Escherichia coli induced matrix metalloproteinase-9 activity and type IV collagen degradation is regulated by progesterone in human maternal decidual.
Escherichia coli
Chorioamnionitis
Human maternal decidua
Matrix metalloproteinases
Progesterone
Type IV collagen
Journal
BMC pregnancy and childbirth
ISSN: 1471-2393
Titre abrégé: BMC Pregnancy Childbirth
Pays: England
ID NLM: 100967799
Informations de publication
Date de publication:
04 Oct 2024
04 Oct 2024
Historique:
received:
22
06
2024
accepted:
20
09
2024
medline:
5
10
2024
pubmed:
5
10
2024
entrez:
4
10
2024
Statut:
epublish
Résumé
Escherichia coli (E. coli) is one of the main bacteria associated with preterm premature rupture of membranes by increasing pro-matrix metalloproteinase 9 (proMMP-9) and degradation of type IV collagen in human feto-maternal interface (HFMi). proMMP-9 is regulated by progesterone (P4) but it is unclear whether P4 inhibits proMMP in human maternal decidual (MDec). This study aimed to determine a role of P4 on proMMP-2 and - 9 and type IV collagen induced by E. coli infection in MDec. Nine HFMi were mounted in a Transwell system. MDec was stimulated with P4 or E. coli for 3-, 6-, or 24-hours. proMMP-2, -9 and type IV collagen were assessed. Gelatin zymography revealed an increase in proMMP-9 after 3, 6, and 24 h of stimulating MDec with E. coli. Using immunofluorescence, it was confirmed the increase in the HFMi tissue and a reduction on the amount of type IV collagen leading to the separation of fetal amniochorion and MDEc. The degradative activity of proMMP-9 was reduced by 20% by coincubation with P4. P4 modulates the activity of proMMP-9 induced by E. coli stimulation but it was unable to completely reverse the degradation of type IV collagen in human MDec tissue.
Sections du résumé
BACKGROUND
BACKGROUND
Escherichia coli (E. coli) is one of the main bacteria associated with preterm premature rupture of membranes by increasing pro-matrix metalloproteinase 9 (proMMP-9) and degradation of type IV collagen in human feto-maternal interface (HFMi). proMMP-9 is regulated by progesterone (P4) but it is unclear whether P4 inhibits proMMP in human maternal decidual (MDec). This study aimed to determine a role of P4 on proMMP-2 and - 9 and type IV collagen induced by E. coli infection in MDec.
METHODS
METHODS
Nine HFMi were mounted in a Transwell system. MDec was stimulated with P4 or E. coli for 3-, 6-, or 24-hours. proMMP-2, -9 and type IV collagen were assessed.
RESULTS
RESULTS
Gelatin zymography revealed an increase in proMMP-9 after 3, 6, and 24 h of stimulating MDec with E. coli. Using immunofluorescence, it was confirmed the increase in the HFMi tissue and a reduction on the amount of type IV collagen leading to the separation of fetal amniochorion and MDEc. The degradative activity of proMMP-9 was reduced by 20% by coincubation with P4.
CONCLUSIONS
CONCLUSIONS
P4 modulates the activity of proMMP-9 induced by E. coli stimulation but it was unable to completely reverse the degradation of type IV collagen in human MDec tissue.
Identifiants
pubmed: 39367340
doi: 10.1186/s12884-024-06847-8
pii: 10.1186/s12884-024-06847-8
doi:
Substances chimiques
Progesterone
4G7DS2Q64Y
Matrix Metalloproteinase 9
EC 3.4.24.35
Collagen Type IV
0
MMP9 protein, human
EC 3.4.24.35
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
645Subventions
Organisme : Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Ciudad de México, México.
ID : 2017-2-82
Informations de copyright
© 2024. The Author(s).
Références
Gimeno-Molina B, Muller I, Kropf P, Sykes L. The role of neutrophils in pregnancy, term and Preterm Labour. Life (Basel). 2022;12(10).
Gomez-Lopez N, Romero R, Xu Y, Miller D, Leng Y, Panaitescu B, Silva P, Faro J, Alhousseini A, Gill N, et al. The immunophenotype of amniotic fluid leukocytes in normal and complicated pregnancies. Am J Reprod Immunol. 2018;79(4):e12827.
pubmed: 29500850
pmcid: 5951617
doi: 10.1111/aji.12827
Lal CV, Xu X, Jackson P, Atkinson TP, Faye-Petersen OM, Kandasamy J, Waites K, Biggio JR, Gaggar A, Ambalavanan N. Ureaplasma infection-mediated release of matrix metalloproteinase-9 and PGP: a novel mechanism of preterm rupture of membranes and chorioamnionitis. Pediatr Res. 2017;81(1–1):75–9.
pubmed: 27632777
doi: 10.1038/pr.2016.176
Mercnik MH, Schliefsteiner C, Fluhr H, Wadsack C. Placental macrophages present distinct polarization pattern and effector functions depending on clinical onset of preeclampsia. Front Immunol. 2022;13:1095879.
pubmed: 36713449
doi: 10.3389/fimmu.2022.1095879
Ostanin AA, Petrovskii YL, Shevela EY, Chernykh ER. Multiplex analysis of cytokines, chemokines, growth factors, MMP-9 and TIMP-1 produced by human bone marrow, adipose tissue, and placental mesenchymal stromal cells. Bull Exp Biol Med. 2011;151(1):133–41.
pubmed: 22442819
doi: 10.1007/s10517-011-1275-2
Tossetta G, Fantone S, Busilacchi EM, Di Simone N, Giannubilo SR, Scambia G, Giordano A, Marzioni D. Modulation of matrix metalloproteases by ciliary neurotrophic factor in human placental development. Cell Tissue Res. 2022;390(1):113–29.
pubmed: 35794391
pmcid: 9525382
doi: 10.1007/s00441-022-03658-1
Carvalho NS, Moron AF, Witkin SS, Menon R, Cavalheiro S, Barbosa MM, Milani HJ, Sarmento SG, Ishigai MM. Histological response and expression of collagen, metalloproteinases MMP-1 and MMP-9 and tissue inhibitors of metalloproteinases TIMP-1 and TIMP-2 in fetal membranes following open intrauterine surgery: an experimental study. J Matern Fetal Neonatal Med. 2022;35(7):1301–9.
pubmed: 32295446
doi: 10.1080/14767058.2020.1752654
Flores-Herrera H, Garcia-Lopez G, Diaz NF, Molina-Hernandez A, Osorio-Caballero M, Soriano-Becerril D, Zaga-Clavellina V. An experimental mixed bacterial infection induced differential secretion of proinflammatory cytokines (IL-1beta, TNFalpha) and proMMP-9 in human fetal membranes. Placenta. 2012;33(4):271–7.
pubmed: 22280559
doi: 10.1016/j.placenta.2012.01.007
Litwiniuk M, Radowicka M, Krejner A, Wielgos M, Grzela T. The MMP-9/TIMP-1 imbalance and the reduced level of TGF-beta in the cervical area of amniotic membrane is a possible risk factor of PROM and premature labor - proof-of-concept study. Ginekol Pol. 2017;88(7):379–84.
pubmed: 28819943
doi: 10.5603/GP.a2017.0071
Zuo G, Dong JX, Zhao FF, Chen Y. Expression of matrix metalloproteinase-9 and its substrate level in patients with premature rupture of membranes. J Obstet Gynaecol. 2017;37(4):441–5.
pubmed: 28421903
doi: 10.1080/01443615.2016.1250734
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuna JM, Perez-Romero BA, Guerrero-Rodriguez JF, Martinez-Avila N, Martinez-Fierro ML. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci. 2020;21(24).
Moore CS, Crocker SJ. An alternate perspective on the roles of TIMPs and MMPs in pathology. Am J Pathol. 2012;180(1):12–6.
pubmed: 22033229
doi: 10.1016/j.ajpath.2011.09.008
Haram K, Mortensen JH, Myking O, Magann EF, Morrison JC. The role of oxidative stress, adhesion molecules and antioxidants in Preeclampsia. Curr Hypertens Rev. 2019;15(2):105–12.
pubmed: 30663572
doi: 10.2174/1573402115666190119163942
Parray A, Ma Y, Alam M, Akhtar N, Salam A, Mir F, Qadri S, Pananchikkal SV, Priyanka R, Kamran S, et al. An increase in AMPK/e-NOS signaling and attenuation of MMP-9 may contribute to remote ischemic perconditioning associated neuroprotection in rat model of focal ischemia. Brain Res. 2020;1740:146860.
pubmed: 32353433
doi: 10.1016/j.brainres.2020.146860
Xuan RR, Niu TT, Chen HM. Astaxanthin blocks preeclampsia progression by suppressing oxidative stress and inflammation. Mol Med Rep. 2016;14(3):2697–704.
pubmed: 27484589
doi: 10.3892/mmr.2016.5569
Bruschi M, Bartolucci M, Petretto A, Buffelli F, Kajana X, Parodi A, Carbone R, Fulcheri E, Ramenghi LA, Panfoli I, et al. Proteomic profiling of human amnion for preterm birth biomarker discovery. Sci Rep. 2021;11(1):23144.
pubmed: 34848816
pmcid: 8633292
doi: 10.1038/s41598-021-02587-3
Rood KM, Buhimschi IA, Rodewald Millen K, Bahtiyar MO, Thung S, Summerfield T, Zhao G, Ackerman Wt, Shellhaas C, Samuels P, et al. Evidence for participation of neutrophil gelatinase-associated lipocalin/matrix metalloproteinase-9 (NGAL*MMP-9) complex in the inflammatory response to infection in pregnancies complicated by preterm birth. Am J Reprod Immunol. 2016;76(2):108–17.
pubmed: 27251223
pmcid: 4942349
doi: 10.1111/aji.12523
Singh D, Rai V, Agrawal DK. Regulation of collagen I and Collagen III in tissue Injury and Regeneration. Cardiol Cardiovasc Med. 2023;7(1):5–16.
pubmed: 36776717
pmcid: 9912297
doi: 10.26502/fccm.92920302
Woessner JF Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991;5(8):2145–54.
Kargozaran H, Yuan SY, Breslin JW, Watson KD, Gaudreault N, Breen A, Wu MH. A role for endothelial-derived matrix metalloproteinase-2 in breast cancer cell transmigration across the endothelial-basement membrane barrier. Clin Exp Metastasis. 2007;24(7):495–502.
pubmed: 17653824
doi: 10.1007/s10585-007-9086-6
Fuentes-Zacarias P, Arzate-Castaneda DA, Sosa-Gonzalez I, Villeda-Gabriel G, Morales-Mendez I, Osorio-Caballero M, Helguera-Repetto AC, Diaz FN, Garcia-Lopez G, Flores-Herrera O, et al. Pseudomonas aeruginosa induces spatio-temporal secretion of IL-1beta, TNFalpha, proMMP-9, and reduction of epithelial E-cadherin in human alveolar epithelial type II (A549) cells. Acta Biochim Pol. 2021;68(2):207–15.
pubmed: 33945245
Nawrocki-Raby B, Gilles C, Polette M, Martinella-Catusse C, Bonnet N, Puchelle E, Foidart JM, Van Roy F, Birembaut P. E-Cadherin mediates MMP down-regulation in highly invasive bronchial tumor cells. Am J Pathol. 2003;163(2):653–61.
pubmed: 12875984
pmcid: 1868220
doi: 10.1016/S0002-9440(10)63692-9
Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta. 2010;1803(1):55–71.
pubmed: 20080133
pmcid: 2853873
doi: 10.1016/j.bbamcr.2010.01.003
Laronha H, Caldeira J. Structure and function of human matrix metalloproteinases. Cells. 2020;9(5).
Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92(8):827–39.
pubmed: 12730128
doi: 10.1161/01.RES.0000070112.80711.3D
Cui N, Hu M, Khalil RA. Biochemical and biological attributes of Matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017;147:1–73.
pubmed: 28413025
pmcid: 5430303
doi: 10.1016/bs.pmbts.2017.02.005
Bryant-Greenwood GD. The extracellular matrix of the human fetal membranes: structure and function. Placenta. 1998;19(1):1–11.
pubmed: 9481779
doi: 10.1016/S0143-4004(98)90092-3
Fortunato SJ, Menon R. Screening of novel matrix metalloproteinases (MMPs) in human fetal membranes. J Assist Reprod Genet. 2002;19(10):483–6.
pubmed: 12416653
pmcid: 3455681
doi: 10.1023/A:1020362519981
Hieber AD, Corcino D, Motosue J, Sandberg LB, Roos PJ, Yu SY, Csiszar K, Kagan HM, Boyd CD, Bryant-Greenwood GD. Detection of elastin in the human fetal membranes: proposed molecular basis for elasticity. Placenta. 1997;18(4):301–12.
pubmed: 9179924
doi: 10.1016/S0143-4004(97)80065-3
Takashima S, Yasuo M, Sanzen N, Sekiguchi K, Okabe M, Yoshida T, Toda A, Nikaido T. Characterization of laminin isoforms in human amnion. Tissue Cell. 2008;40(2):75–81.
pubmed: 18291433
doi: 10.1016/j.tice.2007.09.001
Shi JW, Lai ZZ, Yang HL, Yang SL, Wang CJ, Ao D, Ruan LY, Shen HH, Zhou WJ, Mei J, et al. Collagen at the maternal-fetal interface in human pregnancy. Int J Biol Sci. 2020;16(12):2220–34.
pubmed: 32549767
pmcid: 7294936
doi: 10.7150/ijbs.45586
Gomez-Lopez N, Garcia-Flores V, Chin PY, Groome HM, Bijland MT, Diener KR, Romero R, Robertson SA. Macrophages exert homeostatic actions in pregnancy to protect against preterm birth and fetal inflammatory injury. JCI Insight. 2021;6(19).
Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol. 2011;3(1):a004978.
pubmed: 21421911
pmcid: 3003457
doi: 10.1101/cshperspect.a004978
Richardson L, Menon R. Fetal membrane at the feto-maternal interface: an underappreciated and understudied intrauterine tissue. Placenta Reprod Med. 2022;1.
Richardson LS, Vargas G, Brown T, Ochoa L, Sheller-Miller S, Saade GR, Taylor RN, Menon R. Discovery and characterization of human amniochorionic membrane microfractures. Am J Pathol. 2017;187(12):2821–30.
pubmed: 28939208
pmcid: 5718093
doi: 10.1016/j.ajpath.2017.08.019
Yang F, Zheng Q, Jin L. Dynamic function and composition changes of Immune cells during normal and pathological pregnancy at the maternal-fetal interface. Front Immunol. 2019;10:2317.
pubmed: 31681264
pmcid: 6813251
doi: 10.3389/fimmu.2019.02317
Oefner CM, Sharkey A, Gardner L, Critchley H, Oyen M, Moffett A. Collagen type IV at the fetal-maternal interface. Placenta. 2015;36(1):59–68.
pubmed: 25465704
pmcid: 4302218
doi: 10.1016/j.placenta.2014.10.012
Fortunato SJ, Menon R, Lombardi SJ. MMP/TIMP imbalance in amniotic fluid during PROM: an indirect support for endogenous pathway to membrane rupture. J Perinat Med. 1999;27(5):362–8.
pubmed: 10642956
doi: 10.1515/JPM.1999.049
Geng J, Huang C, Jiang S. Roles and regulation of the matrix metalloproteinase system in parturition. Mol Reprod Dev. 2016;83(4):276–86.
pubmed: 26888468
doi: 10.1002/mrd.22626
Moore RM, Mansour JM, Redline RW, Mercer BM, Moore JJ. The physiology of fetal membrane rupture: insight gained from the determination of physical properties. Placenta. 2006;27(11–12):1037–51.
pubmed: 16516962
doi: 10.1016/j.placenta.2006.01.002
Diao H, Aplin JD, Xiao S, Chun J, Li Z, Chen S, Ye X. Altered spatiotemporal expression of collagen types I, III, IV, and VI in Lpar3-deficient peri-implantation mouse uterus. Biol Reprod. 2011;84(2):255–65.
pubmed: 20864640
doi: 10.1095/biolreprod.110.086942
Iwahashi M, Muragaki Y, Ooshima A, Nakano R. Decreased type IV collagen expression by human decidual tissues in spontaneous abortion. J Clin Endocrinol Metab. 1996;81(8):2925–9.
pubmed: 8768853
Lin C, He H, Cui N, Ren Z, Zhu M, Khalil RA. Decreased uterine vascularization and uterine arterial expansive remodeling with reduced matrix metalloproteinase-2 and – 9 in hypertensive pregnancy. Am J Physiol Heart Circ Physiol. 2020;318(1):H165–80.
pubmed: 31834839
doi: 10.1152/ajpheart.00602.2019
Yong HE, Murthi P, Borg A, Kalionis B, Moses EK, Brennecke SP, Keogh RJ. Increased decidual mRNA expression levels of candidate maternal pre-eclampsia susceptibility genes are associated with clinical severity. Placenta. 2014;35(2):117–24.
pubmed: 24331737
doi: 10.1016/j.placenta.2013.11.008
Chaemsaithong P, Romero R, Docheva N, Chaiyasit N, Bhatti G, Pacora P, Hassan SS, Yeo L, Erez O. Comparison of rapid MMP-8 and interleukin-6 point-of-care tests to identify intra-amniotic inflammation/infection and impending preterm delivery in patients with preterm labor and intact membranes(). J Matern Fetal Neonatal Med. 2018;31(2):228–44.
pubmed: 28081646
doi: 10.1080/14767058.2017.1281904
Delorme P, Lorthe E, Sibiude J, Kayem G. Preterm and term prelabour rupture of membranes: a review of timing and methods of labour induction. Best Pract Res Clin Obstet Gynaecol. 2021;77:27–41.
pubmed: 34538740
doi: 10.1016/j.bpobgyn.2021.08.009
Kim CJ, Romero R, Chaemsaithong P, Chaiyasit N, Yoon BH, Kim YM. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am J Obstet Gynecol. 2015;213(4 Suppl):S29–52.
pubmed: 26428501
pmcid: 4774647
doi: 10.1016/j.ajog.2015.08.040
Nguyen LM, Aronoff DM, Eastman AJ. Matrix metalloproteinases in preterm prelabor rupture of membranes in the setting of chorioamnionitis: a scoping review. Am J Reprod Immunol. 2023;89(1):e13642.
pubmed: 36300889
doi: 10.1111/aji.13642
Bennett PR, Brown RG, MacIntyre DA. Vaginal microbiome in Preterm rupture of membranes. Obstet Gynecol Clin North Am. 2020;47(4):503–21.
pubmed: 33121642
doi: 10.1016/j.ogc.2020.08.001
Yan C, Hong F, Xin G, Duan S, Deng X, Xu Y. Alterations in the vaginal microbiota of patients with preterm premature rupture of membranes. Front Cell Infect Microbiol. 2022;12:858732.
pubmed: 36004326
pmcid: 9393476
doi: 10.3389/fcimb.2022.858732
Choltus H, Lavergne M, De Sousa Do Outeiro C, Coste K, Belville C, Blanchon L, Sapin V. Pathophysiological implication of pattern recognition receptors in fetal membranes rupture: RAGE and NLRP inflammasome. Biomedicines. 2021;9(9).
Rasheed ZBM, Lee YS, Kim SH, Rai RK, Ruano CSM, Anucha E, Sullivan MHF, MacIntyre DA, Bennett PR, Sykes L. Differential response of gestational tissues to TLR3 viral priming prior to exposure to bacterial TLR2 and TLR2/6 agonists. Front Immunol. 2020;11:1899.
pubmed: 32983111
pmcid: 7477080
doi: 10.3389/fimmu.2020.01899
Kim HJ, Park KH, Joo E, Lee MJ, Choi BY. Potential of plasma inflammatory and angiogenic mediators for predicting spontaneous preterm delivery, intraamniotic infection/inflammation, and composite neonatal morbidity/mortality in women with early preterm premature rupture of membranes. Am J Reprod Immunol. 2024;91(1):e13809.
pubmed: 38282599
doi: 10.1111/aji.13809
Dayal S, Hong PL. Premature Rupture of Membranes. In: StatPearls. edn. Treasure Island (FL) ineligible companies. Disclosure: Peter Hong declares no relevant financial relationships with ineligible companies; 2023.
Fulova V, Pilka R. Preterm premature rupture of membranes. Ceska Gynekol. 2023;88(1):27–32.
pubmed: 36858971
doi: 10.48095/cccg202327
Rayburn WF. Premature rupture of membranes: the most common factor leading to Preterm Birth. Obstet Gynecol Clin North Am. 2020;47(4):xi–xii.
pubmed: 33121653
doi: 10.1016/j.ogc.2020.09.003
Tchirikov M, Schlabritz-Loutsevitch N, Maher J, Buchmann J, Naberezhnev Y, Winarno AS, Seliger G. Mid-trimester preterm premature rupture of membranes (PPROM): etiology, diagnosis, classification, international recommendations of treatment options and outcome. J Perinat Med. 2018;46(5):465–88.
pubmed: 28710882
doi: 10.1515/jpm-2017-0027
Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84.
pubmed: 18177778
pmcid: 7134569
doi: 10.1016/S0140-6736(08)60074-4
Gulersen M, Lenchner E, Nicolaides KH, Otsuki K, Rust OA, Althuisius S, Bornstein E, Berghella V. Cervical cerclage for short cervix at 24 to 26 weeks of gestation: systematic review and meta-analysis of randomized controlled trials using individual patient-level data. Am J Obstet Gynecol MFM. 2023;5(6):100930.
pubmed: 36924844
doi: 10.1016/j.ajogmf.2023.100930
Romero JA, Downes K, Pappas H, Elovitz MA, Levine LD. Cervical length change as a predictor of preterm birth in symptomatic patients. Am J Obstet Gynecol MFM. 2021;3(1):100175.
pubmed: 33451622
doi: 10.1016/j.ajogmf.2020.100175
Samejima T, Nagamatsu T, Iriyama T, Nakayama T, Seyama T, Sayama S, Kumasawa K, Komatsu A, Kawana K, Osuga Y, et al. Impact of additional risk factors on the incidence of preterm delivery among pregnant women diagnosed with short cervix. Taiwan J Obstet Gynecol. 2020;59(2):195–9.
pubmed: 32127137
doi: 10.1016/j.tjog.2020.01.005
Erenberg M, Yagel Y, Press F, Weintraub AY. Chorioamnionitis caused by Serratia marcescens in a healthy pregnant woman with preterm premature rupture of membranes: a rare case report and review of the literature. Eur J Obstet Gynecol Reprod Biol. 2017;211:227–30.
pubmed: 28283205
doi: 10.1016/j.ejogrb.2017.02.024
Ghanbarzadeh N, Mohammadparast-Tabas P, Aramjoo H, Allahyari E, Ghasemi S, Erfani S, Mesbahzadeh B, Dehghan H, Zare-Bidaki M. An evaluation of Antibacterial effects of Human amniotic fluid on pathogenic and probiotic Bacteria in Vitro. J Reprod Infertil. 2023;24(2):101–7.
pubmed: 37547569
pmcid: 10402456
Liu Z, Feng J, Shi L. Clinical analysis and examination of neonatal sepsis. J Pak Med Assoc. 2020;70(Special Issue9):120–4.
pubmed: 33177740
Garcia-Gudino I, Yllescas-Medrano E, Maida-Claros R, Soriano-Becerril D, Diaz NF, Garcia-Lopez G, Molina-Hernandez A, Flores-Herrera O, Zavala-Diaz de la Serna FJ, Del Rosario Peralta-Perez M, et al. Microbiological comparison of blood culture and amplification of 16S rDNA methods in combination with DGGE for detection of neonatal sepsis in blood samples. Eur J Pediatr. 2018;177(1):85–93.
pubmed: 29090355
doi: 10.1007/s00431-017-3036-3
Liu D, Du L, Yu J, Li L, Ai Q, Feng J, Song C. 16S rDNA PCR-DGGE and sequencing in the diagnosis of neonatal late-onset septicemia. Mol Med Rep. 2015;12(4):6346–52.
pubmed: 26238862
doi: 10.3892/mmr.2015.4131
Gibbs RS, Duff P. Progress in pathogenesis and management of clinical intraamniotic infection. Am J Obstet Gynecol. 1991;164(5 Pt 1):1317–26.
pubmed: 2035575
doi: 10.1016/0002-9378(91)90707-X
Tchirikov M, Ocker R, Seliger G, Chaoui K, Moritz S, Haase R. Treatment of mid-trimester preterm premature rupture of membranes (PPROM) with multi-resistant bacteria-colonized anhydramnion with continuous amnioinfusion and meropenem: a case report and literature review. Arch Gynecol Obstet. 2022;306(3):585–92.
pubmed: 34791511
doi: 10.1007/s00404-021-06319-w
Garcia-Lopez G, Vadillo-Ortega F, Merchant-Larios H, Maida-Claros R, Osorio M, Soriano-Becerril D, Flores-Herrera H, Beltran-Montoya J, Garfias-Becerra Y, Zaga-Clavellina V. Evidence of in vitro differential secretion of 72 and 92 kDa type IV collagenases after selective exposure to lipopolysaccharide in human fetal membranes. Mol Hum Reprod. 2007;13(6):409–18.
pubmed: 17449536
doi: 10.1093/molehr/gam025
Nissi R, Talvensaari-Mattila A, Kotila V, Niinimaki M, Jarvela I, Turpeenniemi-Hujanen T. Circulating matrix metalloproteinase MMP-9 and MMP-2/TIMP-2 complex are associated with spontaneous early pregnancy failure. Reprod Biol Endocrinol. 2013;11:2.
pubmed: 23320481
pmcid: 3566964
doi: 10.1186/1477-7827-11-2
Olmos-Ortiz A, Hernandez-Perez M, Flores-Espinosa P, Sedano G, Helguera-Repetto AC, Villavicencio-Carrisoza O, Valdespino-Vazquez MY, Flores-Pliego A, Irles C, Rivas-Santiago B et al. Compartmentalized Innate Immune response of human fetal membranes against Escherichia coli Choriodecidual Infection. Int J Mol Sci. 2022;23(6).
Zaga-Clavellina V, Garcia-Lopez G, Flores-Pliego A, Merchant-Larios H, Vadillo-Ortega F. In vitro secretion and activity profiles of matrix metalloproteinases, MMP-9 and MMP-2, in human term extra-placental membranes after exposure to Escherichia coli. Reprod Biol Endocrinol. 2011;9:13.
pubmed: 21266053
pmcid: 3036613
doi: 10.1186/1477-7827-9-13
Motomura K, Miller D, Galaz J, Liu TN, Romero R, Gomez-Lopez N. The effects of progesterone on immune cellular function at the maternal-fetal interface and in maternal circulation. J Steroid Biochem Mol Biol. 2023;229:106254.
pubmed: 36681283
pmcid: 10038932
doi: 10.1016/j.jsbmb.2023.106254
Lee B, Norwitz E, Hwang IS, Woo JY, Hwang SO, Lee HJ. Impact of Progesterone on Molecular mechanisms of Preterm premature rupture of membranes. Reprod Sci. 2021;28(11):3137–46.
pubmed: 34106437
doi: 10.1007/s43032-021-00646-8
Shah NM, Lai PF, Imami N, Johnson MR. Progesterone-related Immune modulation of pregnancy and labor. Front Endocrinol (Lausanne). 2019;10:198.
pubmed: 30984115
doi: 10.3389/fendo.2019.00198
Tong M, Scott JN, Whirledge SD, Abrahams VM. Decidualization dampens toll-like receptor mediated inflammatory responses in human endometrial stromal cells by upregulating IkappaBalpha. J Reprod Immunol. 2023;159:103988.
pubmed: 37451159
pmcid: 10530124
doi: 10.1016/j.jri.2023.103988
Palacios-Luna JE, Lopez-Marrufo MV, Bautista-Bautista G, Velarde-Guerra CS, Villeda-Gabriel G, Flores-Herrera O, Osorio-Caballero M, Aguilar-Carrasco JC, Palafox-Vargas ML, Garcia-Lopez G, et al. Progesterone modulates extracellular heat-shock proteins and interlukin-1beta in human choriodecidual after Escherichia coli infection. Placenta. 2023;142:85–94.
pubmed: 37659254
doi: 10.1016/j.placenta.2023.08.074
Allen TK, Feng L, Grotegut CA, Murtha AP. Progesterone receptor membrane component 1 as the mediator of the inhibitory effect of progestins on cytokine-induced matrix metalloproteinase 9 activity in vitro. Reprod Sci. 2014;21(2):260–8.
pubmed: 23813454
pmcid: 3879993
doi: 10.1177/1933719113493514
Cortes-Reynosa P, Robledo T, Macias-Silva M, Wu SV, Salazar EP. Src kinase regulates metalloproteinase-9 secretion induced by type IV collagen in MCF-7 human breast cancer cells. Matrix Biol. 2008;27(3):220–31.
pubmed: 18061419
doi: 10.1016/j.matbio.2007.11.003
Osorio-Caballero M, Perdigon-Palacio C, Garcia-Lopez G, Flores-Herrera O, Olvera-Sanchez S, Morales-Mendez I, Sosa-Gonzalez I, Acevedo JF, Guzman-Grenfell AM, Molina-Hernandez A, et al. Escherichia coli-induced temporal and differential secretion of heat-shock protein 70 and interleukin-1beta by human fetal membranes in a two-compartment culture system. Placenta. 2015;36(3):262–9.
pubmed: 25600910
doi: 10.1016/j.placenta.2014.12.011
Arumugasaamy N, Rock KD, Kuo CY, Bale TL, Fisher JP. Microphysiological systems of the placental barrier. Adv Drug Deliv Rev. 2020;161–162:161–75.
pubmed: 32858104
pmcid: 10288517
doi: 10.1016/j.addr.2020.08.010
Yoo J, Jung Y, Char K, Jang Y. Advances in cell coculture membranes recapitulating in vivo microenvironments. Trends Biotechnol. 2023;41(2):214–27.
pubmed: 36030108
doi: 10.1016/j.tibtech.2022.07.014
Boldenow E, Jones S, Lieberman RW, Chames MC, Aronoff DM, Xi C, Loch-Caruso R. Antimicrobial peptide response to group B Streptococcus in human extraplacental membranes in culture. Placenta. 2013;34(6):480–5.
pubmed: 23562109
pmcid: 3664555
doi: 10.1016/j.placenta.2013.02.010
Thiex NW, Chames MC, Loch-Caruso RK. Tissue-specific induction of COX-2 and prostaglandins in lipopolysaccharide-stimulated extraplacental human gestational membranes in a 2-chamber transwell culture system. Reprod Sci. 2010;17(12):1120–9.
pubmed: 20861394
doi: 10.1177/1933719110378344
Romero R, Scoccia B, Mazor M, Wu YK, Benveniste R. Evidence for a local change in the progesterone/estrogen ratio in human parturition at term. Am J Obstet Gynecol. 1988;159(3):657–60.
pubmed: 2971319
doi: 10.1016/S0002-9378(88)80029-2
Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000;66(10):4555–8.
pubmed: 11010916
pmcid: 92342
doi: 10.1128/AEM.66.10.4555-4558.2000
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.
pubmed: 942051
doi: 10.1016/0003-2697(76)90527-3
Robertson SA, Hutchinson MR, Rice KC, Chin PY, Moldenhauer LM, Stark MJ, Olson DM, Keelan JA. Targeting toll-like receptor-4 to tackle preterm birth and fetal inflammatory injury. Clin Transl Immunol. 2020;9(4):e1121.
doi: 10.1002/cti2.1121
Xiong Y, Pennini M, Vogel SN, Medvedev AE. IRAK4 kinase activity is not required for induction of endotoxin tolerance but contributes to TLR2-mediated tolerance. J Leukoc Biol. 2013;94(2):291–300.
pubmed: 23695305
pmcid: 3714565
doi: 10.1189/jlb.0812401
Yadav M, Zhang J, Fischer H, Huang W, Lutay N, Cirl C, Lum J, Miethke T, Svanborg C. Inhibition of TIR domain signaling by TcpC: MyD88-dependent and independent effects on Escherichia coli virulence. PLoS Pathog. 2010;6(9):e1001120.
pubmed: 20886104
pmcid: 2944809
doi: 10.1371/journal.ppat.1001120
Ellero N, Lanci A, Ferlizza E, Andreani G, Mariella J, Isani G, Castagnetti C. Activities of matrix metalloproteinase-2 and – 9 in amniotic fluid at parturition in mares with normal and high-risk pregnancy. Theriogenology. 2021;172:116–22.
pubmed: 34153567
doi: 10.1016/j.theriogenology.2021.06.009
Karachrysafi S, Georgiou P, Kavvadas D, Papafotiou F, Isaakidou S, Grammatikakis IE, Papamitsou T. Immunohistochemical study of MMP-2, MMP-9, EGFR and IL-8 in decidual and trophoblastic specimens of recurrent pregnancy loss cases. J Matern Fetal Neonatal Med. 2023;36(1):2218523.
pubmed: 37258409
doi: 10.1080/14767058.2023.2218523
Vadillo-Ortega F, Gonzalez-Avila G, Furth EE, Lei H, Muschel RJ, Stetler-Stevenson WG, Strauss JF 3. 92-kd type IV collagenase (matrix metalloproteinase-9) activity in human amniochorion increases with labor. Am J Pathol. 1995;146(1):148–56.
Cai R, Tressler CM, Cheng M, Sonkar K, Tan Z, Paidi SK, Ayyappan V, Barman I, Glunde K. Primary breast tumor induced extracellular matrix remodeling in premetastatic lungs. Sci Rep. 2023;13(1):18566.
pubmed: 37903851
pmcid: 10616170
doi: 10.1038/s41598-023-45832-7
Chen JL, Chen Y, Xu DX, Chen DZ. Possible important roles of galectins in the healing of human fetal membranes. Front Endocrinol (Lausanne). 2022;13:941029.
pubmed: 36017312
doi: 10.3389/fendo.2022.941029
Li W, Mata KM, Mazzuca MQ, Khalil RA. Altered matrix metalloproteinase-2 and – 9 expression/activity links placental ischemia and anti-angiogenic sFlt-1 to uteroplacental and vascular remodeling and collagen deposition in hypertensive pregnancy. Biochem Pharmacol. 2014;89(3):370–85.
pubmed: 24704473
pmcid: 4034157
doi: 10.1016/j.bcp.2014.03.017
Morales-Hernandez FV, Bautista-Bautista G, Acuna-Gonzalez RJ, Vazquez-Cardenas P, Lopez-Canales JS, Lozano-Cuenca J, Osorio-Caballero M, Flores-Herrera H. Differential proMMP-2 and proMMP-9 secretion in human pre-implantation embryos at day 5 of development. Acta Biochim Pol. 2022;69(3):683–9.
pubmed: 36112527
Gualdoni G, Gomez Castro G, Hernandez R, Barbeito C, Cebral E. Comparative matrix metalloproteinase-2 and – 9 expression and activity during endotheliochorial and hemochorial trophoblastic invasiveness. Tissue Cell. 2022;74:101698.
pubmed: 34871824
doi: 10.1016/j.tice.2021.101698
Staun-Ram E, Goldman S, Gabarin D, Shalev E. Expression and importance of matrix metalloproteinase 2 and 9 (MMP-2 and – 9) in human trophoblast invasion. Reprod Biol Endocrinol. 2004;2:59.
pubmed: 15294019
pmcid: 516041
doi: 10.1186/1477-7827-2-59
Bhunia S, O’Brien S, Ling Y, Huang Z, Wu P, Yang Y. New approaches suggest term and preterm human fetal membranes may have distinct biomechanical properties. Sci Rep. 2022;12(1):5109.
pubmed: 35332209
pmcid: 8948223
doi: 10.1038/s41598-022-09005-2
Menon R, Richardson LS, Lappas M. Fetal membrane architecture, aging and inflammation in pregnancy and parturition. Placenta. 2019;79:40–5.
pubmed: 30454905
doi: 10.1016/j.placenta.2018.11.003
Sukhikh GT, Kan NE, Tyutyunnik VL, Sannikova MV, Dubova EA, Pavlov KA, Amiraslanov EY, Dolgushina NV. The role of extracellular inducer of matrix metalloproteinases in premature rupture of membranes. J Matern Fetal Neonatal Med. 2016;29(4):656–9.
pubmed: 25747952
doi: 10.3109/14767058.2015.1015416
Vidal MS Jr., Lintao RCV, Severino MEL, Tantengco OAG, Menon R. Spontaneous preterm birth: involvement of multiple feto-maternal tissues and organ systems, differing mechanisms, and pathways. Front Endocrinol (Lausanne). 2022;13:1015622.
Gomez-Concha C, Flores-Herrera O, Olvera-Sanchez S, Espinosa-Garcia MT, Martinez F. Progesterone synthesis by human placental mitochondria is sensitive to PKA inhibition by H89. Int J Biochem Cell Biol. 2011;43(9):1402–11.
pubmed: 21689781
doi: 10.1016/j.biocel.2011.06.005
Goldman S, Weiss A, Almalah I, Shalev E. Progesterone receptor expression in human decidua and fetal membranes before and after contractions: possible mechanism for functional progesterone withdrawal. Mol Hum Reprod. 2005;11(4):269–77.
pubmed: 15764807
doi: 10.1093/molehr/gah161
Merlino A, Welsh T, Erdonmez T, Madsen G, Zakar T, Smith R, Mercer B, Mesiano S. Nuclear progesterone receptor expression in the human fetal membranes and decidua at term before and after labor. Reprod Sci. 2009;16(4):357–63.
pubmed: 19196877
doi: 10.1177/1933719108328616
Wang B, Parobchak N, Rosen M, Roche N, Rosen T. Negative effects of progesterone receptor isoform-A on human placental activity of the noncanonical NF-kappaB signaling. J Clin Endocrinol Metab. 2014;99(2):E320–328.
pubmed: 24276461
doi: 10.1210/jc.2013-2721
Feng L, Ransom CE, Nazzal MK, Allen TK, Li YJ, Truong T, Potts LC, Seed PC, Murtha AP. The role of Progesterone and a novel progesterone receptor, progesterone receptor membrane component 1, in the inflammatory response of fetal membranes to Ureaplasma parvum infection. PLoS ONE. 2016;11(12):e0168102.
pubmed: 27977732
pmcid: 5158007
doi: 10.1371/journal.pone.0168102
Luo G, Abrahams VM, Tadesse S, Funai EF, Hodgson EJ, Gao J, Norwitz ER. Progesterone inhibits basal and TNF-alpha-induced apoptosis in fetal membranes: a novel mechanism to explain progesterone-mediated prevention of preterm birth. Reprod Sci. 2010;17(6):532–9.
pubmed: 20360593
doi: 10.1177/1933719110363618
Han JH, Kim MS, Lee MY, Kim TH, Lee MK, Kim HR, Myung SC. Modulation of human beta-defensin-2 expression by 17beta-estradiol and progesterone in vaginal epithelial cells. Cytokine. 2010;49(2):209–14.
pubmed: 19819163
doi: 10.1016/j.cyto.2009.09.005
Chu S, Wen Q, Qing Z, Luo J, Wang W, Chen L, Feng J, Xu L, Zang H, Fan S. High expression of heat shock protein 10 correlates negatively with estrogen/progesterone receptor status and predicts poor prognosis in invasive ductal breast carcinoma. Hum Pathol. 2017;61:173–80.
pubmed: 27993580
doi: 10.1016/j.humpath.2016.09.039
Imada K, Ito A, Sato T, Namiki M, Nagase H, Mori Y. Hormonal regulation of matrix metalloproteinase 9/gelatinase B gene expression in rabbit uterine cervical fibroblasts. Biol Reprod. 1997;56(3):575–80.
pubmed: 9046999
doi: 10.1095/biolreprod56.3.575
Haas DM, Hathaway TJ, Ramsey PS. Progestogen for preventing miscarriage in women with recurrent miscarriage of unclear etiology. Cochrane Database Syst Rev 2019, 2019(11).
Devall AJ, Papadopoulou A, Podesek M, Haas DM, Price MJ, Coomarasamy A, Gallos ID. Progestogens for preventing miscarriage: a network meta-analysis. Cochrane Database Syst Rev. 2021;4:CD013792.
pubmed: 33872382
Ransom CE, Murtha AP. Progesterone for preterm birth prevention. Obstet Gynecol Clin North Am. 2012;39(1):1–16. vii.
pubmed: 22370103
doi: 10.1016/j.ogc.2011.12.004
Oner C, Schatz F, Kizilay G, Murk W, Buchwalder LF, Kayisli UA, Arici A, Lockwood CJ. Progestin-inflammatory cytokine interactions affect matrix metalloproteinase-1 and – 3 expression in term decidual cells: implications for treatment of chorioamnionitis-induced preterm delivery. J Clin Endocrinol Metab. 2008;93(1):252–9.
pubmed: 17940116
doi: 10.1210/jc.2007-1538
Cakmak H, Schatz F, Huang ST, Buchwalder L, Rahman M, Arici A, Lockwood CJ. Progestin suppresses thrombin- and interleukin-1beta-induced interleukin-11 production in term decidual cells: implications for preterm delivery. J Clin Endocrinol Metab. 2005;90(9):5279–86.
pubmed: 15998775
doi: 10.1210/jc.2005-0210
Hung TH, Chen SF, Wu CP, Li MJ, Yeh YL, Hsieh TT. Micronized progesterone pretreatment affects the inflammatory response of human gestational tissues and the cervix to lipopolysaccharide stimulation. Placenta. 2017;57:1–8.
pubmed: 28863997
doi: 10.1016/j.placenta.2017.05.013
Flores-Espinosa P, Olmos-Ortiz A, Granados-Cepeda M, Quesada-Reyna B, Vega-Sanchez R, Velazquez P, Zaga-Clavellina V. Prolactin protects the Structural Integrity of Human fetal membranes by downregulating inflammation-induced secretion of Matrix metalloproteinases. Immunol Invest. 2022;51(5):1313–29.
pubmed: 34132165
doi: 10.1080/08820139.2021.1936012
Maymon E, Romero R, Pacora P, Gomez R, Mazor M, Edwin S, Chaiworapongsa T, Kim JC, Yoon BH, Menon R, et al. A role for the 72 kDa gelatinase (MMP-2) and its inhibitor (TIMP-2) in human parturition, premature rupture of membranes and intraamniotic infection. J Perinat Med. 2001;29(4):308–16.
pubmed: 11565199
doi: 10.1515/JPM.2001.044
Timpl R, Sasaki T, Kostka G, Chu ML. Fibulins: a versatile family of extracellular matrix proteins. Nat Rev Mol Cell Biol. 2003;4(6):479–89.
pubmed: 12778127
doi: 10.1038/nrm1130
Moore RM, Redline RW, Kumar D, Mercer BM, Mansour JM, Yohannes E, Novak JB, Chance MR, Moore JJ. Differential expression of fibulin family proteins in the para-cervical weak zone and other areas of human fetal membranes. Placenta. 2009;30(4):335–41.
pubmed: 19230968
pmcid: 2693720
doi: 10.1016/j.placenta.2009.01.007
Orvik AB, Andersen MR, Pedersen L, Ritz C, Stender S, Szecsi PB. Plasma fibulin-1 levels during pregnancy and delivery: a longitudinal observational study. BMC Pregnancy Childbirth. 2021;21(1):629.
pubmed: 34535108
pmcid: 8447534
doi: 10.1186/s12884-021-04110-y
Nita M, Strzalka-Mrozik B, Grzybowski A, Mazurek U, Romaniuk W. Age-related macular degeneration and changes in the extracellular matrix. Med Sci Monit. 2014;20:1003–16.
pubmed: 24938626
pmcid: 4072585
doi: 10.12659/MSM.889887
Padeznik T, Oleksy A, Cokan A, Takac I, Sobocan M. Changes in the extracellular matrix in endometrial and cervical cancer: a systematic review. Int J Mol Sci. 2023;24(6).
Nakamoto T, Okada H, Nakajima T, Ikuta A, Yasuda K, Kanzaki H. Progesterone induces the fibulin-1 expression in human endometrial stromal cells. Hum Reprod. 2005;20(6):1447–55.
pubmed: 15774544
doi: 10.1093/humrep/deh841
Okada H, Tsuzuki T, Shindoh H, Nishigaki A, Yasuda K, Kanzaki H. Regulation of decidualization and angiogenesis in the human endometrium: mini review. J Obstet Gynaecol Res. 2014;40(5):1180–7.
pubmed: 24754847
doi: 10.1111/jog.12392
Chang M. Matrix metalloproteinase profiling and their roles in disease. RSC Adv. 2023;13(9):6304–16.
pubmed: 36825288
pmcid: 9942564
doi: 10.1039/D2RA07005G
Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562–73.
pubmed: 16405877
doi: 10.1016/j.cardiores.2005.12.002
Strauss JF. 3rd: extracellular matrix dynamics and fetal membrane rupture. Reprod Sci. 2013;20(2):140–53.
pubmed: 22267536
pmcid: 3826277
doi: 10.1177/1933719111424454
Szymanowski K, Mikolajczyk M, Wirstlein P, Dera-Szymanowska A. Matrix metalloproteinase-2 (MMP-2), MMP-9, tissue inhibitor of matrix metalloproteinases (TIMP-1) and transforming growth factor-beta2 (TGF-beta2) expression in eutopic endometrium of women with peritoneal endometriosis. Ann Agric Environ Med. 2016;23(4):649–53.
pubmed: 28030938
doi: 10.5604/12321966.1226861
Briery CM, Veillon EW, Klauser CK, Martin RW, Magann EF, Chauhan SP, Morrison JC. Women with preterm premature rupture of the membranes do not benefit from weekly progesterone. Am J Obstet Gynecol. 2011;204(1):e5451–55.
doi: 10.1016/j.ajog.2010.08.022
Combs CA, Garite TJ, Maurel K, Abril D, Das A, Clewell W, Heyborne K, How H, Huang W, Lewis D et al. 17-hydroxyprogesterone caproate for preterm rupture of the membranes: a multicenter, randomized, double-blind, placebo-controlled trial. Am J Obstet Gynecol. 2015;213(3):364 e361-312.
Wood SL, Williams BN, Szychowski JM, Owen J. The effect of intramuscular 17alpha-Hydroxyprogesterone in women screened for shortened cervical length. Am J Perinatol. 2020;37(7):659–65.
pubmed: 31756763
doi: 10.1055/s-0039-3400448
Facchinetti F, Paganelli S, Comitini G, Dante G, Volpe A. Cervical length changes during preterm cervical ripening: effects of 17-alpha-hydroxyprogesterone caproate. Am J Obstet Gynecol. 2007;196(5):453. e451-454; discussion 421.
doi: 10.1016/j.ajog.2006.09.009