X- vs. Y-chromosome influences on human behavior: a deep phenotypic comparison of psychopathology in XXY and XYY syndromes.


Journal

Journal of neurodevelopmental disorders
ISSN: 1866-1955
Titre abrégé: J Neurodev Disord
Pays: England
ID NLM: 101483832

Informations de publication

Date de publication:
03 Oct 2024
Historique:
received: 23 10 2023
accepted: 22 09 2024
medline: 4 10 2024
pubmed: 4 10 2024
entrez: 3 10 2024
Statut: epublish

Résumé

Do different genetic disorders impart different psychiatric risk profiles? This question has major implications for biological and translational aspects of psychiatry, but has been difficult to tackle given limited access to shared batteries of fine-grained clinical data across genetic disorders. Using a new suite of generalizable analytic approaches, we examine gold-standard diagnostic ratings, scores on 66 dimensional measures of psychopathology, and measures of cognition and functioning in two different sex chromosome aneuploidies (SCAs)-Klinefelter (XXY/KS) and XYY syndrome (n = 102 and 64 vs. n = 74 and 60 matched XY controls, total n = 300). We focus on SCAs for their high collective prevalence, informativeness regarding differential X- vs. Y-chromosome effects, and potential relevance for normative sex differences. We show that XXY/KS elevates rates for most psychiatric diagnoses as previously reported for XYY, but disproportionately so for anxiety disorders. Fine-mapping across all 66 traits provides a detailed profile of psychopathology in XXY/KS which is strongly correlated with that of XYY (r = .75 across traits) and robust to ascertainment biases, but reveals: (i) a greater penetrance of XYY than KS/XXY for most traits except mood/anxiety problems, and (ii) a disproportionate impact of XYY vs. XXY/KS on social problems. XXY/KS and XYY showed a similar coupling of psychopathology with adaptive function and caregiver strain, but not IQ. This work provides new tools for deep-phenotypic comparisons of genetic disorders in psychiatry and uses these to detail unique and shared effects of the X- and Y-chromosome on human behavior.

Sections du résumé

BACKGROUND BACKGROUND
Do different genetic disorders impart different psychiatric risk profiles? This question has major implications for biological and translational aspects of psychiatry, but has been difficult to tackle given limited access to shared batteries of fine-grained clinical data across genetic disorders.
METHODS METHODS
Using a new suite of generalizable analytic approaches, we examine gold-standard diagnostic ratings, scores on 66 dimensional measures of psychopathology, and measures of cognition and functioning in two different sex chromosome aneuploidies (SCAs)-Klinefelter (XXY/KS) and XYY syndrome (n = 102 and 64 vs. n = 74 and 60 matched XY controls, total n = 300). We focus on SCAs for their high collective prevalence, informativeness regarding differential X- vs. Y-chromosome effects, and potential relevance for normative sex differences.
RESULTS RESULTS
We show that XXY/KS elevates rates for most psychiatric diagnoses as previously reported for XYY, but disproportionately so for anxiety disorders. Fine-mapping across all 66 traits provides a detailed profile of psychopathology in XXY/KS which is strongly correlated with that of XYY (r = .75 across traits) and robust to ascertainment biases, but reveals: (i) a greater penetrance of XYY than KS/XXY for most traits except mood/anxiety problems, and (ii) a disproportionate impact of XYY vs. XXY/KS on social problems. XXY/KS and XYY showed a similar coupling of psychopathology with adaptive function and caregiver strain, but not IQ.
CONCLUSIONS CONCLUSIONS
This work provides new tools for deep-phenotypic comparisons of genetic disorders in psychiatry and uses these to detail unique and shared effects of the X- and Y-chromosome on human behavior.

