Serum cytokines and inflammatory proteins in individuals with heroin use disorder: potential mechanistically based biomarkers for diagnosis.
Journal
Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664
Informations de publication
Date de publication:
03 Oct 2024
03 Oct 2024
Historique:
received:
23
04
2024
accepted:
23
09
2024
revised:
18
09
2024
medline:
4
10
2024
pubmed:
4
10
2024
entrez:
3
10
2024
Statut:
epublish
Résumé
Opioid use disorders cause major morbidity and mortality, and there is a pressing need for novel mechanistic targets and biomarkers for diagnosis and prognosis. Exposure to mu-opioid receptor (MOR) agonists causes changes in cytokine and inflammatory protein networks in peripheral blood, and also in brain glia and neurons. Individuals with heroin use disorder (iHUD) show dysregulated levels of several cytokines in the blood. However, there is limited data on a comprehensive panel of such markers in iHUD versus healthy controls (HC), especially considered as a multi-target biomarker. We used a validated proximity extension assay for the relative quantification of 92 cytokines and inflammatory proteins in the serum of iHUD on medication-assisted therapy (MAT; n = 21), compared to HC (n = 24). Twenty-nine targets showed significant group differences (primarily iHUD>HC), surviving multiple comparison corrections (p = 0.05). These targets included 19 members of canonical cytokine families, including specific chemokines, interleukins, growth factors, and tumor necrosis factor (TNF)-related proteins. For dimensionality reduction, data from these 19 cytokines were entered into a principal component (PC) analysis, with PC1 scores showing significant group differences (iHUD > HC; p < 0.0001). A receiver-operating characteristic (ROC) curve analysis yielded an AUROC = 91.7% (p < 0.0001). This PC1 score remained a positive predictor of being in the HUD group in a multivariable logistic regression, that included select demographic/clinical variables. Overall, this study shows a panel of cytokines that differ significantly between iHUD and HC, providing a multi-target "cytokine biomarker score" for potential diagnostic purposes, and future examination of disease severity.
Identifiants
pubmed: 39362849
doi: 10.1038/s41398-024-03119-z
pii: 10.1038/s41398-024-03119-z
doi:
Substances chimiques
Biomarkers
0
Cytokines
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
414Subventions
Organisme : U.S. Department of Health & Human Services | NIH | National Institute on Drug Abuse (NIDA)
ID : U01DA053625
Organisme : U.S. Department of Health & Human Services | NIH | National Institute on Drug Abuse (NIDA)
ID : R01DA047880
Organisme : U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
ID : R01AG067025
Organisme : U.S. Department of Health & Human Services | NIH | National Center for Complementary and Integrative Health (NCCIH)
ID : R01AT010627
Informations de copyright
© 2024. The Author(s).
Références
Butelman ER, Huang Y, Epstein DH, Shaham Y, Goldstein RZ, Volkow ND, et al. Overdose mortality rates for opioids and stimulant drugs are substantially higher in men than in women: state-level analysis. Neuropsychopharmacology. 2023. https://doi.org/10.1038/s41386-023-01601-8 .
Provisional Data Shows U.S. Drug Overdose Deaths Top 100,000 in 2022. In: Centers for Disease Control and Prevention [Internet]. Available: https://blogs.cdc.gov/nchs/2023/05/18/7365/ .
Wakeman SE, Larochelle MR, Ameli O, Chaisson CE, McPheeters JT, Crown WH, et al. Comparative effectiveness of different treatment pathways for opioid use disorder. JAMA Netw Open. 2020;3:e1920622. https://doi.org/10.1001/jamanetworkopen.2019.20622 .
doi: 10.1001/jamanetworkopen.2019.20622
pubmed: 32022884
pmcid: 11143463
Buonora M, Perez HR, Stumph J, Allen R, Nahvi S, Cunningham CO, et al. Medical record documentation about opioid tapering: examining benefit-to-harm framework and patient engagement. Pain Med. 2020;21:2574–82. https://doi.org/10.1093/pm/pnz361 .
doi: 10.1093/pm/pnz361
pubmed: 32142143
pmcid: 7593794
Glanz JM, Xu S, Narwaney KJ, McClure DL, Rinehart DJ, Ford MA, et al. Association between opioid dose reduction rates and overdose among patients prescribed long-term opioid therapy. Subst Abus. 2023. https://doi.org/10.1177/08897077231186216 .
