Exploring the circulating metabolome of sepsis: metabolomic and lipidomic profiles sampled in the ambulance.
Ambulance
Infection
Lipidomics
Metabolomics
Plasma
Sepsis
Journal
Metabolomics : Official journal of the Metabolomic Society
ISSN: 1573-3890
Titre abrégé: Metabolomics
Pays: United States
ID NLM: 101274889
Informations de publication
Date de publication:
05 Oct 2024
05 Oct 2024
Historique:
received:
10
06
2024
accepted:
17
09
2024
medline:
6
10
2024
pubmed:
6
10
2024
entrez:
5
10
2024
Statut:
epublish
Résumé
Sepsis is defined as a dysfunctional host response to infection. The diverse clinical presentations of sepsis pose diagnostic challenges and there is a demand for enhanced diagnostic markers for sepsis as well as an understanding of the underlying pathological mechanisms involved in sepsis. From this perspective, metabolomics has emerged as a potentially valuable tool for aiding in the early identification of sepsis that could highlight key metabolic pathways and underlying pathological mechanisms. The aim of this investigation is to explore the early metabolomic and lipidomic profiles in a prospective cohort where plasma samples (n = 138) were obtained during ambulance transport among patients with infection according to clinical judgement who subsequently developed sepsis, patients who developed non-septic infection, and symptomatic controls without an infection. Multiplatform metabolomics and lipidomics were performed using UHPLC-MS/MS and UHPLC-QTOFMS. Uni- and multivariable analysis were used to identify metabolite profiles in sepsis vs symptomatic control and sepsis vs non-septic infection. Univariable analysis disclosed that out of the 457 annotated metabolites measured across three different platforms, 23 polar, 27 semipolar metabolites and 133 molecular lipids exhibited significant differences between patients who developed sepsis and symptomatic controls following correction for multiple testing. Furthermore, 84 metabolites remained significantly different between sepsis and symptomatic controls following adjustment for age, sex, and Charlson comorbidity score. Notably, no significant differences were identified in metabolites levels when comparing patients with sepsis and non-septic infection in univariable and multivariable analyses. Overall, we found that the metabolome, including the lipidome, was decreased in patients experiencing infection and sepsis, with no significant differences between the two conditions. This finding indicates that the observed metabolic profiles are shared between both infection and sepsis, rather than being exclusive to sepsis alone.
Sections du résumé
BACKGROUND
BACKGROUND
Sepsis is defined as a dysfunctional host response to infection. The diverse clinical presentations of sepsis pose diagnostic challenges and there is a demand for enhanced diagnostic markers for sepsis as well as an understanding of the underlying pathological mechanisms involved in sepsis. From this perspective, metabolomics has emerged as a potentially valuable tool for aiding in the early identification of sepsis that could highlight key metabolic pathways and underlying pathological mechanisms.
OBJECTIVE
OBJECTIVE
The aim of this investigation is to explore the early metabolomic and lipidomic profiles in a prospective cohort where plasma samples (n = 138) were obtained during ambulance transport among patients with infection according to clinical judgement who subsequently developed sepsis, patients who developed non-septic infection, and symptomatic controls without an infection.
METHODS
METHODS
Multiplatform metabolomics and lipidomics were performed using UHPLC-MS/MS and UHPLC-QTOFMS. Uni- and multivariable analysis were used to identify metabolite profiles in sepsis vs symptomatic control and sepsis vs non-septic infection.
RESULTS
RESULTS
Univariable analysis disclosed that out of the 457 annotated metabolites measured across three different platforms, 23 polar, 27 semipolar metabolites and 133 molecular lipids exhibited significant differences between patients who developed sepsis and symptomatic controls following correction for multiple testing. Furthermore, 84 metabolites remained significantly different between sepsis and symptomatic controls following adjustment for age, sex, and Charlson comorbidity score. Notably, no significant differences were identified in metabolites levels when comparing patients with sepsis and non-septic infection in univariable and multivariable analyses.
CONCLUSION
CONCLUSIONS
Overall, we found that the metabolome, including the lipidome, was decreased in patients experiencing infection and sepsis, with no significant differences between the two conditions. This finding indicates that the observed metabolic profiles are shared between both infection and sepsis, rather than being exclusive to sepsis alone.
Identifiants
pubmed: 39369060
doi: 10.1007/s11306-024-02172-5
pii: 10.1007/s11306-024-02172-5
doi:
Substances chimiques
Biomarkers
0
Lipids
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
111Subventions
Organisme : Knowledge Foundation
ID : 2020-0257
Organisme : Knowledge Foundation
ID : 2018-0133
Organisme : Knowledge Foundation, Sweden
ID : 2016-0044
Organisme : Region Örebro län
ID : OLL-986200
Informations de copyright
© 2024. The Author(s).
Références
Ahn, W.-G., Jung, J.-S., Kwon, H. Y., & Song, D.-K. (2017). Alteration of lysophosphatidylcholine-related metabolic parameters in the plasma of mice with experimental sepsis. Inflammation, 40, 537–545.
doi: 10.1007/s10753-016-0500-6
pubmed: 28028754
Amunugama, K., Pike, D. P., & Ford, D. A. (2021). The lipid biology of sepsis. Journal of Lipid Research, 62, 100090.
doi: 10.1016/j.jlr.2021.100090
pubmed: 34087197
pmcid: 8243525
Auro, K., Joensuu, A., Fischer, K., Kettunen, J., Salo, P., Mattsson, H., Niironen, M., Kaprio, J., Eriksson, J. G., Lehtimäki, T., Raitakari, O., Jula, A., Tiitinen, A., Jauhiainen, M., Soininen, P., Kangas, A. J., Kähönen, M., Havulinna, A. S., Ala-Korpela, M., … Perola, M. (2014). A metabolic view on menopause and ageing. Nature Communications, 5(1), 4708.
doi: 10.1038/ncomms5708
pubmed: 25144627
Charlson, M., Szatrowski, T. P., Peterson, J., & Gold, J. (1994). Validation of a combined comorbidity index. Journal of Clinical Epidemiology, 47(11), 1245–1251.
doi: 10.1016/0895-4356(94)90129-5
pubmed: 7722560
Chen, Q., Liang, X., Wu, T., Jiang, J., Jiang, Y., Zhang, S., Ruan, Y., Zhang, H., Zhang, C., Chen, P., Lv, Y., Xin, J., Shi, D., Chen, X., Li, J., & Xu, Y. (2022). Integrative analysis of metabolomics and proteomics reveals amino acid metabolism disorder in sepsis. Journal of Translational Medicine, 20(1), 123.
doi: 10.1186/s12967-022-03320-y
pubmed: 35287674
pmcid: 8919526
Cho, W. H., Park, T., Park, Y. Y., Huh, J. W., Lim, C. M., Koh, Y., Song, D. K., & Hong, S. B. (2012). Clinical significance of enzymatic lysophosphatidylcholine (LPC) assay data in patients with sepsis. European Journal of Clinical Microbiology & Infectious Diseases, 31(8), 1805–1810.
doi: 10.1007/s10096-011-1505-6
Drobnik, W., Liebisch, G., Audebert, F.-X., Fröhlich, D., Glück, T., Vogel, P., Rothe, G., & Schmitz, G. (2003). Plasma ceramide and lysophosphatidylcholine inversely correlate with mortality in sepsis patients. Journal of Lipid Research, 44(4), 754–761.
doi: 10.1194/jlr.M200401-JLR200
pubmed: 12562829
Ferrario, M., Cambiaghi, A., Brunelli, L., Giordano, S., Caironi, P., Guatteri, L., Raimondi, F., Gattinoni, L., Latini, R., & Masson, S. (2016). Mortality prediction in patients with severe septic shock: A pilot study using a target metabolomics approach. Scientific Reports, 6(1), 20391.
doi: 10.1038/srep20391
pubmed: 26847922
pmcid: 4742912
Kauppi, A. M., Edin, A., Ziegler, I., Mölling, P., Sjöstedt, A., Gylfe, Å., Strålin, K., & Johansson, A. (2016). Metabolites in blood for prediction of bacteremic sepsis in the emergency room. PLoS ONE, 11(1), e0147670.
doi: 10.1371/journal.pone.0147670
pubmed: 26800189
pmcid: 4723089
Kelly, B., & Pearce, E. L. (2020). Amino assets: How amino acids support immunity. Cell Metabolism, 32(2), 154–175.
doi: 10.1016/j.cmet.2020.06.010
pubmed: 32649859
Lin, S. H., Fan, J., Zhu, J., Zhao, Y. S., Wang, C. J., Zhang, M., & Xu, F. (2020). Exploring plasma metabolomic changes in sepsis: A clinical matching study based on gas chromatography-mass spectrometry. Annals of Translational Medicine, 8(23), 1568.
doi: 10.21037/atm-20-3562
pubmed: 33437767
pmcid: 7791264
Linder, A., Arnold, R., Boyd, J. H., Zindovic, M., Zindovic, I., Lange, A., Paulsson, M., Nyberg, P., Russell, J. A., Pritchard, D., Christensson, B., & Åkesson, P. (2015). Heparin-binding protein measurement improves the prediction of severe infection with organ dysfunction in the emergency department. Critical Care Medicine, 43(11), 2378–2386.
doi: 10.1097/CCM.0000000000001265
pubmed: 26468696
Luiking, Y. C., Poeze, M., & Deutz, N. E. (2020). A randomized-controlled trial of arginine infusion in severe sepsis on microcirculation and metabolism. Clinical Nutrition, 39(6), 1764–1773.
doi: 10.1016/j.clnu.2019.08.013
pubmed: 31522785
Luiking, Y. C., Poeze, M., Ramsay, G., & Deutz, N. E. P. (2005). The role of arginine in infection and sepsis. Journal of Parenteral and Enteral Nutrition, 29(1S), S70–S74.
doi: 10.1177/01486071050290S1S70
pubmed: 15709548
Mickiewicz, B., Duggan, G. E., Winston, B. W., Doig, C., Kubes, P., & Vogel, H. J. (2014). Metabolic profiling of serum samples by 1H nuclear magnetic resonance spectroscopy as a potential diagnostic approach for septic shock. Critical Care Medicine, 42(5), 1140–1149.
doi: 10.1097/CCM.0000000000000142
pubmed: 24368342
Mickiewicz, B., Tam, P., Jenne, C. N., Leger, C., Wong, J., Winston, B. W., Doig, C., Kubes, P., Vogel, H. J., & Network, A. S. (2015). Integration of metabolic and inflammatory mediator profiles as a potential prognostic approach for septic shock in the intensive care unit. Critical Care, 19, 1–12.
doi: 10.1186/s13054-014-0729-0
Mierzchała-Pasierb, M., Lipińska-Gediga, M., Fleszar, M. G., Lewandowski, Ł, Serek, P., Płaczkowska, S., & Krzystek-Korpacka, M. (2021). An analysis of urine and serum amino acids in critically ill patients upon admission by means of targeted LC–MS/MS: A preliminary study. Scientific Reports, 11(1), 19977.
doi: 10.1038/s41598-021-99482-8
pubmed: 34620961
pmcid: 8497565
Mosevoll, K. A., Hansen, B. A., Gundersen, I. M., Reikvam, H., Bruserud, Ø., Bruserud, Ø., & Wendelbo, Ø. (2023). Patients with bacterial sepsis are heterogeneous with regard to their systemic lipidomic profiles. Metabolites, 13(1), 52.
doi: 10.3390/metabo13010052
Neugebauer, S., Giamarellos-Bourboulis, E. J., Pelekanou, A., Marioli, A., Baziaka, F., Tsangaris, I., Bauer, M., & Kiehntopf, M. (2016). Metabolite profiles in sepsis: Developing prognostic tools based on the type of infection. Critical Care Medicine, 44(9), 1649–1662.
doi: 10.1097/CCM.0000000000001740
pubmed: 27097292
Nygren, H., Seppänen-Laakso, T., Castillo, S., Hyötyläinen, T., Orešič, M. (2011). Liquid chromatography-mass spectrometry (LC-MS)-based lipidomics for studies of body fluids and tissues. Metabolic Profiling: Methods and Protocols, 708, 247–257.
doi: 10.1007/978-1-61737-985-7_15
Ottosson, F., Smith, E., Ericson, U., Brunkwall, L., Orho-Melander, M., Di Somma, S., Antonini, P., Nilsson, P. M., Fernandez, C., & Melander, O. (2022). Metabolome-defined obesity and the risk of future type 2 diabetes and mortality. Diabetes Care, 45(5), 1260–1267.
doi: 10.2337/dc21-2402
pubmed: 35287165
pmcid: 9174969
Pang, Z., Lu, Y., Zhou, G., Hui, F., Xu, L., Viau, C., Spigelman Aliya, F., MacDonald Patrick, E., Wishart David, S., Li, S., & Xia, J. (2024). MetaboAnalyst 6.0: Towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Research, 52, W398–W406.
doi: 10.1093/nar/gkae253
pubmed: 38587201
pmcid: 11223798
Park, D. W., Kwak, D. S., Park, Y. Y., Chang, Y., Huh, J. W., Lim, C.-M., Koh, Y., Song, D.-K., & Hong, S.-B. (2014). Impact of serial measurements of lysophosphatidylcholine on 28-day mortality prediction in patients admitted to the intensive care unit with severe sepsis or septic shock. Journal of Critical Care, 29(5), 882.e885-882.e811.
doi: 10.1016/j.jcrc.2014.05.003
Park, J.-M., Noh, J.-Y., Kim, M.-J., Yun, T. G., Lee, S.-G., Chung, K. S., Lee, E. H., Shin, M. H., Ku, N. S., Yoon, S., Kang, M.-J., Park, M. S., & Pyun, J.-C. (2019). MALDI-TOF mass spectrometry based on parylene-matrix chip for the analysis of lysophosphatidylcholine in sepsis patient sera. Analytical Chemistry, 91(22), 14719–14727.
doi: 10.1021/acs.analchem.9b04019
pubmed: 31621295
Parlato, M., Philippart, F., Rouquette, A., Moucadel, V., Puchois, V., Blein, S., Bedos, J. P., Diehl, J. L., Hamzaoui, O., Annane, D., Journois, D., Boutieb, M. B., Estève, L., Fitting, C., Treluyer, J.-M., Pachot, A., Adib-Conquy, M., Cavaillon, J.-M., Misset, B., & Captain Study Group. (2018). Circulating biomarkers may be unable to detect infection at the early phase of sepsis in ICU patients: The CAPTAIN prospective multicenter cohort study. Intensive Care Medicine, 44(7), 1061–1070.
doi: 10.1007/s00134-018-5228-3
pubmed: 29959455
Pluskal, T., Castillo, S., Villar-Briones, A., Oresic, M. (2010). MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11, 395.
doi: 10.1186/1471-2105-11-395
pubmed: 20650010
pmcid: 2918584
Rath, M., Müller, I., Kropf, P., Closs, E. I., & Munder, M. (2014). Metabolism via arginase or nitric oxide synthase: Two competing arginine pathways in macrophages. Frontiers in Immunology, 5, 532.
doi: 10.3389/fimmu.2014.00532
pubmed: 25386178
pmcid: 4209874
Reinhart, K., Daniels, R., Kissoon, N., Machado, F. R., Schachter, R. D., & Finfer, S. (2017). Recognizing sepsis as a global health priority—A WHO resolution. New England Journal of Medicine, 377(5), 414–417.
doi: 10.1056/NEJMp1707170
pubmed: 28658587
Reisinger, A. C., Posch, F., Hackl, G., Marsche, G., Sourij, H., Bourgeois, B., Eller, K., Madl, T., & Eller, P. (2021). Branched-chain amino acids can predict mortality in ICU sepsis patients. Nutrients, 13(9), 3106.
doi: 10.3390/nu13093106
pubmed: 34578983
pmcid: 8469152
Rist, M. J., Roth, A., Frommherz, L., Weinert, C. H., Krüger, R., Merz, B., Bunzel, D., Mack, C., Egert, B., Bub, A., Görling, B., Tzvetkova, P., Luy, B., Hoffmann, I., Kulling, S. E., & Watzl, B. (2017). Metabolite patterns predicting sex and age in participants of the Karlsruhe Metabolomics and Nutrition (KarMeN) study. PLoS ONE, 12(8), e0183228.
doi: 10.1371/journal.pone.0183228
pubmed: 28813537
pmcid: 5558977
Robson, W., Nutbeam, T., & Daniels, R. (2009). Sepsis: A need for prehospital intervention? Emergency Medicine Journal, 26(7), 535–538.
doi: 10.1136/emj.2008.064469
pubmed: 19546282
Rudd, K. E., Johnson, S. C., Agesa, K. M., Shackelford, K. A., Tsoi, D., Kievlan, D. R., Colombara, D. V., Ikuta, K. S., Kissoon, N., Finfer, S., Fleischmann-Struzek, C., Machado, F. R., Reinhart, K. K., Rowan, K., Seymour, C. W., Watson, R. S., West, T. E., Marinho, F., Hay, S. I., … Naghavi, M. (2020). Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. The Lancet, 395(10219), 200–211.
doi: 10.1016/S0140-6736(19)32989-7
Schmerler, D., Neugebauer, S., Ludewig, K., Bremer-Streck, S., Brunkhorst, F. M., & Kiehntopf, M. (2012). Targeted metabolomics for discrimination of systemic inflammatory disorders in critically ill patients. Journal of Lipid Research, 53(7), 1369–1375.
doi: 10.1194/jlr.P023309
pubmed: 22581935
pmcid: 3371248
Singer, M., Deutschman, C. S., Seymour, C. W., Shankar-Hari, M., Annane, D., Bauer, M., Bellomo, R., Bernard, G. R., Chiche, J.-D., Coopersmith, C. M., Hotchkiss, R. S., Levy, M. M., Marshall, J. C., Martin, G. S., Opal, S. M., Rubenfeld, G. D., van der Poll, T., Vincent, J.-L., & Angus, D. C. (2016). The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA, 315(8), 801–810.
doi: 10.1001/jama.2016.0287
pubmed: 26903338
pmcid: 4968574
Su, L., Li, H., Xie, A., Liu, D., Rao, W., Lan, L., Li, X., Li, F., Xiao, K., & Wang, H. (2015). Dynamic changes in amino acid concentration profiles in patients with sepsis. PLoS ONE, 10(4), e0121933.
doi: 10.1371/journal.pone.0121933
pubmed: 25849571
pmcid: 4388841
Sun, S., Wang, D., Dong, D., Xu, L., Xie, M., Wang, Y., Ni, T., Jiang, W., Zhu, X., Ning, N., Sun, Q., Zhao, S., Li, M., Chen, P., Yu, M., Li, J., Chen, E., Zhao, B., Peng, Y., & Mao, E. (2023). Altered intestinal microbiome and metabolome correspond to the clinical outcome of sepsis. Critical Care, 27(1), 127.
doi: 10.1186/s13054-023-04412-x
pubmed: 36978107
pmcid: 10044080
Wallgren, U. M., Järnbert-Pettersson, H., Sjölin, J., & Kurland, L. (2022). Association between variables measured in the ambulance and in-hospital mortality among adult patients with and without infection: A prospective cohort study. BMC Emergency Medicine, 22(1), 185.
doi: 10.1186/s12873-022-00746-x
pubmed: 36418966
pmcid: 9686088
Wallgren, U. M., Sjölin, J., Järnbert-Pettersson, H., & Kurland, L. (2020). The predictive value of variables measurable in the ambulance and the development of the predict sepsis screening tools: A prospective cohort study. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 28, 1–14.
doi: 10.1186/s13049-020-00745-6
Wishart, D. S. (2019). Metabolomics for investigating physiological and pathophysiological processes. Physiological Reviews, 99(4), 1819–1875.
doi: 10.1152/physrev.00035.2018
pubmed: 31434538
Yan, J.-J., Jung, J.-S., Lee, J.-E., Lee, J., Huh, S.-O., Kim, H.-S., Jung, K. C., Cho, J.-Y., Nam, J.-S., Suh, H.-W., Kim, Y.-H., & Song, D.-K. (2004). Therapeutic effects of lysophosphatidylcholine in experimental sepsis. Nature Medicine, 10(2), 161–167.
doi: 10.1038/nm989
pubmed: 14716308