Microbially Induced Calcium Carbonate Precipitation Using Lysinibacillus sp.: A Ureolytic Bacterium from Uttarakhand for Soil Stabilization.


Journal

Current microbiology
ISSN: 1432-0991
Titre abrégé: Curr Microbiol
Pays: United States
ID NLM: 7808448

Informations de publication

Date de publication:
04 Oct 2024
Historique:
received: 09 09 2023
accepted: 14 09 2024
medline: 5 10 2024
pubmed: 5 10 2024
entrez: 4 10 2024
Statut: epublish

Résumé

Microbially induced calcium carbonate precipitation (MICP) is a soil remediation method that has emerged as a viable and long-term solution for enhancing soil mechanical qualities. The technique of MICP that has been extensively researched is urea hydrolysis, which occurs naturally in the environment by urease-producing bacteria as part of their fundamental metabolic processes. The objectives of the current study include screening and identifying native ureolytic bacteria from soil in Uttarakhand, optimizing growth factors for increased urease activity, and calcite precipitation by the bacteria using response surface methodology. Additionally, it was assessed how well the isolated bacteria in the medium biomineralized when using synthetic media and cheaper alternatives such as cow urine and eggshell as sources of urea and Ca

Identifiants

pubmed: 39367076
doi: 10.1007/s00284-024-03899-z
pii: 10.1007/s00284-024-03899-z
doi:

Substances chimiques

Calcium Carbonate H0G9379FGK
Urea 8W8T17847W
Urease EC 3.5.1.5
Soil 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

387

Subventions

Organisme : University Grants Commission
ID : 30-561/2021(BSR)

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Wang Y, Sun X, Miao L et al (2023) State-of-the-art review of soil erosion control by MICP and EICP techniques: problems, applications, and prospects. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2023.169016
doi: 10.1016/j.scitotenv.2023.169016 pubmed: 38163610 pmcid: 10522921
George KJ, Kumar S, Hole RM (2021) Geospatial modelling of soil erosion and risk assessment in Indian Himalayan region—a study of Uttarakhand state. Environ Adv 4:100039. https://doi.org/10.1016/J.ENVADV.2021.100039
doi: 10.1016/J.ENVADV.2021.100039
Swarnkar S, Malini A, Tripathi S, Sinha R (2018) Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: an application to the Garra River basin, India. Hydrol Earth Syst Sci 22:2471–2485. https://doi.org/10.5194/HESS-22-2471-2018
doi: 10.5194/HESS-22-2471-2018
Sati SP, Sundriyal YP, Rana N, Dangwal S (2011) Recent landslides in Uttarakhand: nature’s fury or human folly. Comment Curr Sci 100:1617–1620
Omoregie AI, Khoshdelnezamiha G, Senian N et al (2017) Experimental optimisation of various cultural conditions on urease activity for isolated Sporosarcina pasteurii strains and evaluation of their biocement potentials. Ecolo Eng 109:65–75. https://doi.org/10.1016/j.ecoleng.2017.09.012
doi: 10.1016/j.ecoleng.2017.09.012
Achal V, Pan X (2011) Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation. Curr Microbiol 62:894–902. https://doi.org/10.1007/s00284-010-9801-4
doi: 10.1007/s00284-010-9801-4 pubmed: 21046391
Omoregie AI, Palombo EA, Nissom PM (2020) Bioprecipitation of calcium carbonate mediated by ureolysis: a review. Environ Eng Res 26:200379. https://doi.org/10.4491/eer.2020.379
doi: 10.4491/eer.2020.379
Montaño-Salazar SM, Lizarazo-Marriaga J, Brandão PFB (2018) Isolation and potential biocementation of calcite precipitation inducing bacteria from Colombian buildings. Curr Microbiol 75:256–265. https://doi.org/10.1007/s00284-017-1373-0
doi: 10.1007/s00284-017-1373-0 pubmed: 29043388
Ribeiro C, Fonyo C, Cardoso C et al (2020) Microbiologically induced calcite precipitation biocementation, green alternative for roads is this the breakthrough ? a critical review. J Clean Prod 262:121372. https://doi.org/10.1016/j.jclepro.2020.121372
doi: 10.1016/j.jclepro.2020.121372
Marín S, Cabestrero O, Demergasso C et al (2021) An indigenous bacterium with enhanced performance of microbially-induced Ca-carbonate biomineralization under extreme alkaline conditions for concrete and soil-improvement industries. Acta Biomater 120:304–317. https://doi.org/10.1016/j.actbio.2020.11.016
doi: 10.1016/j.actbio.2020.11.016 pubmed: 33212232
Osinubi KJ, Eberemu AO, Ijimdiya TS et al (2020) Review of the use of microorganisms in geotechnical engineering applications. SN Appl Sci 2:207. https://doi.org/10.1007/s42452-020-1974-2
doi: 10.1007/s42452-020-1974-2
Mekonnen E, Kebede A, Nigussie A et al (2021) Isolation and characterization of urease-producing soil bacteria. Int J Microbiol. https://doi.org/10.1155/2021/8888641
doi: 10.1155/2021/8888641 pubmed: 34335782 pmcid: 8286177
Leeprasert L, Chonudomkul D, Boonmak C (2022) Biocalcifying potential of ureolytic bacteria isolated from soil for biocementation and material crack repair. Microorganisms 10:963. https://doi.org/10.3390/microorganisms10050963
doi: 10.3390/microorganisms10050963 pubmed: 35630407 pmcid: 9143465
Dubey AA, Ravi K, Mukherjee A et al (2021) (2021) Biocementation mediated by native microbes from Brahmaputra riverbank for mitigation of soil erodibility. Sci Rep 111(11):1–15. https://doi.org/10.1038/s41598-021-94614-6
doi: 10.1038/s41598-021-94614-6
Omoregie AI, Ong DEL, Nissom PM (2019) Assessing ureolytic bacteria with calcifying abilities isolated from limestone caves for biocalcification. Lett Appl Microbiol 68:173–181. https://doi.org/10.1111/lam.13103
doi: 10.1111/lam.13103 pubmed: 30537001
Phang IRK, Chan YS, Wong KS, Lau SY (2018) Isolation and characterization of urease-producing bacteria from tropical peat. Biocatal Agric Biotechnol 13:168–175. https://doi.org/10.1016/j.bcab.2017.12.006
doi: 10.1016/j.bcab.2017.12.006
Nathan VK, Vijayan J, Parvathi A (2020) Optimization of urease production by Bacillus halodurans PO15: a mangrove bacterium from Poovar mangroves, India. Mar Life Sci Technol 2:194–202. https://doi.org/10.1007/s42995-020-00031-5
doi: 10.1007/s42995-020-00031-5
Zhu S, Hu X, Zhao Y et al (2020) Coal dust consolidation using calcium carbonate precipitation induced by treatment with mixed cultures of urease-producing bacteria. Water Air Soil Pollut 231:1–16. https://doi.org/10.1007/s11270-020-04815-4
doi: 10.1007/s11270-020-04815-4
Whiffin VS (2004) Microbial CaCO
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/S0021-9258(19)52451-6
doi: 10.1016/S0021-9258(19)52451-6 pubmed: 14907713
Kumar S, Stecher G, Peterson D, Tamura K (2012) MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. Bioinformatics 28:2685–2686. https://doi.org/10.1093/bioinformatics/bts507
doi: 10.1093/bioinformatics/bts507 pubmed: 22923298 pmcid: 3467750
Cui F, Zhao L (2012) Optimization of xylanase production from Penicillium sp.WX-Z1 by a two-step statistical strategy: Plackett-Burman and Box-Behnken experimental design. Int J Mol Sci 13:10630–10646. https://doi.org/10.3390/IJMS130810630
doi: 10.3390/IJMS130810630 pubmed: 22949884 pmcid: 3431882
Konstantinou C, Wang Y, Biscontin G, Soga K (2021) The role of bacterial urease activity on the uniformity of carbonate precipitation profiles of bio-treated coarse sand specimens. Sci Rep 11:6161. https://doi.org/10.1038/s41598-021-85712-6
doi: 10.1038/s41598-021-85712-6 pubmed: 33731790 pmcid: 7969948
Rahmaninezhad SA, Farnam YA, Schauer CL et al (2022) Influence of culturing media components on the growth and microbial induced calcium carbonate precipitation (MICP) activity of Lysinibacillus sphaericus. Biorxiv. https://doi.org/10.1101/2022.05.23.493178
doi: 10.1101/2022.05.23.493178
Seifan M, Samani AK, Berenjian A (2016) Induced calcium carbonate precipitation using Bacillus species. Appl Microbiol Biotechnol 100:9895–9906. https://doi.org/10.1007/S00253-016-7701-7
doi: 10.1007/S00253-016-7701-7 pubmed: 27392449
Kumari M, Gupta SK (2019) Response surface methodological (RSM) approach for optimizing the removal of trihalomethanes (THMs) and its precursor’s by surfactant modified magnetic nanoadsorbents (sMNP)—an endeavor to diminish probable cancer risk. Sci Rep 99:1–11. https://doi.org/10.1038/s41598-019-54902-8
doi: 10.1038/s41598-019-54902-8
Choi S-G, Wu S, Chu J (2016) Biocementation for sand using an eggshell as calcium source. J Geotech Geoenviron Eng 142:06016010. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001534
doi: 10.1061/(ASCE)GT.1943-5606.0001534
Liang S, Chen J, Niu J et al (2019) Using recycled calcium sources to solidify sandy soil through microbial induced carbonate precipitation. Mar Geores Geotechnol 38:393–399. https://doi.org/10.1080/1064119X.2019.1575939
doi: 10.1080/1064119X.2019.1575939
Murugan R, Suraishkumar GK, Mukherjee A, Dhami NK (2021) Influence of native ureolytic microbial community on biocementation potential of Sporosarcina pasteurii. Sci Rep 111:1–12. https://doi.org/10.1038/s41598-021-00315-5
doi: 10.1038/s41598-021-00315-5
Chu J, Stabnikov V, Ivanov V (2012) Microbially induced calcium carbonate precipitation on surface or in the bulk of soil. Geomicrobiol J 29:544–549. https://doi.org/10.1080/01490451.2011.592929
doi: 10.1080/01490451.2011.592929
Yarbaşı N, Kalkan E, Kartal HO (2023) The effect of curing time and temperature change on strength in high plasticity clay soils reinforced with waste egg shell powder. Geotech Geol Eng. https://doi.org/10.1007/s10706-022-02289-1
doi: 10.1007/s10706-022-02289-1
Langenfeld NJ, Payne LE, Bugbee B (2021) Colorimetric determination of urea using diacetyl monoxime with strong acids. PLoS ONE. https://doi.org/10.1371/journal.pone.0259760
doi: 10.1371/journal.pone.0259760 pubmed: 34748601 pmcid: 8575183
Bhardwaj S, Khanna DR, Ruhela M et al (2020) Assessment of the soil quality of Haridwar Uttarakhand India: a comparative study. Environ Conserv J 21:155–164. https://doi.org/10.36953/ECJ.2020.21319
doi: 10.36953/ECJ.2020.21319
Singh V, Agrawal HM (2012) Qualitative soil mineral analysis by EDXRF, XRD and AAS probes. Radiat Phys Chem 81:1796–1803. https://doi.org/10.1016/j.radphyschem.2012.07.002
doi: 10.1016/j.radphyschem.2012.07.002
Tang CS, Yin LY, Jiang NJ et al (2020) Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environ Earth Sci 79:1–23. https://doi.org/10.1007/s12665-020-8840-9
doi: 10.1007/s12665-020-8840-9
Wang YJ, Han XL, Jiang NJ et al (2020) The effect of enrichment media on the stimulation of native ureolytic bacteria in calcareous sand. Int J Environ Sci Technol 17:1795–1808. https://doi.org/10.1007/s13762-019-02541-x
doi: 10.1007/s13762-019-02541-x
Gupta S, Thapliyal P, Shah V, Daverey A (2022) Optimization of bio-calcification process for a newly isolated urease producing bacterial strain Advenelle sp. AV1. Geomicrobiol J 39:242–248. https://doi.org/10.1080/01490451.2021.1980920
doi: 10.1080/01490451.2021.1980920
Xu JM, Lu C, Wang WJ et al (2022) Strain screening and particle formation: a Lysinibacillus boronitolerans for self-healing concrete. Appl Environ Microbiol 88:e00804-e822. https://doi.org/10.1128/aem.00804-22
doi: 10.1128/aem.00804-22 pubmed: 36036598 pmcid: 9499011
Gowthaman S, Iki T, Nakashima K et al (2019) Feasibility study for slope soil stabilization by microbial induced carbonate precipitation (MICP) using indigenous bacteria isolated from cold subarctic region. SN Appl Sci 1:1–16. https://doi.org/10.1007/s42452-019-1508-y
doi: 10.1007/s42452-019-1508-y
Ekprasert J, Fongkaew I, Chainakun P et al (2020) Investigating mechanical properties and biocement application of CaCO
doi: 10.1038/s41598-020-73217-7 pubmed: 33303944 pmcid: 7730141
Farrugia C, Borg RP, Ferrara L, Buhagiar J (2019) The application of Lysinibacillus sphaericus for surface treatment and crack healing in mortar. Front Built Environ 5:443720. https://doi.org/10.3389/fbuil.2019.00062
doi: 10.3389/fbuil.2019.00062
Lee YS, Kim HJ, Park W (2017) Non-ureolytic calcium carbonate precipitation by Lysinibacillus sp. YS11 isolated from the rhizosphere of Miscanthus sacchariflorus. J Microbiol 55:440–447. https://doi.org/10.1007/s12275-017-7086-z
doi: 10.1007/s12275-017-7086-z pubmed: 28551875
Sastri BN, Sreenivasaya M (1936) Conductometric determination of enzyme activity. Ind Eng Chem—Anal Ed 8:458–459. https://doi.org/10.1021/AC50104A019/ASSET/AC50104A019.FP.PNG_V03
doi: 10.1021/AC50104A019/ASSET/AC50104A019.FP.PNG_V03
Krishnan V, Khodadadi Tirkolaei H, Kavazanjian E (2023) An improved method for determining urease activity from electrical conductivity measurements. ACS Omega 8:13791–13798. https://doi.org/10.1021/acsomega.2c08152
doi: 10.1021/acsomega.2c08152 pubmed: 37091411 pmcid: 10116633
Soon NW, Lee LM, Khun TC, Ling HS (2013) Improvements in engineering properties of soils through microbial-induced calcite precipitation. KSCE J Civil Eng 17:718–728. https://doi.org/10.1007/s12205-013-0149-8
doi: 10.1007/s12205-013-0149-8
Liu L, Liu H, Xiao Y et al (2018) Biocementation of calcareous sand using soluble calcium derived from calcareous sand. Bull Eng Geol Environ 77:1781–1791. https://doi.org/10.1007/s10064-017-1106-4
doi: 10.1007/s10064-017-1106-4
Peng J, Liu Z (2019) Influence of temperature on microbially induced calcium carbonate precipitation for soil treatment. PLoS ONE 14:e0218396. https://doi.org/10.1371/JOURNAL.PONE.0218396
doi: 10.1371/JOURNAL.PONE.0218396 pubmed: 31211807 pmcid: 6581288
Bartter J, Diffey H, Yeung YH et al (2018) Use of chicken eggshell to improve dietary calcium intake in rural sub-Saharan Africa. Matern Child Nutr 14:e12649. https://doi.org/10.1111/MCN.12649
doi: 10.1111/MCN.12649 pubmed: 30332539 pmcid: 6221107
Ajayan N, Shahanamol KP, Arun AU, Soman S (2020) Quantitative variation in calcium carbonate content in shell of different chicken and duck varieties. Adv Zool Bot 8:1–5. https://doi.org/10.13189/azb.2020.080101
doi: 10.13189/azb.2020.080101
Kulanthaivel P, Soundara B, Selvakumar S, Das A (2022) Application of waste eggshell as a source of calcium in bacterial bio-cementation to enhance the engineering characteristics of sand. Environ Sci Pollut Res 29:66450–66461. https://doi.org/10.1007/s11356-022-20484-8
doi: 10.1007/s11356-022-20484-8
Dayakar P, Raman KV, Arunya A, Venkatakrishnaiah R (2019) Study on strength properties of sand by biocementation with eggshell. Int J Civ Eng Technol 10:2770–2785
Chen HJ, Huang YH, Chen CC et al (2019) Microbial induced calcium carbonate precipitation (MICP) using pig urine as an alternative to industrial urea. Waste Biomass Valori 10:2887–2895. https://doi.org/10.1007/s12649-018-0324-8
doi: 10.1007/s12649-018-0324-8
Comadran-Casas C, Schaschke CJ, Akunna JC, Jorat ME (2022) Cow urine as a source of nutrients for microbial-induced calcite precipitation in sandy soil. J Environ Manage 304:114307. https://doi.org/10.1016/j.jenvman.2021.114307
doi: 10.1016/j.jenvman.2021.114307 pubmed: 34942547
Ruiz Brandão da Costa B, Roberto da Silva R, Luiz Caleffo Piva Bigão V, et al (2019) Fermentation of cow urine collected from Ngabab Village, Malang: Its potential as liquid fertilizer. IOP Conf Ser Earth Environ Sci 239:012029. https://doi.org/10.1088/1755-1315/239/1/012029
Dijkstra J, Oenema O, van Groenigen JW et al (2013) Diet effects on urine composition of cattle and N
doi: 10.1017/S1751731113000578 pubmed: 23739471
Konstantinou C, Biscontin G, Jiang NJ, Soga K (2021) Application of microbially induced carbonate precipitation to form bio-cemented artificial sandstone. J Rock Mech Geotech Eng 13:579–592. https://doi.org/10.1016/j.jrmge.2021.01.010
doi: 10.1016/j.jrmge.2021.01.010

Auteurs

Aparna Ganapathy Vilasam Sreekala (AGV)

School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thirumalasamudram, Thanjavur, Tamil Nadu, 613 401, India.

Sreelakshmi Nair (S)

School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thirumalasamudram, Thanjavur, Tamil Nadu, 613 401, India.

Vinod Kumar Nathan (VK)

School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thirumalasamudram, Thanjavur, Tamil Nadu, 613 401, India. nvkibt@gmail.com.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Aspergillus Hydrogen-Ion Concentration Coculture Techniques Secondary Metabolism Streptomyces rimosus
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Nigeria Environmental Monitoring Solid Waste Waste Disposal Facilities Refuse Disposal

Classifications MeSH