Volkow ND, Koob G, Baler R. Biomarkers in substance use disorders. ACS Chem Neurosci. 2015;6:522–5. https://doi.org/10.1021/acschemneuro.5b00067 .
doi: 10.1021/acschemneuro.5b00067
pubmed: 25734247
Morcuende A, Navarrete F, Nieto E, Manzanares J, Femenía T. Inflammatory Biomarkers in Addictive Disorders. Biomolecules. 2021;11:1824. https://doi.org/10.3390/biom11121824 .
doi: 10.3390/biom11121824
pubmed: 34944470
pmcid: 8699452
Dunn KE, Strain EC. Establishing a research agenda for the study and assessment of opioid withdrawal. Lancet Psychiatry. 2024. https://doi.org/10.1016/S2215-0366(24)00068-3 .
Chapman BP, Gullapalli BT, Rahman T, Smelson D, Boyer EW, Carreiro S. Impact of individual and treatment characteristics on wearable sensor-based digital biomarkers of opioid use. NPJ Digit Med. 2022;5:123. https://doi.org/10.1038/s41746-022-00664-z .
doi: 10.1038/s41746-022-00664-z
pubmed: 35995825
pmcid: 9395337
Caspani G, Sebők V, Sultana N, Swann JR, Bailey A. Metabolic phenotyping of opioid and psychostimulant addiction: a novel approach for biomarker discovery and biochemical understanding of the disorder. Br J Pharmacol. 2022;179:1578–606. https://doi.org/10.1111/bph.15475 .
doi: 10.1111/bph.15475
pubmed: 33817774
Costi S, Morris LS, Collins A, Fernandez NF, Patel M, Xie H, et al. Peripheral immune cell reactivity and neural response to reward in patients with depression and anhedonia. Transl Psychiatry. 2021;11:565. https://doi.org/10.1038/s41398-021-01668-1 .
doi: 10.1038/s41398-021-01668-1
pubmed: 34741019
pmcid: 8571388
Marchese S, Cancelmo L, Diab O, Cahn L, Aaronson C, Daskalakis NP, et al. Altered gene expression and PTSD symptom dimensions in World Trade Center responders. Mol Psychiatry. 2022;27:2225–46. https://doi.org/10.1038/s41380-022-01457-2 .
doi: 10.1038/s41380-022-01457-2
pubmed: 35177824
Reeves KC, Shah N, Muñoz B, Atwood BK. Opioid receptor-mediated regulation of neurotransmission in the brain. Front Mol Neurosci. 2022;15:919773. https://doi.org/10.3389/fnmol.2022.919773 .
doi: 10.3389/fnmol.2022.919773
pubmed: 35782382
pmcid: 9242007
Chen Y, Mestek A, Liu J, Hurley JA, Yu L. Molecular cloning and functional expression of a mu-opioid receptor from rat brain. Mol Pharmacol. 1993;44:8–12.
pubmed: 8393525
Eisenstein TK. The role of opioid receptors in immune system function. Front Immunol. 2019;10:2904. https://doi.org/10.3389/fimmu.2019.02904 .
doi: 10.3389/fimmu.2019.02904
pubmed: 31921165
pmcid: 6934131
Chen C, Li J, Bot G, Szabo I, Rogers TJ, Liu-Chen L-Y. Heterodimerization and cross-desensitization between the mu-opioid receptor and the chemokine CCR5 receptor. Eur J Pharmacol. 2004;483:175–86. https://doi.org/10.1016/j.ejphar.2003.10.033 .
doi: 10.1016/j.ejphar.2003.10.033
pubmed: 14729105
Becher B, Spath S, Goverman J. Cytokine networks in neuroinflammation. Nat Rev Immunol. 2017;17:49–59. https://doi.org/10.1038/nri.2016.123 .
doi: 10.1038/nri.2016.123
pubmed: 27916979
Zhu Y, Yan P, Wang R, Lai J, Tang H, Xiao X, et al. Opioid-induced fragile-like regulatory T cells contribute to withdrawal. Cell. 2023;186:591–606.e23. https://doi.org/10.1016/j.cell.2022.12.030 .
doi: 10.1016/j.cell.2022.12.030
pubmed: 36669483
Kruyer A, Angelis A, Garcia-Keller C, Li H, Kalivas PW. Plasticity in astrocyte subpopulations regulates heroin relapse. Sci Adv. 2022;8:eabo7044. https://doi.org/10.1126/sciadv.abo7044 .
doi: 10.1126/sciadv.abo7044
pubmed: 35947652
pmcid: 9365285
Hashimoto A, Kawamura N, Tarusawa E, Takeda I, Aoyama Y, Ohno N, et al. Microglia enable cross-modal plasticity by removing inhibitory synapses. Cell Rep. 2023;42:112383. https://doi.org/10.1016/j.celrep.2023.112383 .
doi: 10.1016/j.celrep.2023.112383
pubmed: 37086724
Butelman ER, Goldstein RZ, Nwaneshiudu CA, Girdhar K, Roussos P, Russo SJ, et al. Neuroimmune mechanisms of opioid use disorder and recovery: Translatability to human studies, and future research directions. Neuroscience. 2023. https://doi.org/10.1016/j.neuroscience.2023.07.031 .
Hofford RS, Russo SJ, Kiraly DD. Neuroimmune mechanisms of psychostimulant and opioid use disorders. Eur J Neurosci. 2019;50:2562–73. https://doi.org/10.1111/ejn.14143 .
doi: 10.1111/ejn.14143
pubmed: 30179286
Marchette RCN, Carlson ER, Said N, Koob GF, Vendruscolo LF. Extended access to fentanyl vapor self-administration leads to addiction-like behaviors in mice: blood chemokine/cytokine levels as potential biomarkers. Addict Neurosci. 2023;5. https://doi.org/10.1016/j.addicn.2022.100057 .
Zhang Y, Liang Y, Levran O, Randesi M, Yuferov V, Zhao C, et al. Alterations of expression of inflammation/immune-related genes in the dorsal and ventral striatum of adult C57BL/6J mice following chronic oxycodone self-administration: a RNA sequencing study. Psychopharmacology. 2017;234:2259–75. https://doi.org/10.1007/s00213-017-4657-y .
doi: 10.1007/s00213-017-4657-y
pubmed: 28653080
pmcid: 5826641
Re G-F, Jia J, Xu Y, Zhang Z, Xie Z-R, Kong D, et al. Dynamics and correlations in multiplex immune profiling reveal persistent immune inflammation in male drug users after withdrawal. Int Immunopharmacol. 2022;107:108696. https://doi.org/10.1016/j.intimp.2022.108696 .
doi: 10.1016/j.intimp.2022.108696
pubmed: 35303506
Salarian A, Kadkhodaee M, Zahmatkesh M, Seifi B, Bakhshi E, Akhondzadeh S, et al. Opioid use disorder induces oxidative stress and inflammation: the attenuating effect of methadone maintenance treatment. Iran J Psychiatry. 2018;13:46–54. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5994232 .
pubmed: 29892317
pmcid: 5994232
Zhang Z, Wu H, Peng Q, Xie Z, Chen F, Ma Y, et al. Integration of molecular inflammatory interactome analyses reveals dynamics of circulating cytokines and extracellular vesicle long non-coding RNAs and mRNAs in heroin addicts during acute and protracted withdrawal. Front Immunol. 2021;12:730300. https://doi.org/10.3389/fimmu.2021.730300 .
doi: 10.3389/fimmu.2021.730300
pubmed: 34489980
pmcid: 8416766
Carlyle BC, Kitchen RR, Mattingly Z, Celia AM, Trombetta BA, Das S, et al. Technical performance evaluation of Olink Proximity Extension Assay for blood-based biomarker discovery in longitudinal studies of Alzheimer’s disease. Front Neurol. 2022;13:889647. https://doi.org/10.3389/fneur.2022.889647 .
doi: 10.3389/fneur.2022.889647
pubmed: 35734478
pmcid: 9207419
Butelman ER, Chen CY, Brown KG, Kreek MJ. Escalation of drug use in persons dually diagnosed with opioid and cocaine dependence: Gender comparison and dimensional predictors. Drug Alcohol Depend. 2019;205:107657. https://doi.org/10.1016/j.drugalcdep.2019.107657 .
doi: 10.1016/j.drugalcdep.2019.107657
pubmed: 31698322
pmcid: 6893149
Ménard C, Pfau ML, Hodes GE, Russo SJ. Immune and neuroendocrine mechanisms of stress vulnerability and resilience. Neuropsychopharmacology. 2017;42:62–80. https://doi.org/10.1038/npp.2016.90 .
doi: 10.1038/npp.2016.90
pubmed: 27291462
Ter Horst R, Jaeger M, Smeekens SP, Oosting M, Swertz MA, Li Y, et al. Host and environmental factors influencing individual human cytokine responses. Cell. 2016;167:1111–.e13. https://doi.org/10.1016/j.cell.2016.10.018 .
doi: 10.1016/j.cell.2016.10.018
pubmed: 27814508
pmcid: 5787854
Schmidt FM, Weschenfelder J, Sander C, Minkwitz J, Thormann J, Chittka T, et al. Inflammatory cytokines in general and central obesity and modulating effects of physical activity. PLoS ONE. 2015;10:e0121971. https://doi.org/10.1371/journal.pone.0121971 .
doi: 10.1371/journal.pone.0121971
pubmed: 25781614
pmcid: 4363366
Wright KP Jr, Drake AL, Frey DJ, Fleshner M, Desouza CA, et al. Influence of sleep deprivation and circadian misalignment on cortisol, inflammatory markers, and cytokine balance. Brain Behav Immun. 2015;47:24–34. https://doi.org/10.1016/j.bbi.2015.01.004 .
doi: 10.1016/j.bbi.2015.01.004
pubmed: 25640603
pmcid: 5401766
Langstengel J, Yaggi HK. Sleep deficiency and opioid use disorder: trajectory, mechanisms, and interventions. Clin Chest Med. 2022;43:e1–e14. https://doi.org/10.1016/j.ccm.2022.05.001 .
doi: 10.1016/j.ccm.2022.05.001
pubmed: 35659031
pmcid: 10018646
McLellan AT, Kushner H, Metzger D, Peters R, Smith I, Grissom G, et al. The fifth edition of the addiction severity index. J Subst Abuse Treat. 1992;9:199–213. https://doi.org/10.1016/0740-5472(92)90062-s .
doi: 10.1016/0740-5472(92)90062-s
pubmed: 1334156
Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59:22–33. https://www.ncbi.nlm.nih.gov/pubmed/9881538 .
pubmed: 9881538
Valdes-Marquez E, Clarke R, Hill M, Watkins H, Hopewell JC. Proteomic profiling identifies novel independent relationships between inflammatory proteins and myocardial infarction. Eur J Prev Cardiol. 2023;30:583–91. https://doi.org/10.1093/eurjpc/zwad020 .
doi: 10.1093/eurjpc/zwad020
pubmed: 36702559
Jacquens A, Needham EJ, Zanier ER, Degos V, Gressens P, Menon D. Neuro-inflammation modulation and post-traumatic brain injury lesions: from bench to bed-side. Int J Mol Sci. 2022;23. https://doi.org/10.3390/ijms231911193 .
Park J, Jang W, Park HS, Park KH, Kwok S-K, Park S-H, et al. Cytokine clusters as potential diagnostic markers of disease activity and renal involvement in systemic lupus erythematosus. J Int Med Res. 2020;48:300060520926882. https://doi.org/10.1177/0300060520926882 .
doi: 10.1177/0300060520926882
pubmed: 32489126
Liang J, Xu Y, Gao W, Sun Y, Zhang Y, Shan F, et al. Cytokine profile in first-episode drug-naïve major depressive disorder patients with or without anxiety. BMC Psychiatry. 2024;24:93. https://doi.org/10.1186/s12888-024-05536-2 .
doi: 10.1186/s12888-024-05536-2
pubmed: 38308225
pmcid: 10835958
Cohen S. Perceived stress in a probability sample of the United States. The social psychology of health. 1988;251: 31–67. https://psycnet.apa.org/fulltext/1988-98838-002.pdf .
Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav. 1983;24:385–96. https://www.ncbi.nlm.nih.gov/pubmed/6668417 .
doi: 10.2307/2136404
pubmed: 6668417
Beck AT, Steer RA, Ball R, Ranieri W. Comparison of Beck Depression Inventories -IA and -II in psychiatric outpatients. J Pers Assess. 1996;67:588–97. https://doi.org/10.1207/s15327752jpa6703_13 .
doi: 10.1207/s15327752jpa6703_13
pubmed: 8991972
Butelman ER, Bacciardi S, Maremmani AGI, Darst-Campbell M, Correa da Rosa J, Kreek MJ. Can a rapid measure of self-exposure to drugs of abuse provide dimensional information on depression comorbidity? Am J Addict. 2017;26:632–9. https://doi.org/10.1111/ajad.12578 .
doi: 10.1111/ajad.12578
pubmed: 28654734
pmcid: 5573655
Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol. 1988;56:893–7.
doi: 10.1037/0022-006X.56.6.893
pubmed: 3204199
Handelsman L, Cochrane KJ, Aronson MJ, Ness R, Rubinstein KJ, Kanof PD. Two new rating scales for opiate withdrawal. Am J Drug Alcohol Abuse. 1987;13:293–308. https://doi.org/10.3109/00952998709001515 .
doi: 10.3109/00952998709001515
pubmed: 3687892
Chan YY, Yang SN, Lin JC, Chang JL, Lin JG, Lo WY. Inflammatory response in heroin addicts undergoing methadone maintenance treatment. Psychiatry Res. 2015;226:230–4. https://doi.org/10.1016/j.psychres.2014.12.053 .
doi: 10.1016/j.psychres.2014.12.053
pubmed: 25660662
Lu R-B, Wang T-Y, Lee S-Y, Chen S-L, Chang Y-H, See Chen P, et al. Correlation between interleukin-6 levels and methadone maintenance therapy outcomes. Drug Alcohol Depend. 2019;204:107516. https://doi.org/10.1016/j.drugalcdep.2019.06.018 .
doi: 10.1016/j.drugalcdep.2019.06.018
pubmed: 31513981
pmcid: 7077753
Struglics A, Larsson S, Lohmander LS, Swärd P. Technical performance of a proximity extension assay inflammation biomarker panel with synovial fluid. Osteoarthr Cartil Open. 2022;4:100293. https://doi.org/10.1016/j.ocarto.2022.100293 .
doi: 10.1016/j.ocarto.2022.100293
pubmed: 36474941
pmcid: 9718077
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;57:289–300.
doi: 10.1111/j.2517-6161.1995.tb02031.x
Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci. 2016;374:20150202. https://doi.org/10.1098/rsta.2015.0202 .
doi: 10.1098/rsta.2015.0202
pubmed: 26953178
pmcid: 4792409
Josse J, Husson F. missMDA: a package for handling missing values in multivariate data analysis. J Stat Softw. 2016;70:1–31. https://doi.org/10.18637/jss.v070.i01 .
doi: 10.18637/jss.v070.i01
Liu J, Chen B, Lu H, Chen Q, Li J-C. Identification of novel candidate biomarkers for acute myocardial infarction by the Olink proteomics platform. Clin Chim Acta. 2023;548:117506. https://doi.org/10.1016/j.cca.2023.117506 .
doi: 10.1016/j.cca.2023.117506
pubmed: 37549822
Drożdż K, Nabrdalik K, Kwiendacz H, Hendel M, Olejarz A, Tomasik A, et al. Risk factors for cardiovascular disease in patients with metabolic-associated fatty liver disease: a machine learning approach. Cardiovasc Diabetol. 2022;21:240. https://doi.org/10.1186/s12933-022-01672-9 .
