Beta
atrophy
kelch‐like
muscle hypertrophy
strength training
target
Journal
Scandinavian journal of medicine & science in sports
ISSN: 1600-0838
Titre abrégé: Scand J Med Sci Sports
Pays: Denmark
ID NLM: 9111504
Informations de publication
Date de publication:
Oct 2024
Oct 2024
Historique:
revised:
31
07
2024
received:
06
06
2024
accepted:
11
09
2024
medline:
5
10
2024
pubmed:
5
10
2024
entrez:
4
10
2024
Statut:
ppublish
Résumé
Skeletal muscle mass plays a pivotal role in metabolic function, but conditions such as bed rest or injury often render resistance training impractical. The beta
Substances chimiques
Adrenergic beta-2 Receptor Agonists
0
Proteome
0
Muscle Proteins
0
Receptors, Adrenergic, beta-2
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e14736Subventions
Organisme : Team Denmark
Organisme : Novo Nordisk Fonden
Informations de copyright
© 2024 The Author(s). Scandinavian Journal of Medicine & Science In Sports published by John Wiley & Sons Ltd.
Références
K. K. Baskin, B. R. Winders, and E. N. Olson, “Muscle as a “Mediator” of Systemic Metabolism,” Cell Metabolism 21, no. 2 (2015): 237–248.
R. Essery, A. W. Geraghty, S. Kirby, and L. Yardley, “Predictors of Adherence to Home‐Based Physical Therapies: A Systematic Review,” Disability and Rehabilitation 39, no. 6 (2017): 519–534.
E. Abati, A. Manini, G. P. Comi, and S. Corti, “Inhibition of Myostatin and Related Signaling Pathways for the Treatment of Muscle Atrophy in Motor Neuron Diseases,” Cellular and Molecular Life Sciences 79, no. 7 (2022): 374.
M. S. Elfellah, R. Dalling, I. M. Kantola, and J. L. Reid, “Beta‐Adrenoceptors and Human Skeletal Muscle Characterisation of Receptor Subtype and Effect of Age,” British Journal of Clinical Pharmacology 27, no. 1 (1989): 31–38.
M. Hostrup, A. Kalsen, J. Onslev, et al., “Mechanisms Underlying Enhancements in Muscle Force and Power Output During Maximal Cycle Ergometer Exercise Induced by Chronic beta2‐Adrenergic Stimulation in Men,” Journal of Applied Physiology 119, no. 5 (2015): 475–486.
S. Jessen, J. Onslev, A. Lemminger, V. Backer, J. Bangsbo, and M. Hostrup, “Hypertrophic Effect of Inhaled Beta (2)—Agonist With and Without Concurrent Exercise Training: A Randomized Controlled Trial,” Scandinavian Journal of Medicine & Science in Sports 28, no. 10 (2018): 2114–2122.
S. Jessen, A. Lemminger, V. Backer, et al., “Inhaled Formoterol Impairs Aerobic Exercise Capacity in Endurance‐Trained Individuals: A Randomised Controlled Trial,” ERJ Open Research 9, no. 2 (2023): 00643–02022.
S. Jessen, S. Reitelseder, A. Kalsen, et al., “Beta (2)‐adrenergic Agonist Salbutamol Augments Hypertrophy in MHCIIa Fibers and Sprint Mean Power Output but Not Muscle Force During 11 Weeks of Resistance Training in Young Men,” Journal of Applied Physiology 130, no. 3 (2021): 617–626.
J. Meister, D. B. J. Bone, J. R. Knudsen, et al., “Clenbuterol Exerts Antidiabetic Activity Through Metabolic Reprogramming of Skeletal Muscle Cells,” Nature Communications 13, no. 1 (2022): 22.
A. Kalinovich, N. Dehvari, A. Aslund, et al., “Treatment With a Beta‐2‐Adrenoceptor Agonist Stimulates Glucose Uptake in Skeletal Muscle and Improves Glucose Homeostasis, Insulin Resistance and Hepatic Steatosis in Mice With Diet‐Induced Obesity,” Diabetologia 63, no. 8 (2020): 1603–1615.
S. Jessen, T. Baasch‐Skytte, J. Onslev, et al., “Muscle Hypertrophic Effect of Inhaled Beta (2)—Agonist Is Associated With Augmented Insulin‐Stimulated Whole‐Body Glucose Disposal in Young Men,” Journal of Physiology 600, no. 10 (2022): 2345–2357.
E. Hansen, B. J. Landstad, K. T. Gundersen, P. A. Torjesen, and S. Svebak, “Insulin Sensitivity After Maximal and Endurance Resistance Training,” Journal of Strength and Conditioning Research 26, no. 2 (2012): 327–334.
C. S. Hughes, S. Moggridge, T. Muller, P. H. Sorensen, G. B. Morin, and J. Krijgsveld, “Single‐Pot, Solid‐Phase‐Enhanced Sample Preparation for Proteomics Experiments,” Nature Protocols 14, no. 1 (2019): 68–85.
J. D. Storey and R. Tibshirani, “Statistical Significance for Genomewide Studies,” Proceedings of the National Academy of Sciences of the United States of America 100, no. 16 (2003): 9440–9445.
C. Ludwig, L. Gillet, G. Rosenberger, S. Amon, B. C. Collins, and R. Aebersold, “Data‐Independent Acquisition‐Based SWATH‐MS for Quantitative Proteomics: A Tutorial,” Molecular Systems Biology 14, no. 8 (2018): e8126.
M. Hostrup, A. K. Lemminger, B. Stocks, et al., “High‐Intensity Interval Training Remodels the Proteome and Acetylome of Human Skeletal Muscle,” eLife 11 (2022): e69802.
T. L. Rizner and T. M. Penning, “Role of Aldo‐Keto Reductase Family 1 (AKR1) Enzymes in Human Steroid Metabolism,” Steroids 79 (2014): 49–63.
M. Hadjiargyrou, “Mustn1: A Developmentally Regulated Pan‐Musculoskeletal Cell Marker and Regulatory Gene,” International Journal of Molecular Sciences 19, no. 1 (2018): 206.
G. Liu, A. Papa, A. N. Katchman, et al., “Mechanism of Adrenergic Ca (V)1.2 Stimulation Revealed by Proximity Proteomics,” Nature 577, no. 7792 (2020): 695–700.
M. Katz, S. Subramaniam, O. Chomsky‐Hecht, et al., “Reconstitution of Beta‐Adrenergic Regulation of Ca (V)1.2: Rad‐Dependent and Rad‐Independent Protein Kinase A Mechanisms,” Proceedings of the National Academy of Sciences of the United States of America 118, no. 21 (2021): e2100021118.
A. Ferguson, L. Wang, R. B. Altman, et al., “Functional Dynamics Within the Human Ribosome Regulate the Rate of Active Protein Synthesis,” Molecular Cell 60, no. 3 (2015): 475–486.
M. F. Juette, J. D. Carelli, E. J. Rundlet, et al., “Didemnin B and Ternatin‐4 Differentially Inhibit Conformational Changes in eEF1A Required for Aminoacyl‐tRNA Accommodation Into Mammalian Ribosomes,” eLife e81608 (2022): 11.
D. S. Criswell, S. K. Powers, and R. A. Herb, “Clenbuterol‐Induced Fiber Type Transition in the Soleus of Adult Rats,” European Journal of Applied Physiology and Occupational Physiology 74, no. 5 (1996): 391–396.
A. Garg, J. O'Rourke, C. Long, et al., “KLHL40 Deficiency Destabilizes Thin Filament Proteins and Promotes Nemaline Myopathy,” Journal of Clinical Investigation 124, no. 8 (2014): 3529–3539.
V. A. Gupta, G. Ravenscroft, R. Shaheen, et al., “Identification of KLHL41 Mutations Implicates BTB‐Kelch‐Mediated Ubiquitination as an Alternate Pathway to Myofibrillar Disruption in Nemaline Myopathy,” American Journal of Human Genetics 93, no. 6 (2013): 1108–1117.
A. Ramirez‐Martinez, B. K. Cenik, S. Bezprozvannaya, et al., “KLHL41 Stabilizes Skeletal Muscle Sarcomeres by Nonproteolytic Ubiquitination,” eLife 6 (2017): e26439.
C. W. Paxton, R. A. Cosgrove, A. C. Drozd, et al., “BTB‐Kelch Protein Krp1 Regulates Proliferation and Differentiation of Myoblasts,” American Journal of Physiology. Cell Physiology 300, no. 6 (2011): C1345–C1355.
N. J. Pillon, B. M. Gabriel, L. Dollet, et al., “Transcriptomic Profiling of Skeletal Muscle Adaptations to Exercise and Inactivity,” Nature Communications 11, no. 1 (2020): 470.
C. C. Greenberg, P. S. Connelly, M. P. Daniels, and R. Horowits, “Krp1 (Sarcosin) Promotes Lateral Fusion of Myofibril Assembly Intermediates in Cultured Mouse Cardiomyocytes,” Experimental Cell Research 314, no. 5 (2008): 1177–1191.
A. Mansur, R. Joseph, E. S. Kim, et al., “Dynamic Regulation of Inter‐Organelle Communication by Ubiquitylation Controls Skeletal Muscle Development and Disease Onset,” eLife 12 (2023): e81966.
L. Moesgaard, S. Jessen, A. L. Mackey, and M. Hostrup, “Myonuclear Addition is Associated With Sex‐Specific Fiber Hypertrophy and Occurs in Relation to Fiber Perimeter Not Cross‐Sectional Area,” Journal of Applied Physiology 133, no. 3 (2022): 732–741.
M. Hostrup and J. Onslev, “The Beta (2)—Adrenergic Receptor—A Re‐Emerging Target to Combat Obesity and Induce Leanness?,” Journal of Physiology 600, no. 5 (2022): 1209–1227.
M. Hostrup, G. A. Jacobson, S. Jessen, and A. K. Lemminger, “Anabolic and Lipolytic Actions of Beta (2)—Agonists in Humans and Antidoping Challenges,” Drug Testing and Analysis 12, no. 5 (2020): 597–609.
J. G. Ryall and G. S. Lynch, “The Potential and the Pitfalls of Beta‐Adrenoceptor Agonists for the Management of Skeletal Muscle Wasting,” Pharmacology & Therapeutics 120, no. 3 (2008): 219–232.
J. G. Ryall, J. E. Church, and G. S. Lynch, “Novel Role for Ss‐Adrenergic Signalling in Skeletal Muscle Growth, Development and Regeneration,” Clinical and Experimental Pharmacology & Physiology 37, no. 3 (2010): 397–401.
S. Ito and K. Nagata, “Biology of Hsp47 (Serpin H1), A Collagen‐Specific Molecular Chaperone,” Seminars in Cell & Developmental Biology 62 (2017): 142–151.
C. R. Brightwell, C. M. Latham, N. T. Thomas, A. R. Keeble, K. A. Murach, and C. S. Fry, “A Glitch in the Matrix: The Pivotal Role for Extracellular Matrix Remodeling During Muscle Hypertrophy,” American Journal of Physiology. Cell Physiology 323, no. 3 (2022): C763–C771.
M. Kon, T. Ikeda, T. Homma, T. Akimoto, Y. Suzuki, and T. Kawahara, “Effects of Acute Hypoxia on Metabolic and Hormonal Responses to Resistance Exercise,” Medicine and Science in Sports and Exercise 42, no. 7 (2010): 1279–1285.
C. L. Skura, E. G. Fowler, G. T. Wetzel, M. Graves, and M. J. Spencer, “Albuterol Increases Lean Body Mass in Ambulatory Boys With Duchenne or Becker Muscular Dystrophy,” Neurology 70, no. 2 (2008): 137–143.
M. Kinali, E. Mercuri, M. Main, et al., “Pilot Trial of Albuterol in Spinal Muscular Atrophy,” Neurology 59, no. 4 (2002): 609–610.
J. F. Caruso, J. L. Hamill, M. Yamauchi, et al., “Albuterol Helps Resistance Exercise Attenuate Unloading‐Induced Knee Extensor Losses,” Aviation, Space, and Environmental Medicine 75, no. 6 (2004): 505–511.
R. Koopman, S. M. Gehrig, B. Leger, et al., “Cellular Mechanisms Underlying Temporal Changes in Skeletal Muscle Protein Synthesis and Breakdown During Chronic Beta‐Adrenoceptor Stimulation in Mice,” Journal of Physiology 588, no. Pt 23 (2010): 4811–4823.
C. Skagen, T. A. Nyman, X. R. Peng, et al., “Chronic Treatment With Terbutaline Increases Glucose and Oleic Acid Oxidation and Protein Synthesis in Cultured Human Myotubes,” Current Research in Pharmacology and Drug Discovery 2 (2021): 100039.
P. H. C. Mesquita, C. G. Vann, S. M. Phillips, et al., “Skeletal Muscle Ribosome and Mitochondrial Biogenesis in Response to Different Exercise Training Modalities,” Frontiers in Physiology 12 (2021): 725866.
H. A. Parry, M. D. Roberts, and A. N. Kavazis, “Human Skeletal Muscle Mitochondrial Adaptations Following Resistance Exercise Training,” International Journal of Sports Medicine 41, no. 6 (2020): 349–359.