Identifiants

pubmed: 39363182
doi: 10.1186/s11689-024-09574-5
pii: 10.1186/s11689-024-09574-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

56

Informations de copyright

© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

Références

Mollon J, Almasy L, Jacquemont S, Glahn DC. The contribution of copy number variants to psychiatric symptoms and cognitive ability. Mol Psychiatry. 2023. https://doi.org/10.1038/s41380-023-01978-4 .
Zhang X, Yang J, Li Y, Ma X, Li R. Sex chromosome abnormalities and psychiatric diseases. Oncotarget. 2017;8:3969–79.
pubmed: 27992373 doi: 10.18632/oncotarget.13962
Horev G, Ellegood J, Lerch JP, Son Y-EE, Muthuswamy L, Vogel H, et al. Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proc Natl Acad Sci U S A. 2011;108:17076–81.
pubmed: 21969575 pmcid: 3193230 doi: 10.1073/pnas.1114042108
Raznahan A. Genetics-first approaches in biological psychiatry. Biol Psychiatry. 2018;84:234–5.
pubmed: 30071946 doi: 10.1016/j.biopsych.2018.06.008
Raznahan A, Won H, Glahn DC, Jacquemont S. Convergence and divergence of rare genetic disorders on brain phenotypes: a review. JAMA Psychiat. 2022;79:818–28.
doi: 10.1001/jamapsychiatry.2022.1450
Sanders SJ, Sahin M, Hostyk J, Thurm A, Jacquemont S, Avillach P, et al. A framework for the investigation of rare genetic disorders in neuropsychiatry. Nat Med. 2019;25:1477–87.
pubmed: 31548702 pmcid: 8656349 doi: 10.1038/s41591-019-0581-5
Smajlagić D, Lavrichenko K, Berland S, Helgeland Ø, Knudsen GP, Vaudel M, et al. Population prevalence and inheritance pattern of recurrent CNVs associated with neurodevelopmental disorders in 12,252 newborns and their parents. Eur J Hum Genet. 2021;29:205–15.
pubmed: 32778765 doi: 10.1038/s41431-020-00707-7
Martin-Brevet S, Rodríguez-Herreros B, Nielsen JA, Moreau C, Modenato C, Maillard AM, et al. Quantifying the effects of 16p11.2 copy number variants on brain structure: a multisite genetic-first study. Biol Psychiatry. 2018;84:253–64.
pubmed: 29778275 doi: 10.1016/j.biopsych.2018.02.1176
Naylor PE, Bruno JL, Shrestha SB, Friedman M, Jo B, Reiss AL, et al. Neuropsychiatric phenotypes in children with Noonan syndrome. Dev Med Child Neurol. 2023. https://doi.org/10.1111/dmcn.15627 .
Gillentine MA, Schaaf CP. The human clinical phenotypes of altered CHRNA7 copy number. Biochem Pharmacol. 2015;97:352–62.
pubmed: 26095975 pmcid: 4600432 doi: 10.1016/j.bcp.2015.06.012
Lee JA, Lupski JR. Genomic rearrangements and gene copy-number alterations as a cause of nervous system disorders. Neuron. 2006;52:103–21.
pubmed: 17015230 doi: 10.1016/j.neuron.2006.09.027
Chawner SJRA, Doherty JL, Anney RJL, Antshel KM, Bearden CE, Bernier R, et al. A genetics-first approach to dissecting the heterogeneity of autism: phenotypic comparison of autism risk copy number variants. Am J Psychiatry. 2021;178:77–86.
pubmed: 33384013 pmcid: 8022239 doi: 10.1176/appi.ajp.2020.20010015
Glasson EJ, Buckley N, Chen W, Leonard H, Epstein A, Skoss R, et al. Systematic review and meta-analysis: mental health in children with neurogenetic disorders associated with intellectual disability. J Am Acad Child Adolesc Psychiatry. 2020;59:1036–48.
pubmed: 31945412 doi: 10.1016/j.jaac.2020.01.006
Lee NR, Niu X, Zhang F, Clasen LS, Kozel BA, Smith ACM, et al. Variegation of autism related traits across seven neurogenetic disorders. Transl Psychiatry. 2022;12:149.
pubmed: 35393403 pmcid: 8989950 doi: 10.1038/s41398-022-01895-0
Rau S, Whitman ET, Schauder K, Gogate N, Lee NR, Kenworthy L, et al. Patterns of psychopathology and cognition in sex chromosome aneuploidy. 2021. https://doi.org/10.21203/rs.3.rs-543874/v1 .
Raznahan A. Editorial: do different neurogenetic disorders impart different profiles of psychiatric risk? J Am Acad Child Adolesc Psychiatry. 2020;59:1022–4.
pubmed: 32171632 pmcid: 7529113 doi: 10.1016/j.jaac.2020.03.002
Arron K, Oliver C, Moss J, Berg K, Burbidge C. The prevalence and phenomenology of self-injurious and aggressive behaviour in genetic syndromes. J Intellect Disabil Res. 2011;55:109–20.
pubmed: 20977515 doi: 10.1111/j.1365-2788.2010.01337.x
Moss J, Oliver C, Arron K, Burbidge C, Berg K. The prevalence and phenomenology of repetitive behavior in genetic syndromes. J Autism Dev Disord. 2009;39:572–88.
pubmed: 19037716 doi: 10.1007/s10803-008-0655-6
Oliver C, Berg K, Moss J, Arron K, Burbidge C. Delineation of behavioral phenotypes in genetic syndromes: characteristics of autism spectrum disorder, affect and hyperactivity. J Autism Dev Disord. 2011;41:1019–32.
pubmed: 21080217 doi: 10.1007/s10803-010-1125-5
Nielsen J, Wohlert M. Chromosome abnormalities found among 34,910 newborn children: results from a 13-year incidence study in Arhus. Denmark Hum Genet. 1991;87:81–3.
pubmed: 2037286 doi: 10.1007/BF01213097
Sánchez XC, Montalbano S, Vaez M, Krebs MD, Byberg-Grauholm J, Mortensen PB, et al. Associations of psychiatric disorders with sex chromosome aneuploidies in the Danish iPSYCH2015 dataset: a case-cohort study. Lancet Psychiatry. 2023;10:129–38.
pubmed: 36697121 pmcid: 9976199 doi: 10.1016/S2215-0366(23)00004-4
Cordeiro L, Tartaglia N, Roeltgen D, Ross J. Social deficits in male children and adolescents with sex chromosome aneuploidy: a comparison of XXY, XYY, and XXYY syndromes. Res Dev Disabil. 2012;33:1254–63.
pubmed: 22502852 pmcid: 3328784 doi: 10.1016/j.ridd.2012.02.013
van Rijn S, de Sonneville L, Swaab H. The nature of social cognitive deficits in children and adults with Klinefelter syndrome (47, XXY). Genes Brain Behav. 2018;17:e12465.
pubmed: 29406610 doi: 10.1111/gbb.12465
Green T, Flash S, Shankar G, Bade Shrestha S, Jo B, Klabunde M, et al. Effect of sex chromosome number variation on attention-deficit/hyperactivity disorder symptoms, executive function, and processing speed. Dev Med Child Neurol. 2022;64:331–9.
pubmed: 34431088 doi: 10.1111/dmcn.15020
Tartaglia NR, Ayari N, Hutaff-Lee C, Boada R. Attention-deficit hyperactivity disorder symptoms in children and adolescents with sex chromosome aneuploidy: XXY, XXX, XYY, and XXYY. J Dev Behav Pediatr. 2012;33:309–18.
pubmed: 22333574 pmcid: 3348431 doi: 10.1097/DBP.0b013e31824501c8
Bishop DVM, Jacobs PA, Lachlan K, Wellesley D, Barnicoat A, Boyd PA, et al. Autism, language and communication in children with sex chromosome trisomies. Arch Dis Child. 2011;96:954–9.
pubmed: 20656736 doi: 10.1136/adc.2009.179747
Lee NR, Wallace GL, Adeyemi EI, Lopez KC, Blumenthal JD, Clasen LS, et al. Dosage effects of X and Y chromosomes on language and social functioning in children with supernumerary sex chromosome aneuploidies: implications for idiopathic language impairment and autism spectrum disorders. J Child Psychol Psychiatry. 2012;53:1072–81.
pubmed: 22827287 pmcid: 3480208 doi: 10.1111/j.1469-7610.2012.02573.x
Ross JL, Roeltgen DP, Kushner H, Zinn AR, Reiss A, Bardsley MZ, et al. Behavioral and social phenotypes in boys with 47, XYY syndrome or 47. XXY Klinefelter Syndr Pediatr. 2012;129:769–78.
Raznahan A, Rau S, Schaffer L, Liu S, Fish AM, Mankiw C, et al. Deep phenotypic analysis of psychiatric features in genetically defined cohorts: application to XYY syndrome. J Neurodev Disord. 2023;15:8.
pubmed: 36803654 pmcid: 9940341 doi: 10.1186/s11689-023-09476-y
Green T, Flash S, Reiss AL. Sex differences in psychiatric disorders: what we can learn from sex chromosome aneuploidies. Neuropsychopharmacology. 2019;44:9–21.
pubmed: 30127341 doi: 10.1038/s41386-018-0153-2
Raznahan A, Lee NR, Greenstein D, Wallace GL, Blumenthal JD, Clasen LS, et al. Globally divergent but locally convergent X- and Y-chromosome influences on cortical development. Cereb Cortex. 2016;26:70–9.
pubmed: 25146371 doi: 10.1093/cercor/bhu174
Raznahan A, Parikshak NN, Chandran V, Blumenthal JD, Clasen LS, Alexander-Bloch AF, et al. Sex-chromosome dosage effects on gene expression in humans. Proc Natl Acad Sci U S A. 2018;115:7398–403.
pubmed: 29946024 pmcid: 6048519 doi: 10.1073/pnas.1802889115
Liu S, Akula N, Reardon PK, Russ J, Torres E, Clasen LS, et al. Aneuploidy effects on human gene expression across three cell types. Proc Natl Acad Sci U S A. 2023;120:e2218478120.
pubmed: 37192167 pmcid: 10214149 doi: 10.1073/pnas.2218478120
Viuff M, Skakkebæk A, Johannsen EB, Chang S, Pedersen SB, Lauritsen KM, et al. X chromosome dosage and the genetic impact across human tissues. Genome Med. 2023;15:21.
pubmed: 36978128 pmcid: 10053618 doi: 10.1186/s13073-023-01169-4
Brannan AM, Heflinger CA, Bickman L. The caregiver strain questionnaire: measuring the impact on the family of living with a child with serious emotional disturbance. J Emot Behav Disord. 1997;5:212–22.
doi: 10.1177/106342669700500404
Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, et al. Schedule for affective disorders and Schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry. 1997;36:980–8.
pubmed: 9204677 doi: 10.1097/00004583-199707000-00021
Gotham K, Risi S, Pickles A, Lord C. The autism diagnostic observation schedule (ADOS). J Autism Dev Disord. 2006.  https://research.manchester.ac.uk/en/publications/the-autism-diagnostic-observation-schedule-ados .
Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24:659–85.
pubmed: 7814313 doi: 10.1007/BF02172145
Worley JA, Matson JL. Comparing symptoms of autism spectrum disorders using the current DSM-IV-TR diagnostic criteria and the proposed DSM-V diagnostic criteria. Res Autism Spectr Disord. 2012;6:965–70.
doi: 10.1016/j.rasd.2011.12.012
Constantino JN, Davis SA, Todd RD, Schindler MK, Gross MM, Brophy SL, et al. Validation of a brief quantitative measure of autistic traits: comparison of the social responsiveness scale with the autism diagnostic interview-revised. J Autism Dev Disord. 2003;33:427–33.
pubmed: 12959421 doi: 10.1023/A:1025014929212
Foa EB, Huppert JD, Leiberg S, Langner R, Kichic R, Hajcak G, et al. The obsessive-compulsive inventory: development and validation of a short version. Psychol Assess. 2002;14:485–96.
pubmed: 12501574 doi: 10.1037/1040-3590.14.4.485
Wilson BN, Crawford SG, Green D, Roberts G, Aylott A, Kaplan BJ. Psychometric properties of the revised developmental coordination disorder questionnaire. Phys Occup Ther Pediatr. 2009;29:182–202.
pubmed: 19401931 doi: 10.1080/01942630902784761
Conners CK, Pitkanen J, Rzepa SR. Conners 3rd edition (Conners 3; Conners 2008). In: Kreutzer JS, DeLuca J, Caplan B, editors. Encyclopedia of clinical neuropsychology. Springer, New York: New York, NY; 2011. p. 675–8.
doi: 10.1007/978-0-387-79948-3_1534
Patton JH, Stanford MS, Barratt ES. Factor structure of the Barratt impulsiveness scale. J Clin Psychol. 1995;51:768–74.
pubmed: 8778124 doi: 10.1002/1097-4679(199511)51:6<768::AID-JCLP2270510607>3.0.CO;2-1
Vitacco MJ, Rogers R, Neumann CS. The antisocial process screening device: an examination of its construct and criterion-related validity. Assessment. 2003;10:143–50.
pubmed: 12801186 doi: 10.1177/1073191103010002005
Farmer CA, Aman MG. Development of the Children’s scale of Hostility and Aggression: Reactive/Proactive (C-SHARP). Res Dev Disabil. 2009;30:1155–67.
pubmed: 19375274 doi: 10.1016/j.ridd.2009.03.001
Achenbach TM, Edelbrock CS. Manual for the child behavior checklist : and revised child behavior profile. Burlington, VT: University of Vermont, Department of Psychiatry; 1983.
Goodman R. The strengths and difficulties questionnaire: a research note. J Child Psychol Psychiatry. 1997;38:581–6.
pubmed: 9255702 doi: 10.1111/j.1469-7610.1997.tb01545.x
Pepperdine CR, McCrimmon AW. Test review: vineland adaptive behavior scales, third edition (vineland-3) by Sparrow, S. S., Cicchetti, D. V., & Saulnier, C. A. Can J School Psychol. 2018;33:157–63.
doi: 10.1177/0829573517733845
Sparrow SS, Balla DA, Cicchetti DV. Vineland Adaptive Behavior Scales, Second Edition (Vineland-II) [Database record]. APA PsycTests; 2005.  https://psycnet.apa.org/doiLanding?doi=10.1037%2Ft15164-000 .
Kim HY. Statistical notes for clinical researchers: Chi-squared test and Fisher's exact test. Restor Dent Endod. 2017;42(2):152–5. https://doi.org/10.5395/rde.2017.42.2.152 . Epub 2017 Mar 30.
Pallavi, Joshi S, Singh D, Kaur M, Lee HN. Comprehensive review of orthogonal regression and its applications in different domains. Arch Comput Methods Eng. 2022;29:4027–47.
doi: 10.1007/s11831-022-09728-5
Bruining H, Swaab H, Kas M, van Engeland H. Psychiatric characteristics in a self-selected sample of boys with Klinefelter syndrome. Pediatrics. 2009;123:e865–70.
pubmed: 19364768 doi: 10.1542/peds.2008-1954
Olsen L, Sparsø T, Weinsheimer SM, Dos Santos MBQ, Mazin W, Rosengren A, et al. Prevalence of rearrangements in the 22q11.2 region and population-based risk of neuropsychiatric and developmental disorders in a Danish population: a case-cohort study. Lancet Psychiatry. 2018;5:573–80.
pubmed: 29886042 pmcid: 6560180 doi: 10.1016/S2215-0366(18)30168-8
Niarchou M, Zammit S, van Goozen SHM, Thapar A, Tierling HM, Owen MJ, et al. Psychopathology and cognition in children with 22q11.2 deletion syndrome. Br J Psychiatry. 2014;204:46–54.
pubmed: 24115343 pmcid: 3877833 doi: 10.1192/bjp.bp.113.132324
Fu TJ, Lincoln AJ, Bellugi U, Searcy YM. The association of intelligence, visual-motor functioning, and personality characteristics with adaptive behavior in individuals with williams syndrome. Am J Intellect Dev Disabil. 2015;120:273–88.
pubmed: 26161466 doi: 10.1352/1944-7558-120.4.273
Will EA, Caravella KE, Hahn LJ, Fidler DJ, Roberts JE. Adaptive behavior in infants and toddlers with Down syndrome and fragile X syndrome. Am J Med Genet B Neuropsychiatr Genet. 2018;177:358–68.
pubmed: 29399949 pmcid: 7294771 doi: 10.1002/ajmg.b.32619
Lanfranchi S, Vianello R. Stress, locus of control, and family cohesion and adaptability in parents of children with Down, Williams, Fragile X, and Prader-Willi syndromes. Am J Intellect Dev Disabil. 2012;117:207–24.
pubmed: 22716263 doi: 10.1352/1944-7558-117.3.207
Kraper CK, Kenworthy L, Popal H, Martin A, Wallace GL. The gap between adaptive behavior and intelligence in autism persists into young adulthood and is linked to psychiatric co-morbidities. J Autism Dev Disord. 2017;47:3007–17.
pubmed: 28710532 doi: 10.1007/s10803-017-3213-2
Mahony BW, Tu D, Rau S, Liu S, Lalonde FM, Alexander-Bloch AF, et al. IQ modulates coupling between diverse dimensions of psychopathology in children and adolescents. J Am Acad Child Adolesc Psychiatry. 2023;62:59–73.
pubmed: 35868430 doi: 10.1016/j.jaac.2022.06.015
Perez Algorta G, MacPherson HA, Youngstrom EA, Belt CC, Arnold LE, Frazier TW, et al. Parenting stress among caregivers of children with bipolar spectrum disorders. J Clin Child Adolesc Psychol. 2018;47:S306–20.
pubmed: 28278600 doi: 10.1080/15374416.2017.1280805
Vaughan EL, Feinn R, Bernard S, Brereton M, Kaufman JS. Relationships between child emotional and behavioral symptoms and caregiver strain and parenting stress. J Fam Issues. 2013;34:534–56.
pubmed: 24707069 doi: 10.1177/0192513X12440949
Koenen KC, Moffitt TE, Roberts AL, Martin LT, Kubzansky L, Harrington H, et al. Childhood IQ and adult mental disorders: a test of the cognitive reserve hypothesis. Am J Psychiatry. 2009;166:50–7.
pubmed: 19047325 doi: 10.1176/appi.ajp.2008.08030343
Rotstein A, Fund S, Levine SZ, Reichenberg A, Goldenberg J. Is cognition integral to psychopathology? A population-based cohort study. Psychol Med. 2023;53(15):7350–7. https://doi.org/10.1017/S0033291723000934 . Epub 2023 Apr 28.
Godfrey AK, Naqvi S, Chmátal L, Chick JM, Mitchell RN, Gygi SP, et al. Quantitative analysis of Y-Chromosome gene expression across 36 human tissues. Genome Res. 2020;30:860–73.
pubmed: 32461223 pmcid: 7370882 doi: 10.1101/gr.261248.120
Bellott DW, Hughes JF, Skaletsky H, Brown LG, Pyntikova T, Cho T-J, et al. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature. 2014;508:494–9.
pubmed: 24759411 pmcid: 4139287 doi: 10.1038/nature13206
San Roman AK, Godfrey AK, Skaletsky H, Bellott DW, Groff AF, Harris HL, et al. The human inactive X chromosome modulates expression of the active X chromosome. Cell Genom. 2023;3: 100259.
pubmed: 36819663 pmcid: 9932992 doi: 10.1016/j.xgen.2023.100259
Jowhar Z, Shachar S, Gudla PR, Wangsa D, Torres E, Russ JL, et al. Effects of human sex chromosome dosage on spatial chromosome organization. Mol Biol Cell. 2018;29:2458–69.
pubmed: 30091656 pmcid: 6233059 doi: 10.1091/mbc.E18-06-0359
Høst C, Skakkebæk A, Groth KA, Bojesen A. The role of hypogonadism in Klinefelter syndrome. Asian J Androl. 2014;16:185–91.
pubmed: 24407186 pmcid: 3955327 doi: 10.4103/1008-682X.122201
Celec P, Ostatníková D, Hodosy J. On the effects of testosterone on brain behavioral functions. Front Neurosci. 2015;9:12.
pubmed: 25741229 pmcid: 4330791 doi: 10.3389/fnins.2015.00012
van Rijn S. Salivary testosterone in relation to social cognition and social anxiety in children and adolescents with 47, XXY (Klinefelter syndrome). PLoS ONE. 2018;13:e0200882.
pubmed: 30036387 pmcid: 6056033 doi: 10.1371/journal.pone.0200882
Ross JL, Kushner H, Kowal K, Bardsley M, Davis S, Reiss AL, et al. Androgen treatment effects on motor function, cognition, and behavior in boys with Klinefelter syndrome. J Pediatr. 2017;185:193-199.e4.
pubmed: 28285751 pmcid: 6754744 doi: 10.1016/j.jpeds.2017.02.036
Tartaglia NR, Wilson R, Miller JS, Rafalko J, Cordeiro L, Davis S, et al. Autism spectrum disorder in males with sex chromosome aneuploidy: XXY/Klinefelter syndrome, XYY, and XXYY. J Dev Behav Pediatr. 2017;38:197–207.
pubmed: 28333849 pmcid: 5423728 doi: 10.1097/DBP.0000000000000429
Samango-Sprouse CA, Stapleton E, Sadeghin T, Gropman AL. Is it all the X: familial learning dysfunction and the impact of behavioral aspects of the phenotypic presentation of XXY? Am J Med Genet C Semin Med Genet. 2013;163C:27–34.
pubmed: 23359595 doi: 10.1002/ajmg.c.31353
Kentrou V, de Veld DM, Mataw KJ, Begeer S. Delayed autism spectrum disorder recognition in children and adolescents previously diagnosed with attention-deficit/hyperactivity disorder. Autism. 2019;23:1065–72.
pubmed: 30244604 doi: 10.1177/1362361318785171
van Rijn S, Swaab H. Emotion regulation in adults with Klinefelter syndrome (47, XXY): Neurocognitive underpinnings and associations with mental health problems. J Clin Psychol. 2020;76:228–38.
pubmed: 31593332 doi: 10.1002/jclp.22871

Auteurs

Lukas Schaffer (L)

Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA.

Srishti Rau (S)

Center for Autism Spectrum Disorders and Division of Neuropsychology, Children's National Hospital, Washington, DC, USA.

Isabella G Larsen (IG)

Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA.

Liv Clasen (L)

Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA.

Allysa Warling (A)

Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA.

Ethan T Whitman (ET)

Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA.

Ajay Nadig (A)

Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA.

Cassidy McDermott (C)

Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA.

Anastasia Xenophontos (A)

Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA.

Kathleen Wilson (K)

Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA.

Jonathan Blumenthal (J)

Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA.

Erin Torres (E)

Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA.

Armin Raznahan (A)

Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA. raznahana@mail.nih.gov.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH