The activating receptor NKG2D is an anti-fungal pattern recognition receptor.
Animals
NK Cell Lectin-Like Receptor Subfamily K
/ metabolism
Mice
Humans
Mice, Inbred C57BL
Mice, Knockout
Receptors, Pattern Recognition
/ metabolism
Aspergillus
/ immunology
Killer Cells, Natural
/ immunology
CD8-Positive T-Lymphocytes
/ immunology
Mycoses
/ immunology
Female
Candida
/ immunology
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
07 Oct 2024
07 Oct 2024
Historique:
received:
29
04
2023
accepted:
23
09
2024
medline:
8
10
2024
pubmed:
8
10
2024
entrez:
7
10
2024
Statut:
epublish
Résumé
NKG2D is a central activating receptor involved in target recognition and killing by Natural Killer and CD8
Identifiants
pubmed: 39375344
doi: 10.1038/s41467-024-52913-2
pii: 10.1038/s41467-024-52913-2
doi:
Substances chimiques
NK Cell Lectin-Like Receptor Subfamily K
0
Klrk1 protein, mouse
0
Receptors, Pattern Recognition
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8664Subventions
Organisme : Israel Science Foundation (ISF)
ID : 2554/18
Informations de copyright
© 2024. The Author(s).
Références
Bongomin, F., Gago, S., Oladele, R. O. & Denning, D. W. Global and multi-national prevalence of fungal diseases-estimate precision. J. Fungi 3, 57 (2017).
doi: 10.3390/jof3040057
Rokas, A. Evolution of the human pathogenic lifestyle in fungi. Nat. Microbiol. 7, 607–619 (2022).
pubmed: 35508719
pmcid: 9097544
doi: 10.1038/s41564-022-01112-0
Narunsky-Haziza, L. et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell 185, 3789–3806 (2022).
pubmed: 36179670
pmcid: 9567272
doi: 10.1016/j.cell.2022.09.005
Hoenigl, M. et al. COVID-19-associated fungal infections. Nat. Microbiol. 7, 1127–1140 (2022).
pubmed: 35918423
pmcid: 9362108
doi: 10.1038/s41564-022-01172-2
Kariyawasam, R. M. et al. Defining COVID-19-associated pulmonary aspergillosis: systematic review and meta-analysis. Clin. Microbiol. Infect. 28, 920–927 (2022).
pubmed: 35150878
pmcid: 8828380
doi: 10.1016/j.cmi.2022.01.027
Krishna, V., Bansal, N., Morjaria, J. & Kaul, S. COVID-19-associated pulmonary mucormycosis. J. Fungi 8, 711 (2022).
doi: 10.3390/jof8070711
Seyedjavadi, S. S., Bagheri, P., Nasiri, M. J., Razzaghi-Abyaneh, M. & Goudarzi, M. Fungal infection in co-infected patients with COVID-19: an overview of case reports/case series and systematic review. Front. Microbiol. 13, 888452 (2022).
pubmed: 35875562
pmcid: 9298665
doi: 10.3389/fmicb.2022.888452
Koehler, P. et al. COVID-19 associated pulmonary aspergillosis. Mycoses 63, 528–534 (2020).
pubmed: 32339350
pmcid: 7267243
doi: 10.1111/myc.13096
Casadevall, A. Immunity to invasive fungal diseases. Annu. Rev. Immunol. 40, 121–141 (2022).
pubmed: 35007128
doi: 10.1146/annurev-immunol-101220-034306
Salazar, F. & Brown, G. D. Antifungal innate immunity: A Perspective from the last 10 years. J. Innate Immun. 10, 217–223 (2018).
doi: 10.1159/000488539
Schmidt, S., Tramsen, L. & Lehrnbecher, T. Natural killer cells in antifungal immunity. Front. Immunol. 8, 1623 (2017).
pubmed: 29213274
pmcid: 5702641
doi: 10.3389/fimmu.2017.01623
Taylor, P. R. et al. The β-Glucan receptor, Dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J. Immunol. 169, 3876–3882 (2002).
pubmed: 12244185
doi: 10.4049/jimmunol.169.7.3876
Li, S. S. et al. The NK receptor NKp30 mediates direct fungal recognition and killing and is diminished in NK cells from HIV-infected patients. Cell Host Microbe 14, 387–397 (2013).
pubmed: 24139398
doi: 10.1016/j.chom.2013.09.007
Li, S. S. et al. Identification of the fungal ligand triggering cytotoxic PRR-mediated NK cell killing of Cryptococcus and Candida. Nat. Commun. 9, 751 (2018).
pubmed: 29467448
pmcid: 5821813
doi: 10.1038/s41467-018-03014-4
Vitenshtein, A. et al. NK cell recognition of Candida glabrata through binding of NKp46 and NCR1 to fungal ligands Epa1, Epa6, and Epa7. Cell Host Microbe 20, 527–534 (2016).
pubmed: 27736647
pmcid: 5492882
doi: 10.1016/j.chom.2016.09.008
Ziegler, S. et al. CD56 is a new pathogen recognition receptor on human natural killer cells. Sci. Rep. 7, 6238 (2017).
doi: 10.1038/s41598-017-06238-4
Heilig, L. et al. CD56-mediated activation of human natural killer cells is triggered by Aspergillus fumigatus galactosaminogalactan. PLoS Pathog. 20, e1012315 (2024).
pubmed: 38889192
pmcid: 11216564
doi: 10.1371/journal.ppat.1012315
Nabavi, N. & Murphy, J. W. Antibody-dependent natural killer cell-mediated growth inhibition of Cryptococcus neoformans. Infect. Immun. 51, 556–562 (1986).
pubmed: 3510982
pmcid: 262375
doi: 10.1128/iai.51.2.556-562.1986
Charpak-Amikam, Y. et al. Candida albicans evades NK cell elimination via binding of Agglutinin-Like Sequence proteins to the checkpoint receptor TIGIT. Nat. Commun. 13, 2463 (2022).
pubmed: 35513379
pmcid: 9072312
doi: 10.1038/s41467-022-30087-z
Brown, G. D. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol. 6, 33–43 (2006).
pubmed: 16341139
doi: 10.1038/nri1745
Wensveen, F. M., Jelenčić, V. & Polić, B. NKG2D: a master regulator of immune cell responsiveness. Front. Immunol. 9, 441 (2018).
pubmed: 29568297
pmcid: 5852076
doi: 10.3389/fimmu.2018.00441
Zingoni, A. et al. NKG2D and its ligands: “one for all, all for one.” Front. Immunol. 9, 476 (2018).
pubmed: 29662484
pmcid: 5890157
doi: 10.3389/fimmu.2018.00476
Li, P. et al. Complex structure of the activating immunoreceptor NKG2D and its MHC class I-like ligand MICA. Nat. Immunol. 2, 443–451 (2001).
pubmed: 11323699
doi: 10.1038/87757
Radaev, S., Rostro, B., Brooks, A. G., Colonna, M. & Sun, P. D. Conformational plasticity revealed by the cocrystal structure of NKG2D and its class I MHC-like ligand ULBP3. Immunity 15, 1039–1049 (2001).
pubmed: 11754823
doi: 10.1016/S1074-7613(01)00241-2
Jelenčić, V. et al. NK cell receptor NKG2D sets activation threshold for the NCR1 receptor early in NK cell development. Nat. Immunol. 19, 123–134 (2018).
doi: 10.1038/s41590-018-0209-9
Guerra, N. et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28, 571–580 (2008).
pubmed: 18394936
pmcid: 3528789
doi: 10.1016/j.immuni.2008.02.016
Zafirova, B. et al. Altered NK cell development and enhanced NK cell-mediated resistance to mouse cytomegalovirus in NKG2D-deficient mice. Immunity 31, 270–282 (2009).
pubmed: 19631564
pmcid: 2782462
doi: 10.1016/j.immuni.2009.06.017
Ogbomo, H. & Mody, C. H. Granule-dependent natural killer cell cytotoxicity to fungal pathogens. Front. Immunol. 7, 692 (2017).
pubmed: 28123389
pmcid: 5225108
doi: 10.3389/fimmu.2016.00692
Björkström, N. K., Ljunggren, H.-G. & Michaëlsson, J. Emerging insights into natural killer cells in human peripheral tissues. Nat. Rev. Immunol. 16, 310–320 (2016).
pubmed: 27121652
doi: 10.1038/nri.2016.34
Dogra, P. et al. Tissue determinants of human NK cell development, function, and residence. Cell 180, 749–763.e13 (2020).
pubmed: 32059780
pmcid: 7194029
doi: 10.1016/j.cell.2020.01.022
Wu, J. et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285, 730–732 (1999).
pubmed: 10426994
doi: 10.1126/science.285.5428.730
Gabaldón, T. & Fairhead, C. Genomes shed light on the secret life of Candida glabrata: not so asexual, not so commensal. Curr. Genet. 64, 87–94 (2018).
Pappas, P. G. et al. Invasive candidiasis. Nat. Rev. Dis. Primers 4, 18026 (2018).
pubmed: 29749387
doi: 10.1038/nrdp.2018.26
Yano, J. & Fidel, P. L. Protocols for vaginal inoculation and sample collection in the experimental mouse model of Candida vaginitis. J. Vis. Exp. 47, e3382 (2011).
Lionakis, M. S. et al. Organ-specific innate immune responses in a mouse model of invasive candidiasis. J. Innate Immun. 3, 180–199 (2011).
pubmed: 21063074
doi: 10.1159/000321157
Kim, T. S. & Shin, E. C. The activation of bystander CD8+ T cells and their roles in viral infection. Exp. Mol. Med. 51, 1–9 (2019).
pubmed: 31827074
pmcid: 6881327
Paprckova, D., Salyova, E., Michalik, J. & Stepanek, O. Bystander activation in memory and antigen-inexperienced memory-like CD8 T cells. Curr. Opin. Immunol. 82, 102299 (2023).
pubmed: 36913776
doi: 10.1016/j.coi.2023.102299
Domínguez-Andrés, J. et al. Inflammatory Ly6Chigh monocytes protect against candidiasis through IL-15-driven NK cell/neutrophil activation. Immunity 46, 1059–1072.e4 (2017).
pubmed: 28636955
doi: 10.1016/j.immuni.2017.05.009
Stappers, M. H. T. T. et al. Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus. Nature 555, 382–386 (2018).
pubmed: 29489751
pmcid: 5857201
doi: 10.1038/nature25974
Siemaszko, J., Marzec-Przyszlak, A. & Bogunia-Kubik, K. NKG2D natural killer cell receptor—a short description and potential clinical applications. Cells 10, 1410 (2021).
doi: 10.3390/cells10061420
Santiago, V. et al. Human NK cells develop an exhaustion phenotype during colonization with mucosa-associated bacteria and fungi. Nat. Commun. 14, 4773 (2023).
Schmidt, S. et al. Human natural killer cells exhibit direct activity against Aspergillus fumigatus hyphae, but not against resting conidia. J. Infect. Dis. 203, 430–435 (2011).
pubmed: 21208932
pmcid: 3071101
doi: 10.1093/infdis/jiq062
Curio, S., Jonsson, G. & Marinović, S. A summary of current NKG2D-based CAR clinical trials. Immunother. Adv. 1, ltab018 (2021).
pubmed: 34604863
pmcid: 8480431
doi: 10.1093/immadv/ltab018
Arnon, T. I. et al. Recognition of viral hemagglutinins by NKp44 but not by NKp30. Eur. J. Immunol. 31, 2680–2689 (2001).
pubmed: 11536166
doi: 10.1002/1521-4141(200109)31:9<2680::AID-IMMU2680>3.0.CO;2-A
Mandelboim, O. et al. Human CD16 as a lysis receptor mediating direct natural killer cell cytotoxicity. Proc. Natl. Acad. Sci. USA 96, 5640–5644 (1999).
pubmed: 10318937
pmcid: 21913
doi: 10.1073/pnas.96.10.5640
Glasner, A. et al. Elucidating the mechanisms of influenza virus recognition by Ncr1. PLoS ONE 7, e36837 (2012).
pubmed: 22615821
pmcid: 3352933
doi: 10.1371/journal.pone.0036837
Liu, Y. et al. Neoglycolipid-based oligosaccharide microarray system: preparation of NGLs and their noncovalent immobilization on nitrocellulose-coated glass slides for microarray analyses. Methods Mol. Biol. 808, 117–136 (2012).
pubmed: 22057521
doi: 10.1007/978-1-61779-373-8_8