Genetic and clinical correlates of two neuroanatomical AI dimensions in the Alzheimer's disease continuum.
Journal
Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664
Informations de publication
Date de publication:
05 Oct 2024
05 Oct 2024
Historique:
received:
04
06
2024
accepted:
23
09
2024
revised:
18
09
2024
medline:
6
10
2024
pubmed:
6
10
2024
entrez:
5
10
2024
Statut:
epublish
Résumé
Alzheimer's disease (AD) is associated with heterogeneous atrophy patterns. We employed a semi-supervised representation learning technique known as Surreal-GAN, through which we identified two latent dimensional representations of brain atrophy in symptomatic mild cognitive impairment (MCI) and AD patients: the "diffuse-AD" (R1) dimension shows widespread brain atrophy, and the "MTL-AD" (R2) dimension displays focal medial temporal lobe (MTL) atrophy. Critically, only R2 was associated with widely known sporadic AD genetic risk factors (e.g., APOE ε4) in MCI and AD patients at baseline. We then independently detected the presence of the two dimensions in the early stages by deploying the trained model in the general population and two cognitively unimpaired cohorts of asymptomatic participants. In the general population, genome-wide association studies found 77 genes unrelated to APOE differentially associated with R1 and R2. Functional analyses revealed that these genes were overrepresented in differentially expressed gene sets in organs beyond the brain (R1 and R2), including the heart (R1) and the pituitary gland, muscle, and kidney (R2). These genes were enriched in biological pathways implicated in dendritic cells (R2), macrophage functions (R1), and cancer (R1 and R2). Several of them were "druggable genes" for cancer (R1), inflammation (R1), cardiovascular diseases (R1), and diseases of the nervous system (R2). The longitudinal progression showed that APOE ε4, amyloid, and tau were associated with R2 at early asymptomatic stages, but this longitudinal association occurs only at late symptomatic stages in R1. Our findings deepen our understanding of the multifaceted pathogenesis of AD beyond the brain. In early asymptomatic stages, the two dimensions are associated with diverse pathological mechanisms, including cardiovascular diseases, inflammation, and hormonal dysfunction-driven by genes different from APOE-which may collectively contribute to the early pathogenesis of AD. All results are publicly available at https://labs-laboratory.com/medicine/ .
Identifiants
pubmed: 39368996
doi: 10.1038/s41398-024-03121-5
pii: 10.1038/s41398-024-03121-5
doi:
Substances chimiques
Apolipoprotein E4
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
420Informations de copyright
© 2024. The Author(s).
Références
Guthrie H, Honig LS, Lin H, Sink KM, Blondeau K, Quartino A, et al. Safety, tolerability, and pharmacokinetics of crenezumab in patients with mild-to-moderate Alzheimer’s disease treated with escalating doses for up to 133 weeks. J Alzheimers Dis. 2020;76:967–79.
pubmed: 32568196
pmcid: 7505005
doi: 10.3233/JAD-200134
Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537:50–6.
pubmed: 27582220
doi: 10.1038/nature19323
Congdon EE, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol. 2018;14:399–415.
pubmed: 29895964
pmcid: 6463489
doi: 10.1038/s41582-018-0013-z
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.
pubmed: 12130773
doi: 10.1126/science.1072994
Brinkmalm G, Zetterberg H. The phosphorylation cascade hypothesis of Alzheimer’s disease. Nat Aging. 2021;1:498–9.
pubmed: 37117830
doi: 10.1038/s43587-021-00077-9
Du X, Wang X, Geng M. Alzheimer’s disease hypothesis and related therapies. Transl Neurodegener. 2018;7:2.
pubmed: 29423193
pmcid: 5789526
doi: 10.1186/s40035-018-0107-y
Jack CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16.
pubmed: 23332364
pmcid: 3622225
doi: 10.1016/S1474-4422(12)70291-0
Frisoni GB, Altomare D, Thal DR, Ribaldi F, van der Kant R, Ossenkoppele R, et al. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat Rev Neurosci. 2022;23:53–66.
pubmed: 34815562
doi: 10.1038/s41583-021-00533-w
Makin S. The amyloid hypothesis on trial. Nature. 2018;559:S4–7.
pubmed: 30046080
doi: 10.1038/d41586-018-05719-4
Herrup K. The case for rejecting the amyloid cascade hypothesis. Nat Neurosci. 2015;18:794–9.
pubmed: 26007212
doi: 10.1038/nn.4017
Barisano G, Montagne A, Kisler K, Schneider JA, Wardlaw JM, Zlokovic BV. Blood–brain barrier link to human cognitive impairment and Alzheimer’s disease. Nat Cardiovasc Res. 2022;1:108–15.
pubmed: 35450117
pmcid: 9017393
doi: 10.1038/s44161-021-00014-4
Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med. 2006;12:1005–15.
pubmed: 16960575
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s Disease. Lancet Neurol. 2015;14:388–405.
pubmed: 25792098
pmcid: 5909703
doi: 10.1016/S1474-4422(15)70016-5
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17:157–72.
pubmed: 33318676
doi: 10.1038/s41582-020-00435-y
Dean DW. Neuroendocrine theory of aging: chapter 1. 2012. https://warddeanmd.com/articles/neuroendocrine-theory-of-aging-chapter-1/ .
Schally AV. Endocrine approaches to treatment of Alzheimer’s disease and other neurological conditions: part I: some recollections of my association with Dr. Abba Kastin: a tale of successful collaboration. Peptides. 2015;72:154–63.
pubmed: 25843023
doi: 10.1016/j.peptides.2015.03.009
Xiong J, Kang SS, Wang Z, Liu X, Kuo T-C, Korkmaz F, et al. FSH blockade improves cognition in mice with Alzheimer’s disease. Nature. 2022;603:470–6.
pubmed: 35236988
pmcid: 9940301
doi: 10.1038/s41586-022-04463-0
Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, et al. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016;12:292–323.
pubmed: 27012484
doi: 10.1016/j.jalz.2016.02.002
Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat Med. 2022;28:31–8.
pubmed: 35058619
doi: 10.1038/s41591-021-01614-0
Wen J, Thibeau-Sutre E, Diaz-Melo M, Samper-González J, Routier A, Bottani S, et al. Convolutional neural networks for classification of Alzheimer’s disease: overview and reproducible evaluation. Med Image Anal. 2020;63:101694.
pubmed: 32417716
doi: 10.1016/j.media.2020.101694
Kendler K, Neale M. Endophenotype: a conceptual analysis. Mol Psychiatry. 2010;15:789–97.
pubmed: 20142819
pmcid: 2909487
doi: 10.1038/mp.2010.8
Yang Z, Nasrallah IM, Shou H, Wen J, Doshi J, Habes M, et al. A deep learning framework identifies dimensional representations of Alzheimer’s disease from brain structure. Nat Commun. 2021;12:7065.
pubmed: 34862382
pmcid: 8642554
doi: 10.1038/s41467-021-26703-z
Wen J, Varol E, Sotiras A, Yang Z, Chand GB, Erus G, et al. Multi-scale semi-supervised clustering of brain images: deriving disease subtypes. Med Image Anal. 2021;75:102304.
pubmed: 34818611
pmcid: 8678373
doi: 10.1016/j.media.2021.102304
Young AL, The Alzheimer’s Disease Neuroimaging Initiative (ADNI), Young AL, Marinescu RV, Oxtoby NP, Bocchetta M, et al. Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference. Nat Commun. 2018;9:4273.
pubmed: 30323170
pmcid: 6189176
doi: 10.1038/s41467-018-05892-0
Zhang X, Mormino EC, Sun N, Sperling RA, Sabuncu MR, Yeo BTT, et al. Bayesian model reveals latent atrophy factors with dissociable cognitive trajectories in Alzheimer’s disease. Proc Natl Acad Sci. 2016;113:E6535–44.
Vogel JW, Young AL, Oxtoby NP, Smith R, Ossenkoppele R, Strandberg OT, et al. Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat Med. 2021;27:871–81.
pubmed: 33927414
pmcid: 8686688
doi: 10.1038/s41591-021-01309-6
Lambert J-C, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45:1452–8.
pubmed: 24162737
pmcid: 3896259
doi: 10.1038/ng.2802
Bellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N, et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat Genet. 2022;54:412–36.
pubmed: 35379992
pmcid: 9005347
doi: 10.1038/s41588-022-01024-z
Yang Z, Wen J, Davatzikos C. Surreal-GAN: semi-supervised representation learning via GAN for uncovering heterogeneous disease-related imaging patterns. ICLR. 2021. https://openreview.net/forum?id=nf3A0WZsXS5 .
Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, et al. Alzheimer’s disease neuroimaging initiative (ADNI): clinical characterization. Neurology. 2010;74:201–9.
pubmed: 20042704
pmcid: 2809036
doi: 10.1212/WNL.0b013e3181cb3e25
Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9.
pubmed: 30305743
pmcid: 6786975
doi: 10.1038/s41586-018-0579-z
Resnick SM, Goldszal AF, Davatzikos C, Golski S, Kraut MA, Metter EJ, et al. One-year age changes in MRI brain volumes in older adults. Cereb Cortex. 2000;10:464–72.
pubmed: 10847596
doi: 10.1093/cercor/10.5.464
Breitner JCS, Poirier J, Etienne PE, Leoutsakos JM. Rationale and structure for a new center for studies on prevention of Alzheimer’s disease (StoP-AD). J Prev Alzheimers Dis. 2016;3:236–42.
pubmed: 29199324
Habes M, Pomponio R, Shou H, Doshi J, Mamourian E, Erus G, et al. The brain chart of aging: machine-learning analytics reveals links between brain aging, white matter disease, amyloid burden, and cognition in the iSTAGING consortium of 10,216 harmonized MR scans. Alzheimers Dement. 2021;17:89–102.
pubmed: 32920988
doi: 10.1002/alz.12178
Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29:1310–20.
pubmed: 20378467
pmcid: 3071855
doi: 10.1109/TMI.2010.2046908
Doshi J, Erus G, Ou Y, Resnick SM, Gur RC, Gur RE, et al. MUSE: MUlti-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters, and locally optimal atlas selection. Neuroimage. 2016;127:186–95.
pubmed: 26679328
doi: 10.1016/j.neuroimage.2015.11.073
Pomponio R, Erus G, Habes M, Doshi J, Srinivasan D, Mamourian E, et al. Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan. Neuroimage. 2020;208:116450.
pubmed: 31821869
doi: 10.1016/j.neuroimage.2019.116450
Zhang X, Mormino EC, Sun N, Sperling RA, Sabuncu MR, Yeo BTT, et al. Bayesian model reveals latent atrophy factors with dissociable cognitive trajectories in Alzheimer’s disease. Proc Natl Acad Sci USA. 2016;113:E6535–44.
pubmed: 27702899
pmcid: 5081632
doi: 10.1073/pnas.1611073113
Ferreira D, Nordberg A, Westman E. Biological subtypes of Alzheimer disease: a systematic review and meta-analysis. Neurology. 2020;94:436–48.
pubmed: 32047067
pmcid: 7238917
doi: 10.1212/WNL.0000000000009058
Wen J, Varol E, Yang Z, Hwang G, Dwyer D, Kazerooni AF, et al. Subtyping brain diseases from imaging data. In: Colliot O, editor. Machine learning for brain disorders. New York, NY: Springer; 2023. pp. 491–510.
Davatzikos C, Xu F, An Y, Fan Y, Resnick SM. Longitudinal progression of Alzheimer’s-like patterns of atrophy in normal older adults: the SPARE-AD index. Brain. 2009;132:2026–35.
pubmed: 19416949
pmcid: 2714059
doi: 10.1093/brain/awp091
Bashyam VM, Erus G, Doshi J, Habes M, Nasrallah IM, Truelove-Hill M, et al. MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide. Brain. 2020;143:2312–24.
pubmed: 32591831
pmcid: 7364766
doi: 10.1093/brain/awaa160
Wen J, Nasrallah IM, Abdulkadir A, Satterthwaite TD, Yang Z, Erus G, et al. Genomic loci influence patterns of structural covariance in the human brain. Proc Natl Acad Sci USA. 2023;120:e2300842120.
pubmed: 38127979
pmcid: 10756284
doi: 10.1073/pnas.2300842120
Wen J, Fu CHY, Tosun D, Veturi Y, Yang Z, Abdulkadir A, et al. Characterizing heterogeneity in neuroimaging, cognition, clinical symptoms, and genetics among patients with late-life depression. JAMA Psychiatry. 2022. https://doi.org/10.1001/jamapsychiatry.2022.0020 .
Wen J, Zhao B, Yang Z, Erus G, Skampardoni I, Mamourian E, et al. The genetic architecture of multimodal human brain age. Nat Commun. 2024;15:2604.
pubmed: 38521789
pmcid: 10960798
doi: 10.1038/s41467-024-46796-6
Wen J, Tian YE, Skampardoni I, Yang Z, Cui Y, Anagnostakis F, et al. The genetic architecture of biological age in nine human organ systems. Nat Aging. 2024:1–18.
Wen J. Multiorgan biological age shows that no organ system is an island. Nat Aging. 2024;1–2.
Yang J, Lee SH, Wray NR, Goddard ME, Visscher PM. GCTA-GREML accounts for linkage disequilibrium when estimating genetic variance from genome-wide SNPs. Proc Natl Acad Sci USA. 2016;113:E4579–80.
pubmed: 27457963
pmcid: 4987770
doi: 10.1073/pnas.1602743113
Zhao B, Pediatric Imaging, Neurocognition and Genetics, Zhao B, Luo T, Li T, Li Y, et al. Genome-wide association analysis of 19,629 individuals identifies variants influencing regional brain volumes and refines their genetic co-architecture with cognitive and mental health traits. Nat Genet. 2019;51:1637–44.
pubmed: 31676860
pmcid: 6858580
doi: 10.1038/s41588-019-0516-6
Choi SW, Mak TS-H, O’Reilly PF. Tutorial: a guide to performing polygenic risk score analyses. Nat Protoc. 2020;15:2759–72.
pubmed: 32709988
pmcid: 7612115
doi: 10.1038/s41596-020-0353-1
Moradi E, Hallikainen I, Hänninen T, Tohka J. Rey’s auditory verbal learning test scores can be predicted from whole brain MRI in Alzheimer’s disease. NeuroImage Clin. 2017;13:415–27.
pubmed: 28116234
doi: 10.1016/j.nicl.2016.12.011
Squire LR, Stark CEL, Clark RE. The medial temporal lobe. Annu Rev Neurosci. 2004;27:279–306.
pubmed: 15217334
doi: 10.1146/annurev.neuro.27.070203.144130
Prins ND, Scheltens P. White matter hyperintensities, cognitive impairment and dementia: an update. Nat Rev Neurol. 2015;11:157–65.
pubmed: 25686760
doi: 10.1038/nrneurol.2015.10
Andreasen N, Minthon L, Davidsson P, Vanmechelen E, Vanderstichele H, Winblad B, et al. Evaluation of CSF-tau and CSF-Aβ42 as diagnostic markers for Alzheimer disease in clinical practice. Arch Neurol. 2001;58:373–9.
pubmed: 11255440
doi: 10.1001/archneur.58.3.373
Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47:D1005–12.
pubmed: 30445434
doi: 10.1093/nar/gky1120
Bulik-Sullivan BK, Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47:291–5.
pubmed: 25642630
pmcid: 4495769
doi: 10.1038/ng.3211
Jiang L, Zheng Z, Fang H, Yang J. A generalized linear mixed model association tool for biobank-scale data. Nat Genet. 2021;53:1616–21.
pubmed: 34737426
doi: 10.1038/s41588-021-00954-4
Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8:1826.
pubmed: 29184056
pmcid: 5705698
doi: 10.1038/s41467-017-01261-5
Lanni C, Masi M, Racchi M, Govoni S. Cancer and Alzheimer’s disease inverse relationship: an age-associated diverging derailment of shared pathways. Mol Psychiatry. 2021;26:280–95.
pubmed: 32382138
doi: 10.1038/s41380-020-0760-2
Fisher Y, Nemirovsky A, Baron R, Monsonego A. Dendritic cells regulate amyloid-β-specific T-cell entry into the brain: the role of perivascular amyloid-β. J Alzheimers Dis. 2011;27:99–111.
pubmed: 21765208
doi: 10.3233/JAD-2011-102034
Brezovakova V, Valachova B, Hanes J, Novak M, Jadhav S. Dendritic cells as an alternate approach for treatment of neurodegenerative disorders. Cell Mol Neurobiol. 2018;38:1207–14.
pubmed: 29948552
doi: 10.1007/s10571-018-0598-1
Kong D, Li J, Shen Y, Liu G, Zuo S, Tao B, et al. Niacin promotes cardiac healing after myocardial infarction through activation of the myeloid prostaglandin D2 receptor subtype 1. J Pharmacol Exp Ther. 2017;360:435–44.
pubmed: 28057839
pmcid: 5325076
doi: 10.1124/jpet.116.238261
Crouse JR. New developments in the use of niacin for treatment of hyperlipidemia: new considerations in the use of an old drug. Coron Artery Dis. 1996;7:321–6.
pubmed: 8853585
doi: 10.1097/00019501-199604000-00009
Duggal JK, Singh M, Attri N, Singh PP, Ahmed N, Pahwa S, et al. Effect of niacin therapy on cardiovascular outcomes in patients with coronary artery disease. J Cardiovasc Pharmacol Ther. 2010;15:158–66.
pubmed: 20208032
doi: 10.1177/1074248410361337
Moutinho M, Puntambekar SS, Tsai AP, Coronel I, Lin PB, Casali BT, et al. The niacin receptor HCAR2 modulates microglial response and limits disease progression in a mouse model of Alzheimer’s disease. Sci Transl Med. 2022;14:eabl7634.
pubmed: 35320002
pmcid: 10161396
doi: 10.1126/scitranslmed.abl7634
Yang J, Yu Y, Liu W, Li Z, Wei Z, Jiang R. Microtubule-associated protein tau is associated with the resistance to docetaxel in prostate cancer cell lines. Res Rep Urol. 2017;9:71–7.
pubmed: 28507979
pmcid: 5428793
Bernatz S, Ilina EI, Devraj K, Harter PN, Mueller K, Kleber S, et al. Impact of Docetaxel on blood-brain barrier function and formation of breast cancer brain metastases. J Exp Clin Cancer Res. 2019;38:434.
pubmed: 31665089
pmcid: 6819416
doi: 10.1186/s13046-019-1427-1
Shin W, Lim KS, Kim M-K, Kim HS, Hong J, Jhee S, et al. A first-in-human study to investigate the safety, tolerability, pharmacokinetics, and pharmacodynamics of KM-819 (FAS-associated factor 1 inhibitor), a drug for Parkinson’s disease, in healthy volunteers. Drug Des Devel Ther. 2019;13:1011–22.
pubmed: 30992659
pmcid: 6445238
doi: 10.2147/DDDT.S198753
Kim B-S, Song J-A, Jang K-H, Jang T, Jung B, Yoo S-E, et al. Pharmacological intervention targeting FAF1 restores autophagic flux for α-synuclein degradation in the brain of a Parkinson’s disease mouse model. ACS Chem Neurosci. 2022;13:806–17.
pubmed: 35230076
doi: 10.1021/acschemneuro.1c00828
Swerdlow RH, Burns JM, Khan SM. The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta. 2014;1842:1219–31.
pubmed: 24071439
doi: 10.1016/j.bbadis.2013.09.010
Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov. 2002;1:727–30.
pubmed: 12209152
doi: 10.1038/nrd892
Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18:41–58.
pubmed: 30310233
doi: 10.1038/nrd.2018.168
Jiang C, Li G, Huang P, Liu Z, Zhao B. The gut microbiota and Alzheimer’s disease. J Alzheimers Dis. 2017;58:1–15.
pubmed: 28372330
doi: 10.3233/JAD-161141
Seo D, Boros BD, Holtzman DM. The microbiome: a target for Alzheimer disease? Cell Res. 2019;29:779–80.
pubmed: 31488883
pmcid: 6796832
doi: 10.1038/s41422-019-0227-7
Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci. 2015;16:358–72.
pubmed: 25991443
doi: 10.1038/nrn3880
Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. 2018;4:575–90.
Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4:281–6.
pubmed: 16101534
doi: 10.2174/1568010054022024
Laurin D, David Curb J, Masaki KH, White LR, Launer LJ. Midlife C-reactive protein and risk of cognitive decline: a 31-year follow-up. Neurobiol Aging. 2009;30:1724–7.
pubmed: 18316138
doi: 10.1016/j.neurobiolaging.2008.01.008
Thambisetty M, Simmons A, Velayudhan L, Hye A, Campbell J, Zhang Y, et al. Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch Gen Psychiatry. 2010;67:739–48.
pubmed: 20603455
pmcid: 3111021
doi: 10.1001/archgenpsychiatry.2010.78
Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol. 2017;14:133–44.
pubmed: 27905474
doi: 10.1038/nrcardio.2016.185
Vitale G, Salvioli S, Franceschi C. Oxidative stress and the ageing endocrine system. Nat Rev Endocrinol. 2013;9:228–40.
pubmed: 23438835
doi: 10.1038/nrendo.2013.29
Strittmatter WJ. Old drug, new hope for Alzheimer’s disease. Science. 2012;335:1447–8.
pubmed: 22442467
doi: 10.1126/science.1220725
Strittmatter WJ. Medicine. Old drug, new hope for Alzheimer’s disease. Science. 2012;335:1447–8.
pubmed: 22442467
doi: 10.1126/science.1220725
Clark IA, Atwood CS. Is TNF a link between aging-related reproductive endocrine dyscrasia and Alzheimer’s disease? JAD. 2011;27:691–9.
pubmed: 21891866
doi: 10.3233/JAD-2011-110887
Clark IA, Alleva LM, Vissel B. The roles of TNF in brain dysfunction and disease. Pharmacol Ther. 2010;128:519–48.
pubmed: 20813131
doi: 10.1016/j.pharmthera.2010.08.007
Demetrius LA, Driver J. Alzheimer’s as a metabolic disease. Biogerontology. 2013;14:641–9.
pubmed: 24249045
doi: 10.1007/s10522-013-9479-7
Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535–62.
pubmed: 29653606
doi: 10.1016/j.jalz.2018.02.018
Gazestani V, Kamath T, Nadaf NM, Dougalis A, Burris SJ, Rooney B, et al. Early Alzheimer’s disease pathology in human cortex involves transient cell states. Cell. 2023;186:4438–53.e23.
pubmed: 37774681
pmcid: 11107481
doi: 10.1016/j.cell.2023.08.005
Xiong X, James BT, Boix CA, Park YP, Galani K, Victor MB, et al. Epigenomic dissection of Alzheimer’s disease pinpoints causal variants and reveals epigenome erosion. Cell. 2023;186:4422–37.e21.
pubmed: 37774680
pmcid: 10782612
doi: 10.1016/j.cell.2023.08.040
Sun N, Victor MB, Park YP, Xiong X, Scannail AN, Leary N, et al. Human microglial state dynamics in Alzheimer’s disease progression. Cell. 2023;186:4386–403.e29.
pubmed: 37774678
pmcid: 10644954
doi: 10.1016/j.cell.2023.08.037
Dileep V, Boix CA, Mathys H, Marco A, Welch GM, Meharena HS, et al. Neuronal DNA double-strand breaks lead to genome structural variations and 3D genome disruption in neurodegeneration. Cell. 2023;186:4404–21.e20.
pubmed: 37774679
pmcid: 10697236
doi: 10.1016/j.cell.2023.08.038
Mathys H, Peng Z, Boix CA, Victor MB, Leary N, Babu S, et al. Single-cell atlas reveals correlates of high cognitive function, dementia, and resilience to Alzheimer’s disease pathology. Cell. 2023;186:4365–85.e27.
pubmed: 37774677
pmcid: 10601493
doi: 10.1016/j.cell.2023.08.039
Luo W, Qu W, Gan L. The AD odyssey 2023: tales of single cell. Cell. 2023;186:4257–9.
pubmed: 37774675
doi: 10.1016/j.cell.2023.09.001
Weaver DF. Alzheimer’s disease as an innate autoimmune disease (AD2): a new molecular paradigm. Alzheimers Dement. 2023;19:1086–98.
pubmed: 36165334
doi: 10.1002/alz.12789
Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–40.
pubmed: 21546393
pmcid: 3106198
doi: 10.1093/bioinformatics/btr260
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46:D1074–82.
pubmed: 29126136
doi: 10.1093/nar/gkx1037
Zhou Y, Zhang Y, Lian X, Li F, Wang C, Zhu F, et al. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res. 2022;50:D1398–407.
pubmed: 34718717
doi: 10.1093/nar/gkab953