The activating receptor NKG2D is an anti-fungal pattern recognition receptor.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
07 Oct 2024
Historique:
received: 29 04 2023
accepted: 23 09 2024
medline: 8 10 2024
pubmed: 8 10 2024
entrez: 7 10 2024
Statut: epublish

Résumé

NKG2D is a central activating receptor involved in target recognition and killing by Natural Killer and CD8

Identifiants

pubmed: 39375344
doi: 10.1038/s41467-024-52913-2
pii: 10.1038/s41467-024-52913-2
doi:

Substances chimiques

NK Cell Lectin-Like Receptor Subfamily K 0
Klrk1 protein, mouse 0
Receptors, Pattern Recognition 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8664

Subventions

Organisme : Israel Science Foundation (ISF)
ID : 2554/18

Informations de copyright

© 2024. The Author(s).

Références

Bongomin, F., Gago, S., Oladele, R. O. & Denning, D. W. Global and multi-national prevalence of fungal diseases-estimate precision. J. Fungi 3, 57 (2017).
doi: 10.3390/jof3040057
Rokas, A. Evolution of the human pathogenic lifestyle in fungi. Nat. Microbiol. 7, 607–619 (2022).
pubmed: 35508719 pmcid: 9097544 doi: 10.1038/s41564-022-01112-0
Narunsky-Haziza, L. et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell 185, 3789–3806 (2022).
pubmed: 36179670 pmcid: 9567272 doi: 10.1016/j.cell.2022.09.005
Hoenigl, M. et al. COVID-19-associated fungal infections. Nat. Microbiol. 7, 1127–1140 (2022).
pubmed: 35918423 pmcid: 9362108 doi: 10.1038/s41564-022-01172-2
Kariyawasam, R. M. et al. Defining COVID-19-associated pulmonary aspergillosis: systematic review and meta-analysis. Clin. Microbiol. Infect. 28, 920–927 (2022).
pubmed: 35150878 pmcid: 8828380 doi: 10.1016/j.cmi.2022.01.027
Krishna, V., Bansal, N., Morjaria, J. & Kaul, S. COVID-19-associated pulmonary mucormycosis. J. Fungi 8, 711 (2022).
doi: 10.3390/jof8070711
Seyedjavadi, S. S., Bagheri, P., Nasiri, M. J., Razzaghi-Abyaneh, M. & Goudarzi, M. Fungal infection in co-infected patients with COVID-19: an overview of case reports/case series and systematic review. Front. Microbiol. 13, 888452 (2022).
pubmed: 35875562 pmcid: 9298665 doi: 10.3389/fmicb.2022.888452
Koehler, P. et al. COVID-19 associated pulmonary aspergillosis. Mycoses 63, 528–534 (2020).
pubmed: 32339350 pmcid: 7267243 doi: 10.1111/myc.13096
Casadevall, A. Immunity to invasive fungal diseases. Annu. Rev. Immunol. 40, 121–141 (2022).
pubmed: 35007128 doi: 10.1146/annurev-immunol-101220-034306
Salazar, F. & Brown, G. D. Antifungal innate immunity: A Perspective from the last 10 years. J. Innate Immun. 10, 217–223 (2018).
doi: 10.1159/000488539
Schmidt, S., Tramsen, L. & Lehrnbecher, T. Natural killer cells in antifungal immunity. Front. Immunol. 8, 1623 (2017).
pubmed: 29213274 pmcid: 5702641 doi: 10.3389/fimmu.2017.01623
Taylor, P. R. et al. The β-Glucan receptor, Dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J. Immunol. 169, 3876–3882 (2002).
pubmed: 12244185 doi: 10.4049/jimmunol.169.7.3876
Li, S. S. et al. The NK receptor NKp30 mediates direct fungal recognition and killing and is diminished in NK cells from HIV-infected patients. Cell Host Microbe 14, 387–397 (2013).
pubmed: 24139398 doi: 10.1016/j.chom.2013.09.007
Li, S. S. et al. Identification of the fungal ligand triggering cytotoxic PRR-mediated NK cell killing of Cryptococcus and Candida. Nat. Commun. 9, 751 (2018).
pubmed: 29467448 pmcid: 5821813 doi: 10.1038/s41467-018-03014-4
Vitenshtein, A. et al. NK cell recognition of Candida glabrata through binding of NKp46 and NCR1 to fungal ligands Epa1, Epa6, and Epa7. Cell Host Microbe 20, 527–534 (2016).
pubmed: 27736647 pmcid: 5492882 doi: 10.1016/j.chom.2016.09.008
Ziegler, S. et al. CD56 is a new pathogen recognition receptor on human natural killer cells. Sci. Rep. 7, 6238 (2017).
doi: 10.1038/s41598-017-06238-4
Heilig, L. et al. CD56-mediated activation of human natural killer cells is triggered by Aspergillus fumigatus galactosaminogalactan. PLoS Pathog. 20, e1012315 (2024).
pubmed: 38889192 pmcid: 11216564 doi: 10.1371/journal.ppat.1012315
Nabavi, N. & Murphy, J. W. Antibody-dependent natural killer cell-mediated growth inhibition of Cryptococcus neoformans. Infect. Immun. 51, 556–562 (1986).
pubmed: 3510982 pmcid: 262375 doi: 10.1128/iai.51.2.556-562.1986
Charpak-Amikam, Y. et al. Candida albicans evades NK cell elimination via binding of Agglutinin-Like Sequence proteins to the checkpoint receptor TIGIT. Nat. Commun. 13, 2463 (2022).
pubmed: 35513379 pmcid: 9072312 doi: 10.1038/s41467-022-30087-z
Brown, G. D. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol. 6, 33–43 (2006).
pubmed: 16341139 doi: 10.1038/nri1745
Wensveen, F. M., Jelenčić, V. & Polić, B. NKG2D: a master regulator of immune cell responsiveness. Front. Immunol. 9, 441 (2018).
pubmed: 29568297 pmcid: 5852076 doi: 10.3389/fimmu.2018.00441
Zingoni, A. et al. NKG2D and its ligands: “one for all, all for one.” Front. Immunol. 9, 476 (2018).
pubmed: 29662484 pmcid: 5890157 doi: 10.3389/fimmu.2018.00476
Li, P. et al. Complex structure of the activating immunoreceptor NKG2D and its MHC class I-like ligand MICA. Nat. Immunol. 2, 443–451 (2001).
pubmed: 11323699 doi: 10.1038/87757
Radaev, S., Rostro, B., Brooks, A. G., Colonna, M. & Sun, P. D. Conformational plasticity revealed by the cocrystal structure of NKG2D and its class I MHC-like ligand ULBP3. Immunity 15, 1039–1049 (2001).
pubmed: 11754823 doi: 10.1016/S1074-7613(01)00241-2
Jelenčić, V. et al. NK cell receptor NKG2D sets activation threshold for the NCR1 receptor early in NK cell development. Nat. Immunol. 19, 123–134 (2018).
doi: 10.1038/s41590-018-0209-9
Guerra, N. et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28, 571–580 (2008).
pubmed: 18394936 pmcid: 3528789 doi: 10.1016/j.immuni.2008.02.016
Zafirova, B. et al. Altered NK cell development and enhanced NK cell-mediated resistance to mouse cytomegalovirus in NKG2D-deficient mice. Immunity 31, 270–282 (2009).
pubmed: 19631564 pmcid: 2782462 doi: 10.1016/j.immuni.2009.06.017
Ogbomo, H. & Mody, C. H. Granule-dependent natural killer cell cytotoxicity to fungal pathogens. Front. Immunol. 7, 692 (2017).
pubmed: 28123389 pmcid: 5225108 doi: 10.3389/fimmu.2016.00692
Björkström, N. K., Ljunggren, H.-G. & Michaëlsson, J. Emerging insights into natural killer cells in human peripheral tissues. Nat. Rev. Immunol. 16, 310–320 (2016).
pubmed: 27121652 doi: 10.1038/nri.2016.34
Dogra, P. et al. Tissue determinants of human NK cell development, function, and residence. Cell 180, 749–763.e13 (2020).
pubmed: 32059780 pmcid: 7194029 doi: 10.1016/j.cell.2020.01.022
Wu, J. et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285, 730–732 (1999).
pubmed: 10426994 doi: 10.1126/science.285.5428.730
Gabaldón, T. & Fairhead, C. Genomes shed light on the secret life of Candida glabrata: not so asexual, not so commensal. Curr. Genet. 64, 87–94 (2018).
Pappas, P. G. et al. Invasive candidiasis. Nat. Rev. Dis. Primers 4, 18026 (2018).
pubmed: 29749387 doi: 10.1038/nrdp.2018.26
Yano, J. & Fidel, P. L. Protocols for vaginal inoculation and sample collection in the experimental mouse model of Candida vaginitis. J. Vis. Exp. 47, e3382 (2011).
Lionakis, M. S. et al. Organ-specific innate immune responses in a mouse model of invasive candidiasis. J. Innate Immun. 3, 180–199 (2011).
pubmed: 21063074 doi: 10.1159/000321157
Kim, T. S. & Shin, E. C. The activation of bystander CD8+ T cells and their roles in viral infection. Exp. Mol. Med. 51, 1–9 (2019).
pubmed: 31827074 pmcid: 6881327
Paprckova, D., Salyova, E., Michalik, J. & Stepanek, O. Bystander activation in memory and antigen-inexperienced memory-like CD8 T cells. Curr. Opin. Immunol. 82, 102299 (2023).
pubmed: 36913776 doi: 10.1016/j.coi.2023.102299
Domínguez-Andrés, J. et al. Inflammatory Ly6Chigh monocytes protect against candidiasis through IL-15-driven NK cell/neutrophil activation. Immunity 46, 1059–1072.e4 (2017).
pubmed: 28636955 doi: 10.1016/j.immuni.2017.05.009
Stappers, M. H. T. T. et al. Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus. Nature 555, 382–386 (2018).
pubmed: 29489751 pmcid: 5857201 doi: 10.1038/nature25974
Siemaszko, J., Marzec-Przyszlak, A. & Bogunia-Kubik, K. NKG2D natural killer cell receptor—a short description and potential clinical applications. Cells 10, 1410 (2021).
doi: 10.3390/cells10061420
Santiago, V. et al. Human NK cells develop an exhaustion phenotype during colonization with mucosa-associated bacteria and fungi. Nat. Commun. 14, 4773 (2023).
Schmidt, S. et al. Human natural killer cells exhibit direct activity against Aspergillus fumigatus hyphae, but not against resting conidia. J. Infect. Dis. 203, 430–435 (2011).
pubmed: 21208932 pmcid: 3071101 doi: 10.1093/infdis/jiq062
Curio, S., Jonsson, G. & Marinović, S. A summary of current NKG2D-based CAR clinical trials. Immunother. Adv. 1, ltab018 (2021).
pubmed: 34604863 pmcid: 8480431 doi: 10.1093/immadv/ltab018
Arnon, T. I. et al. Recognition of viral hemagglutinins by NKp44 but not by NKp30. Eur. J. Immunol. 31, 2680–2689 (2001).
pubmed: 11536166 doi: 10.1002/1521-4141(200109)31:9<2680::AID-IMMU2680>3.0.CO;2-A
Mandelboim, O. et al. Human CD16 as a lysis receptor mediating direct natural killer cell cytotoxicity. Proc. Natl. Acad. Sci. USA 96, 5640–5644 (1999).
pubmed: 10318937 pmcid: 21913 doi: 10.1073/pnas.96.10.5640
Glasner, A. et al. Elucidating the mechanisms of influenza virus recognition by Ncr1. PLoS ONE 7, e36837 (2012).
pubmed: 22615821 pmcid: 3352933 doi: 10.1371/journal.pone.0036837
Liu, Y. et al. Neoglycolipid-based oligosaccharide microarray system: preparation of NGLs and their noncovalent immobilization on nitrocellulose-coated glass slides for microarray analyses. Methods Mol. Biol. 808, 117–136 (2012).
pubmed: 22057521 doi: 10.1007/978-1-61779-373-8_8

Auteurs

Yoav Charpak-Amikam (Y)

The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Hebrew University Medical School, IMRIC, Jerusalem, Israel.

Mark Kournos (M)

The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Hebrew University Medical School, IMRIC, Jerusalem, Israel.

Rebecca Kotzur (R)

The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Hebrew University Medical School, IMRIC, Jerusalem, Israel.

Batya Isaacson (B)

The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Hebrew University Medical School, IMRIC, Jerusalem, Israel.

Tal Bagad Brenner (T)

The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Hebrew University Medical School, IMRIC, Jerusalem, Israel.

Elidet Gomez-Cesar (E)

The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Hebrew University Medical School, IMRIC, Jerusalem, Israel.

Ammar Abou-Kandil (A)

Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel.

Ronen Ben-Ami (R)

Infectious Diseases Unit, Tel Aviv Sourasky Medical Center, and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Maya Korem (M)

Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.

Nadia Guerra (N)

Department of Life Sciences, Imperial College London, London, UK.

Nir Osherov (N)

Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel.

Ofer Mandelboim (O)

The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Hebrew University Medical School, IMRIC, Jerusalem, Israel. oferm@ekmd.huji.ac.il.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH