR2023QF170
Organisme : Shandong Provincial Natural Science Foundation
ID : ZR2023QF174
Organisme : Shandong Provincial Natural Science Foundation
ID : ZR2023QB125
Organisme : Shandong Provincial Natural Science Foundation
ID : ZR2023QB232
Organisme : Scientific Research Fund of Dezhou University
ID : 2022xjrc404
Organisme : Scientific Research Fund of Dezhou University
ID : 2022xjrc205
Organisme : Scientific Research Fund of Dezhou University
ID : 2019xjrc211
Organisme : Scientific Research Fund of Dezhou University
ID : 2022xjrc201
Organisme : Scientific Research Fund of Dezhou University
ID : 2022xjrc421
Organisme : National Natural Science Foundation of China
ID : 32071392

Informations de copyright

© 2024. The Author(s).

Références

Wang, H. et al. In situ synthesis of In
doi: 10.1016/j.apcatb.2015.12.041
Ye, J. et al. Toxin release of Cyanobacterium Microcystis aeruginosa after exposure to typical tetracycline antibiotic contaminants. Toxins. 9, 53. https://doi.org/10.3390/toxins9020053 (2017).
doi: 10.3390/toxins9020053 pubmed: 28230795 pmcid: 5331432
Suzuki, S. & Hoa, P. T. P. Distribution of quinolones, sulfonamides, tetracyclines in aquatic environment and Antibiotic Resistance in Indochina. Front. Microbiol.3 https://doi.org/10.3389/fmicb.2012.00067 (2012).
Shen, Q. et al. Removal of tetracycline from an aqueous solution using manganese dioxide modified biochar derived from Chinese herbal medicine residues. Environ. Res.183, 109195. https://doi.org/10.1016/j.envres.2020.109195 (2020).
doi: 10.1016/j.envres.2020.109195 pubmed: 32044570
Jalalian, S. H., Karimabadi, N., Ramezani, M., Abnous, K. & Taghdisi, S. M. Electrochemical and optical aptamer-based sensors for detection of tetracyclines. Trends Food Sci. Technol.73, 45–57. https://doi.org/10.1016/j.tifs.2018.01.009 (2018).
doi: 10.1016/j.tifs.2018.01.009
Jia, P. et al. A sensitive and selective approach for detection of tetracyclines using fluorescent molybdenum disulfide nanoplates. Food Chem.297, 124969. https://doi.org/10.1016/j.foodchem.2019.124969 (2019).
doi: 10.1016/j.foodchem.2019.124969 pubmed: 31253282
Liu, X. et al. Recent advances in sensors for tetracycline antibiotics and their applications. TRAC Trends Anal. Chem.109, 260–274. https://doi.org/10.1016/j.trac.2018.10.011 (2018).
doi: 10.1016/j.trac.2018.10.011
Zhao, W., Guo, Y., Lu, S., Yan, P. & Sui, Q. Recent advances in pharmaceuticals and personal care products in the surface water and sediments in China. Front. Environ. Sci. Eng.10, 2. https://doi.org/10.1007/s11783-016-0868-4 (2016).
doi: 10.1007/s11783-016-0868-4
Zhang, M. et al. Occurrence, fate and mass loadings of antibiotics in two swine wastewater treatment systems. Sci. Total Environ.639, 1421–1431. https://doi.org/10.1016/j.scitotenv.2018.05.230 (2018).
doi: 10.1016/j.scitotenv.2018.05.230 pubmed: 29929305
Ullah, Z. et al. Bisphenol–based cyanide sensing: selectivity, reversibility, facile synthesis, bilateral OFF-ON fluorescence, C
doi: 10.1016/j.saa.2021.119881
Ullah, Z. et al. Unlocking the potential of ovalene: a dual-purpose sensor and drug enhancer. J. Mol. Liq.377, 121540. https://doi.org/10.1016/j.molliq.2023.121540 (2023).
doi: 10.1016/j.molliq.2023.121540
Ullah, Z. et al. Highly selective and scalable molecular Fluoride Sensor for Naked-Eye detection. ACS Appl. Mater. Interfaces. https://doi.org/10.1021/acsami.4c01187 (2024).
doi: 10.1021/acsami.4c01187 pubmed: 38821886 pmcid: 11145589
Granados-Chinchilla, F. & Rodríguez, C. Tetracyclines in Food and Feedingstuffs: from regulation to Analytical methods, Bacterial Resistance, and Environmental and Health implications. J. Anal. Methods Chem.2017 (1315497). https://doi.org/10.1155/2017/1315497 (2017).
Nebot, C. et al. Monitoring the presence of residues of tetracyclines in baby food samples by HPLC-MS/MS. Food Control. 46, 495–501. https://doi.org/10.1016/j.foodcont.2014.05.042 (2014).
doi: 10.1016/j.foodcont.2014.05.042
Koesukwiwat, U., Jayanta, S. & Leepipatpiboon, N. Validation of a liquid chromatography–mass spectrometry multi-residue method for the simultaneous determination of sulfonamides, tetracyclines, and pyrimethamine in milk. J. Chromatogr. A. 1140, 147–156. https://doi.org/10.1016/j.chroma.2006.11.099 (2007).
doi: 10.1016/j.chroma.2006.11.099 pubmed: 17187807
Xu, J. Z. et al. Analysis of tetracycline residues in royal jelly by liquid chromatography–tandem mass spectrometry. J. Chromatogr. B. 868, 42–48. https://doi.org/10.1016/j.jchromb.2008.04.027 (2008).
doi: 10.1016/j.jchromb.2008.04.027
Venkatesh, P. et al. LC–MS/MS analysis of tetracycline antibiotics in prawns (Penaeus monodon) from south India coastal region. J. Pharm. Res.6, 48–52. https://doi.org/10.1016/j.jopr.2012.11.012 (2013).
doi: 10.1016/j.jopr.2012.11.012
Xiao-Ping, X. Antiseptics Trace Determination of Tetracyclines in Eggs by Capillary Electrophoresis with Electrochemical Detection. Food Sci.28, 470–473 https://www.spkx.net.cn/EN/Y2007/V28/I10/470 (2007).
Miranda, J. M., Rodríguez, J. A. & Galán-Vidal, C. A. Simultaneous determination of tetracyclines in poultry muscle by capillary zone electrophoresis. J. Chromatogr. A. 1216, 3366–3371. https://doi.org/10.1016/j.chroma.2009.01.105 (2009).
doi: 10.1016/j.chroma.2009.01.105 pubmed: 19233364
Si-qin, Gaowa, A. & Hu-dong, L. Simultaneous Spectrophotometric Determinationof Tetracycline, Oxytetracycline and Metacyclineby partial least squares Method. Acta Scientiarum Naturalium Universitatis NeiMongol. 38, 28–30. https://doi.org/10.3969/j.issn.1000-1638.2007.01.006 (2007).
doi: 10.3969/j.issn.1000-1638.2007.01.006
Jeon, M., Kim, J., Paeng, K. J., Park, S. W. & Paeng, I. R. Biotin–avidin mediated competitive enzyme-linked immunosorbent assay to detect residues of tetracyclines in milk. Microchem. J.88, 26–31. https://doi.org/10.1016/j.microc.2007.09.001 (2008).
doi: 10.1016/j.microc.2007.09.001
Besharati, M., Hamedi, J., Hosseinkhani, S. & Saber, R. A novel electrochemical biosensor based on TetX2 monooxygenase immobilized on a nano-porous glassy carbon electrode for tetracycline residue detection. Bioelectrochemistry. 128, 66–73. https://doi.org/10.1016/j.bioelechem.2019.02.010 (2019).
doi: 10.1016/j.bioelechem.2019.02.010 pubmed: 30928867
Commision, E. Annual Report 2007 on the Rapid Alert System for Food and Feed. (2007).
Pena, A., Pelantova, N., Lino, C. M., Silveira, M. I. N. & Solich, P. Validation of an Analytical Methodology for determination of oxytetracycline and tetracycline residues in Honey by HPLC with fluorescence detection. J. Agric. Food Chem.53, 3784–3788. https://doi.org/10.1021/jf050065r (2005).
doi: 10.1021/jf050065r pubmed: 15884797
Zurhelle, G., Petz, M., Mueller-Seitz, E. & Siewert, E. Metabolites of Oxytetracycline, Tetracycline, and Chlortetracycline and their distribution in Egg White, Egg Yolk, and Hen Plasma. J. Agric. Food Chem.48, 6392–6396. https://doi.org/10.1021/jf000141k (2000).
doi: 10.1021/jf000141k pubmed: 11141290
Pena, A. L., Lino, C. M. & Silveira, M. I. N. Determination of Tetracycline antibiotics in Salmon muscle by Liquid Chromatography using Post-column derivatization with fluorescence detection. J. AOAC Int.86, 925–929. https://doi.org/10.1093/jaoac/86.5.925 (2019).
doi: 10.1093/jaoac/86.5.925
Spisso, B. F., de Oliveira e Jesus, A. L., de Araújo Júnior, M. A. G. & Monteiro, M. A. Validation of a high-performance liquid chromatographic method with fluorescence detection for the simultaneous determination of tetracyclines residues in bovine milk. Anal. Chim. Acta. 581, 108–117. https://doi.org/10.1016/j.aca.2006.08.004 (2007).
doi: 10.1016/j.aca.2006.08.004 pubmed: 17386433
Granados-Chinchilla, F., Sánchez, J., García, F., Rodríguez, C. A., Tetracyclines, T. G. & Novel Green Chemistry Method for Nonaqueous Extraction and High-Performance Liquid Chromatography Detection of First-, Second-, and 4-Epitetracycline, and Tylosin in Animal feeds. J. Agric. Food Chem.60, 7121–7128. https://doi.org/10.1021/jf301403f (2012).
doi: 10.1021/jf301403f pubmed: 22738432
MesgariAbbasi, M., Babaei, H., Ansarin, M., Nourdadgar, A. & Nemati, M. Simultaneous determination of tetracyclines residues in bovine milk samples by solid phase extraction and HPLC-FL Method. Adv. Pharm. Bull.1, 34–39. https://doi.org/10.5681/apb.2011.005 (2011).
doi: 10.5681/apb.2011.005
Crescenzi, O., Napolitano, A., Prota, G. & Peter, M. G. Oxidative coupling of dopa with resorcinol and phloroglucinol: isolation of adducts with an unusual tetrahydromethanobenzofuro[2,3-d]azocine skeleton. Tetrahedron. 47, 6243–6250. https://doi.org/10.1016/S0040-4020(01)86556-X (1991).
doi: 10.1016/S0040-4020(01)86556-X
Iacomino, M., Alfieri, M. L., Crescenzi, O., d’Ischia, M. & Napolitano, A. Unimolecular variant of the fluorescence Turn-On oxidative coupling of catecholamines with Resorcinols. ACS Omega. 4, 1541–1548. https://doi.org/10.1021/acsomega.8b02778 (2019).
doi: 10.1021/acsomega.8b02778
Acuña, A. U., Álvarez-Pérez, M., Liras, M., Coto, P. B. & Amat-Guerri, F. Synthesis and photophysics of novel biocompatible fluorescent oxocines and azocines in aqueous solution. Phys. Chem. Chem. Phys.15, 16704–16712. https://doi.org/10.1039/C3CP52228H (2013).
doi: 10.1039/C3CP52228H pubmed: 23986088
Mongay, C., Cerda, V. A. & Britton-Robinson Buffer of known ionic-strength. Ann. Chim. (Rome). 64, 409–412 (1974).
Xu, L. et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: a review. Sci. Total Environ.753, 141975. https://doi.org/10.1016/j.scitotenv.2020.141975 (2021).
doi: 10.1016/j.scitotenv.2020.141975 pubmed: 33207448
Yao, R. et al. A Eu
doi: 10.1016/j.dyepig.2022.110190
Liang, N. et al. A dual-signal fluorescent sensor based on MoS
doi: 10.1016/j.foodchem.2022.132076 pubmed: 35042115
Ding, Y., Yang, L. H., Shen, J. W., Wei, Y. M. & Wang, C. Z. Highly sensitive assay of dopamine and tyrosinase using benzoyl peroxide facilitated in-situ fluorogenic reaction. Chem. Pap.76, 4235–4244. https://doi.org/10.1007/s11696-022-02169-1 (2022).
doi: 10.1007/s11696-022-02169-1
Zhao, J. et al. In situ fluorogenic and chromogenic reactions for the sensitive dual-readout assay of tyrosinase activity. Anal. Chem.89, 10529–10536. https://doi.org/10.1021/acs.analchem.7b02739 (2017).
doi: 10.1021/acs.analchem.7b02739 pubmed: 28891289
Dong, X. Z. et al. A traffic light signal ratiometric fluorescence sensor for highly sensitive and selective detection of dopamine. Sens. Actuators B. 372, 132668. https://doi.org/10.1016/j.snb.2022.132668 (2022).
doi: 10.1016/j.snb.2022.132668
Chen, L. et al. Fluorescent azamonardine probe for turn-off detection of chromium (VI) and turn-on detection of ascorbic acid based on inner filter effect. Chin. J. Anal. Chem.50, 100165. https://doi.org/10.1016/j.cjac.2022.100165 (2022).
doi: 10.1016/j.cjac.2022.100165
Anand, S. K., Sivasankaran, U., Jose, A. R. & Kumar, K. G. Interaction of tetracycline with l-cysteine functionalized CdS quantum dots - fundamentals and sensing application. Spectrochim. Acta Part A Mol. Biomol. Spectrosc.213, 410–415. https://doi.org/10.1016/j.saa.2019.01.068 (2019).
doi: 10.1016/j.saa.2019.01.068
Chen, J. L. Determination of tetracycline using imprinted polymethacrylates along with fluorescent CdTe quantum dots on plastic substrates. Microchim. Acta. 184, 1335–1343. https://doi.org/10.1007/s00604-017-2118-2 (2017).
doi: 10.1007/s00604-017-2118-2
Tan, H. et al. Determination of tetracycline in milk by using nucleotide/lanthanide coordination polymer-based ternary complex. Biosens. Bioelectron.50, 447–452. https://doi.org/10.1016/j.bios.2013.07.011 (2013).
doi: 10.1016/j.bios.2013.07.011 pubmed: 23907076
Zhang, Y. Q., Wu, X. H., Mao, S., Tao, W. Q. & Li, Z. Highly luminescent sensing for nitrofurans and tetracyclines in water based on zeolitic imidazolate framework-8 incorporated with dyes. Talanta. 204, 344–352. https://doi.org/10.1016/j.talanta.2019.06.019 (2019).
doi: 10.1016/j.talanta.2019.06.019 pubmed: 31357303
Kayani, K. F. et al. Ratiometric fluorescence detection of tetracycline in milk and tap water with smartphone assistance for visual pH sensing using innovative dual-emissive phosphorus-doped carbon dots. Food Control. 164, 110611. https://doi.org/10.1016/j.foodcont.2024.110611 (2024).
doi: 10.1016/j.foodcont.2024.110611
Yan, Y. et al. Carbon dots synthesized at room temperature for detection of tetracycline hydrochloride. Anal. Chim. Acta. 1063, 144–151. https://doi.org/10.1016/j.aca.2019.02.047 (2019).
doi: 10.1016/j.aca.2019.02.047 pubmed: 30967178

Auteurs

Jingqiao Guo (J)

College of Medicine and Nursing, Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, 253023, China.

Jianhui Xin (J)

Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China.

Jine Wang (J)

College of Medicine and Nursing, Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, 253023, China.

Zhen Li (Z)

College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, China.

Jianlei Yang (J)

Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China.

Xue Yu (X)

Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China. y12180348@mail.ecust.edu.cn.

Mengxia Yan (M)

Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China. yanmengxia1219@163.com.

Jiangyang Mo (J)

Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China. jymo@dzu.edu.cn.

Articles similaires

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Humans Arthroplasty, Replacement, Elbow Prosthesis-Related Infections Debridement Anti-Bacterial Agents
Vancomycin Polyesters Anti-Bacterial Agents Models, Theoretical Drug Liberation
Humans China Cerebral Hemorrhage Patient Care Bundles Length of Stay

Classifications MeSH