Nahm FS. Receiver operating characteristic curve: overview and practical use for clinicians. Korean J Anesthesiol. 2022;75:25–36. https://doi.org/10.4097/kja.21209 .
doi: 10.4097/kja.21209
pubmed: 35124947
pmcid: 8831439
Rogers TJ. Bidirectional regulation of opioid and chemokine function. Front Immunol. 2020;11:94. https://doi.org/10.3389/fimmu.2020.00094 .
doi: 10.3389/fimmu.2020.00094
pubmed: 32076421
pmcid: 7006827
Zhang G-F, Ren Y-P, Sheng L-X, Chi Y, Du W-J, Guo S, et al. Dysfunction of the hypothalamic-pituitary-adrenal axis in opioid dependent subjects: effects of acute and protracted abstinence. Am J Drug Alcohol Abuse. 2008;34:760–8. https://doi.org/10.1080/00952990802385781 .
doi: 10.1080/00952990802385781
pubmed: 19016181
Li S-X, Shi J, Epstein DH, Wang X, Zhang X-L, Bao Y-P, et al. Circadian alteration in neurobiology during 30 days of abstinence in heroin users. Biol Psychiatry. 2009;65:905–12. https://doi.org/10.1016/j.biopsych.2008.11.025 .
doi: 10.1016/j.biopsych.2008.11.025
pubmed: 19135652
Dunn AJ. The HPA axis and the immune system: a perspective. In: NeuroImmune biology. Elsevier; 2007. pp. 3–15. https://doi.org/10.1016/S1567-7443(07)00201-3 .
Dhabhar FS. Enhancing versus suppressive effects of stress on immune function: implications for immunoprotection and immunopathology. Neuroimmunomodulation. 2009;16:300–17. https://doi.org/10.1159/000216188 .
doi: 10.1159/000216188
pubmed: 19571591
pmcid: 2790771
Cruz-Topete D, Cidlowski JA. One hormone, two actions: anti- and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation. 2015;22:20–32. https://doi.org/10.1159/000362724 .
doi: 10.1159/000362724
pubmed: 25227506
Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6:a016295. https://doi.org/10.1101/cshperspect.a016295 .
doi: 10.1101/cshperspect.a016295
pubmed: 25190079
pmcid: 4176007
Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci. 2012;8:1254–66. https://doi.org/10.7150/ijbs.4679 .
doi: 10.7150/ijbs.4679
pubmed: 23136554
pmcid: 3491449
Browne CJ, Futamura R, Minier-Toribio A, Hicks EM, Ramakrishnan A, Martínez-Rivera FJ, et al. Transcriptional signatures of heroin intake and relapse throughout the brain reward circuitry in male mice. Sci Adv. 2023;9:eadg8558. https://doi.org/10.1126/sciadv.adg8558 .
doi: 10.1126/sciadv.adg8558
pubmed: 37294757
pmcid: 10256172
Yan Y, Truitt B, Tao J, Boyles SM, Antoine D, Hulme W, et al. Single-cell profiling of glial cells from the mouse amygdala under opioid dependent and withdrawal states. iScience. 2023;26:108166. https://doi.org/10.1016/j.isci.2023.108166 .
doi: 10.1016/j.isci.2023.108166
pubmed: 37915593
pmcid: 10616319
Pawlik K, Ciechanowska A, Ciapała K, Rojewska E, Makuch W, Mika J. Blockade of CC chemokine receptor type 3 diminishes pain and enhances opioid analgesic potency in a model of neuropathic pain. Front Immunol. 2021;12:781310. https://doi.org/10.3389/fimmu.2021.781310 .
doi: 10.3389/fimmu.2021.781310
pubmed: 34795678
pmcid: 8593225
Zhang L, Belkowski JS, Briscoe T, Rogers TJ. Regulation of mu opioid receptor expression in developing T cells. J Neuroimmune Pharmacol. 2012;7:835–42. https://doi.org/10.1007/s11481-012-9396-6 .
doi: 10.1007/s11481-012-9396-6
pubmed: 22926418
pmcid: 3518723
Brack A, Rittner HL, Machelska H, Beschmann K, Sitte N, Schäfer M, et al. Mobilization of opioid-containing polymorphonuclear cells by hematopoietic growth factors and influence on inflammatory pain. Anesthesiology. 2004;100:149–57. https://doi.org/10.1097/00000542-200401000-00024 .
doi: 10.1097/00000542-200401000-00024
pubmed: 14695736
Nelson AM, Battersby AS, Baghdoyan HA, Lydic R. Opioid-induced decreases in rat brain adenosine levels are reversed by inhibiting adenosine deaminase. Anesthesiology. 2009;111:1327–33. https://doi.org/10.1097/ALN.0b013e3181bdf894 .
doi: 10.1097/ALN.0b013e3181bdf894
pubmed: 19934879
Wang J, Charboneau R, Balasubramanian S, Barke RA, Loh HH, Roy S. Morphine modulates lymph node-derived T lymphocyte function: role of caspase-3, -8, and nitric oxide. J Leukoc Biol. 2001;70:527–36. https://www.ncbi.nlm.nih.gov/pubmed/11590188 .
doi: 10.1189/jlb.70.4.527
pubmed: 11590188
Ucha M, Coria SM, Núñez AE, Santos-Toscano R, Roura-Martínez D, Fernández-Ruiz J, et al. Morphine self-administration alters the expression of translational machinery genes in the amygdala of male Lewis rats. J Psychopharmacol. 2019;33:882–93. https://doi.org/10.1177/0269881119836206 .
doi: 10.1177/0269881119836206
pubmed: 30887859
Fox HC, D’Sa C, Kimmerling A, Siedlarz KM, Tuit KL, Stowe R, et al. Immune system inflammation in cocaine dependent individuals: implications for medications development. Hum Psychopharmacol. 2012;27:156–66. https://doi.org/10.1002/hup.1251 .
doi: 10.1002/hup.1251
pubmed: 22389080
pmcid: 3674778
Liu Y-Z, Wang Y-X, Jiang C-L. Inflammation: the common pathway of stress-related diseases. Front Hum Neurosci. 2017;11:316. https://doi.org/10.3389/fnhum.2017.00316 .
doi: 10.3389/fnhum.2017.00316
pubmed: 28676747
pmcid: 5476783
Kreek MJ, Reed B, Butelman ER. Current status of opioid addiction treatment and related preclinical research. Sci Adv. 2019;5:eaax9140. https://doi.org/10.1126/sciadv.aax9140 .
doi: 10.1126/sciadv.aax9140
pubmed: 31616793
pmcid: 6774730
Nilsonne G, Lekander M, Åkerstedt T, Axelsson J, Ingre M. Diurnal variation of circulating interleukin-6 in humans: a meta-analysis. PLoS ONE. 2016;11:e0165799. https://doi.org/10.1371/journal.pone.0165799 .
doi: 10.1371/journal.pone.0165799
pubmed: 27832117
pmcid: 5104468
Kuo H-W, Liu T-H, Tsou H-H, Hsu Y-T, Wang S-C, Fang C-P, et al. Inflammatory chemokine eotaxin-1 is correlated with age in heroin dependent patients under methadone maintenance therapy. Drug Alcohol Depend. 2018;183:19–24. https://doi.org/10.1016/j.drugalcdep.2017.10.014 .
doi: 10.1016/j.drugalcdep.2017.10.014
pubmed: 29222992
Goldstein RZ. Neuropsychoimaging measures as alternatives to drug use outcomes in clinical trials for addiction. JAMA Psychiatry. 2022 [cited 27 Jul 2022]. https://doi.org/10.1001/jamapsychiatry.2022.1970 .
Byrne JF, Mongan D, Murphy J, Healy C, Fӧcking M, Cannon M, et al. Prognostic models predicting transition to psychotic disorder using blood-based biomarkers: a systematic review and critical appraisal. Transl Psychiatry. 2023;13:333. https://doi.org/10.1038/s41398-023-02623-y .
doi: 10.1038/s41398-023-02623-y
pubmed: 37898606
pmcid: 10613280